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An analysis of the transitions between quantum states of a superconducting loop is presented. On the basis of
the simple equivalent circuit model, it is argued that the system’s behavior should be erratic for very small
damping. This corrects an oversight in the work of Smith and Blackburn, and brings it into agreement with

previously published material.

INTRODUCTION

A superconducting loop that is interrupted by a
Josephson tunnel junction is an example of a sys-
tem with a set of macroscopic quantum states.
When it settles into some quantum state, how does
it choose which one to settle into? There have
been conflicting statements in the literature about
the predictability of this choice. This paper will
attempt to clarify the situation, at least within the
context of the simple equivalent circuit model that
has been widely used.

Most work has actually involved loops with two
Josephson junctions, but in many respects their

behavior should be similar to single-junction loops.

Many papers'~® have described erratic, apparently
random behavior in situations where a loop was

forced to select a quantum state. Several groups*?®

have pointed out that this is to be expected, but de-
tailed justifications were not presented.

On the other hand, Smith and Blackburn® (re-
ferred to in the following as SB) have described
both experiments and computer simulations giving
simple, predictable behavior. The resolution of
these differences lies in the fact that they were
interested primarily in the case of intermediate
damping. For such loops, the equivalent-circuit
model does predict simple behavior. However,
they erred in supposing that their results could be
extrapolated to the case of small damping, where,
in fact, erratic behavior should occur.

The process we are interested in begins with the
loop superconducting and with no magnetic field
anywhere. The field, perpendicular to the plane
of the loop, is then slowly increased from zero
until the circulating current induced in the loop
reaches the critical value for the Josephson junc-
tion. At this point a transient voltage will appear
across the junction, and some amount of magnetic
flux will enter the loop. Our problem is to predict
this amount of flux, which is equivalent to pre-
dicting the final state.

THEORY

Since the theory of this system has been dis-
cussed repeatedly,'”” we will merely review it
briefly. We treat the loop by an equivalent circuit
consisting of the loop inductance L, the junction
capacitance C, the junction quasiparticle tunneling
resistance R, and an element obeying the Joseph-
son equations with critical current ¢,, all connected
in parallel. Each of the above quantities is taken
to be constant, although in fact R is known to be a
function of voltage. It is hoped that neglecting the
voltage dependence of R will not introduce any
significant error, but eventually a more realistic
model should be used.

To this equivalent circuit we add the require-
ment of fluxoid conservation and obtain, in Smith
and Blackburn’s notation,

. ad d3o
® =@, —ysin(21®) - — -— . 1
dat, dt’ )

Here & is the total magnetic flux in the loop, di-
vided by the flux quantum 2X 10~ W, &, is the
flux that would be produced in the loop if the loop
were open circuited, again divided by the flux
quantum, and ¢, is the time divided by VLC. The
damping parameter g is defined as VLC/RC, and
y is Li, divided by the flux quantum. The junction
critical current ¢, is the largest current that can
pass through the junction without a voltage drop.
Thus y is the maximum number of flux quanta that
can be produced by a supercurrent circulating in
the loop.

One way to gain insight into Eq. (1) is to note that
it is also the equation of motion of a particle slid-
ing in a potential well with a damping force that is
proportional to velocity. The position coordinate
is then & and the potential is

V(@) =%(® - ®,)% - (v/27) cos(27d) . 2)

This represents a parabolic potential well, cen-
tered at & =®,, with a sinusoidal modulation. The
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modulation will lead to a number of subsidiary
wells, or metastable points. This potential is il-
lustrated in Fig. 1. For simplicity, the figure is
drawn for y near unity, although our computations
will be for larger y. Note that for sufficiently
large |® - &,|, the modulation does not lead to
local minima.

Zero applied field in the case of the supercon-
ducting loop means &, =0, and so it corresponds
to having the parabolic well centered at & =0. Ap-
plying a field increases &, and moves the bottom
of the well to larger ¢ values. We must suppose
that the particle remains near & =0, because this
is what the superconducting loop does. That is,
the particle stays in the same local minimum,
which moves up the side of the well and grows
shallower. When &, gets large enough, the local
minimum will disappear. The particle will then
begin to slide down. The onset of sliding corre-
sponds to the appearance of a voltage across the
Josephson junction. Eventually the particle will
come to rest in some minimum, and & will have
changed from near zero to some new value. This
corresponds to the loop changing to a new quantum
state and to the entry of some flux. Following SB,
the final value of & will be denoted &,,,,. This is
the quantity that we wish to compute.

The behavior of the system depends on the value
of the damping parameter g. For very large 8 the
particle will stop in the first minimum that it
comes to. For smaller 8, it will progress further
down before being trapped. That is, as shown in
SB, ®eneer increases as  decreases.

At some value of B, which we will call B,, the
particle comes to rest in the lowest potential well,
which is at ® = ®,, so that @ener = ®,. (The value
of B, depends weakly ony. We have used y values
from 30 to 1000, and we find B, 1.6 in this range.
In the limit of y =0, g, would be 2.0, correspond-
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FIG. 1. Graph of the potential function V(& for the
case y=2, $,=1.8. A particle that started at the low-
est V at &, =0 would now be in the shallow minimum at
$=0.15. At ®,=1.8, the system has four stable or
metastable states: ¢=0.15, 1.05, 2.00, 2.90, 3.78.

ing to a critically damped oscillator.) It is the
behavior at g < B, that SB failed to describe cor-
rectly.

For B<B,, the particle will pass the bottom and
slide up the other side. If it is trapped in some
minimum there, ®enter Will be larger than &,. For
B <B,, it will slide back and forth through & =&,
many times before stopping. Clearly, just where
it stops will be very sensitive to the initial con-
ditions and the precise amount of damping.

At this point it is helpful in understanding the
low-3 case to consider an approximate analysis
using y =0. This is the familiar damped-oscillator
problem and can be solved exactly. Let ®, have
some value and then release the particle from rest
at ® =®,. The particle will slide back and forth
with diminishing amplitude. The extrema of its
motion, given by d®/dt,=0, are at

@ -&,)/(®; —®,) = (-1)" exp[-7N/(4/p% - 1)V?].

®)

N =0 gives the starting point & =&;. The end of the
first swing corresponds to N=1, and & at the com-
pletion of the return swing, the end of the first
cycle, is given by N=2. As an example, take &;
=0 and B =0.1. The extrema are at ¢ =0, 1.85%,,
0.27¢,, 1.62&., etc.

If we now return to our original problem with y
large, we can expect that ®.,,, should be near one
of the members of the series calculated from Eq.
(3). The reason is that Eq. (3) gives an estimate
of the points where the particle will be moving
slowly. These are just the places where the par-
ticle is likely to be trapped.

We call the values of ® calculated from Eq. (3)
with N=1 and N=2 the “approximate theoretical
maximum” and “approximate theoretical minimum?”
values of &.,.,. The actual &, should lie near or
within these limiting values, and this is borne out
by our numerical simulations, as we will see.

We expect &, to be very sensitive to the initial
conditions when 8 is small. The normal initial
conditions for our problem occur when the local
minimum in which the particle started has been
reduced to just an inflection point. The corre-
sponding values of &, and §; are

&, =(y*-1/41%) V% + &, 4)
and
&, =(1/2m) cos~'(-1/2my). (5)

For y > 1 these equations give , =y +3 and &, = 1.
Now consider the effect of small changes in ini-
tal conditions, say by changing ®; slightly. Sup-
pose that the normal initial conditions lead to a
final state j. That is, suppose the particle comes
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to rest in the jth local minimum. Suppose further
that it happens that the particle is almost able to
escape from this state, but does not quite have
enough energy to surmount the potential barrier.
Then a slightly smaller &;, corresponding to a
larger initial potential energy, could mean that the
particle is able to escape from the jth minimum.
If it escapes, it will slide down and up the other
side, perhaps to be trapped there. The result
would then be a very large change in &, resulting
from a small change in &;.

A small noise pulse at any time could have a
similar effect. If the particle almost escapes from
its final state, the noise energy could lead to es-
cape. The final state could then be quite different.
Note that it is not the height of the final potential
barrier that is important, but how close the parti-
cle would normally come to surmounting it. There
is no general way to determine whether a particle
will “almost escape” from its final state. This
will depend sensitively on 8 and y. Therefore, it
is hard to make quantitative statements about how
large a noise pulse or change in &; will be im-
portant. Our approach will be to illustrate these
effects by a few specific numerical simulations.

By a similar argument one can see that a small
change in the damping constant 8 could lead to a
large change in &, . Again, we will illustrate
this with examples.

NUMERICAL SIMULATIONS

We have numerically integrated Eq. (1) using the
fourth-order Runge-Kutta method. Most of the
work was done using a program very kindly sup-
plied to us by Smith and Blackburn. For some
computations we used a program written here by
Wilson, and modified by Chen, which was origin-
ally used for double-junction loops.® Initial con-
ditions were chosen, and the integration was car-
ried out until the system had clearly settled into
some final minimum. Most computations were for
¥ =120, but values from 30 to 1000 were also used.

To investigate the dependence on 8, we carried
out a series of computations with y =120, fixed
initial conditions, and different values of . The
initial conditions were d®/d¢,=0, &;=0.25, and
&, =120.251. These are the normal initial con-
ditions, mentioned before, except that 0.001 has
been added to &, to ensure that the particle would
actually start sliding. Figure 2 shows the results.

Figure 2 supports the general remarks made in
the previous section. For g8 less than about 1.6 the
behavior becomes rather erratic. ®.,, follows no
discernible pattern other than that it lies between
the approximate theoretical maximum and mini-
mum.
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FIG. 2. Results of computer simulations for various
values of the damping parameter B, with y=120. The
initial conditions were &, =120.251, and $=0. These
are the “normal” initial conditions, except that 0.001
was added to &, to ensure that switching would occur.
The solid lines were computed as described in the text.
They give approximate limits for the value of ®enter
for B<1.6, where the behavior is erratic.

The sensitivity of ®.,., to initial conditions is
shown in Fig. 3. We see that it can change quite
abruptly in a narrow range of values of &;. Note
in particular the spike that appears for the 8 =0.2
case. Such spikes could easily be missed in nu-
merical computations, since only a finite set of &,
values can be used.

CONCLUSION

The value of & ..., for a superconducting loop
having small B8 is hard to predict for two reasons.
First, it changes in an erratic way with g, so a
small error in the choice of B could lead to a large
error in the predicted ®.,,,. Second, the experi-
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FIG. 3. Results of computer simulations for various
initial values of ®. The other parameters were y=120,
®,=120.251, $=0. Note the abrupt changes in the
value of ®enter .
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mental results will be very sensitive to noise,
and, to make matters worse, the degree of sensi-
tivity to noise is liable to depend in an erratic way
on the precise value of 8. It is clear that devices
made with superconducting loops which involve
transitions between quantum states should avoid
the low damping case. The simple, predictable
behavior described by Smith and Blackburn applies
only for 8 >8,.

These conclusions are also relevant to super-
conducting loops having two Josephson junctions.
The additional junction complicates the system,

but should not alter the general erratic character
that we have seen in single-junction loops.
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