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We derive and solve the Boltzmann equation for viscosity and diffusive thermal conductivity at low

temperatures in the B phase of superfluid 'He. The viscosity g is shown to tend towards a constant value as

the temperature tends to zero, with the constant being inversely proportional to an angular average of the

collision probability. A general expression for the collision probability valid at any temperature is given in

terms of the singlet and triplet components of the normal-state scattering amplitude. If one takes for the

normal-state amplitude the s- and p-wave approximation, the constant viscosity is found to equal about one

third of its value at the transition temperature. The diffusive thermal conductivity v~ is found to vary as

T ', as in the normal state, and with roughly the same coefficient of proportionality. We calculate as a
function of pressure the viscosity and diffusive thermal conductivity in the normal state and in the superfluid

at T = 0, and the normal-state quasiparticle relaxation time at the Fermi energy. The results are compared

with experimental data, and the adequacy of the s- and p-wave approximation for the normal-state scattering

amplitude is discussed. Finite temperature corrections to g and ~DT are obtained for a particularly simple

normal-state scattering amplitude, showing that q initially decreases with increasing temperature while ~~T
increases.

I. INTRODUCTION

In the preceding paper' (referred to as I) trans-
port and relaxation processes in superfluid liquid
'He close to the transition temperature T, were
considered. The approach involved a systematic
expansion in terms of the small parameter &/&s T,
where & is a typical value of the gap in the excita-
tion spectrum. In the present paper we treat the
opposite l.imit, in which the thermal energy AT
is small compared to the gap energy, or, equiva-
lently T«T, . (For reference to earlier work on
this subject we refer the reader to I.) We consider
the B phase of liquid 'He, which is the only phase
presently accessible to experiment at T«T„and
we shall assume this phase to be the Balian-
Werthamer (BW) state. ' The experimental evi-
dence for this identification, particularly from
magnetic resonance experiments, is now quite
considerable. '

There are a number of important differences
between the two limits k~T» h and k~T « ~. In
the region close to T, we worked in terms of
quasiparticles having a positive energy above the
Fermi surface, and a negative energy below, so
that in the limit b -0 one recovers the normal-
state dispersion relation. At low temperatures
(ksT «a) it is more convenient to use quasiparticle
states which all have positive energy, both above

and below the Fermi surface. The methods for
solving the Boltzmann equation are also rather
different. Close to T, it is solved by perturbation
theory starting from the normal-state solution.
In the low-temperature limit the equation may be
solved exactly rather simply; in particular we
show that the simple relaxation-time approxima-
tion for the collision term gives the exact results
for the viscosity and diffusive thermal conductivity.
The characteristic relaxation time is inversely
proportional to the number density of excitations,
and as a consequence the shear viscosity tends
to a constant, while the diffusive thermal conduc-
tivity has the same temperature dependence as in
the normal state (-T ').'

The tempera. ture dependence of the transport
coefficients does not depend on detailed properties
of the quasiparticle scattering amplitude, but the
numerical values of quantities of course do. Given
the interaction between normal-state quasiparti-
cles one can find the interaction between super-
fluid quasiparticles by performing a Bogoliubov
transformation. The scattering amplitude for
quasiparticles in the superfluid is a linear com-
bination of normal-state amplitudes. As a result
of the anisotropy of the superfluid state, the scat-
tering amplitude for superfluid quasiparticles gen-
erally has a much more complicated angular de-
pendence than the corresponding amplitude for nor-
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mal state quasiparticles, and also depends on the
quasiparticle energy. We give detailed expres-
sions for the transition probability for superfluid
quasiparticles. This is used to obtain expressions
for the characteristic relaxation time when the
scattering amplitude for normal-state quasiparti-
cles is given by the s- and p-wave approximation
in terms of Landau parameters. ' The leading
finite-temperature corrections to the low-tem-
perature behavior of the transport coefficients
are of order ksT/n. , and we evaluate the coeffi-
cients for the particular case of a constant normal
quasiparticle scattering amplitude acting only in
singlet spin states.

The paper is organized as follows. In Sec. II
we derive and solve the low-temperature Boltz-
mann equation for viscosity and diffusive thermal
conductivity. Section III and the Appendix contain
the evaluation of the collision probability in terms
of the singlet and triplet components of the nor-
mal-state scattering amplitude, in addition to ex-
plicit expressions for the transport coefficients
in terms of the Landau parameters occurring in the
s- and p-wave approximation. In Sec. IV we calcu-
late the finite temperature corrections for the
simplified normal- state scattering amplitude.
Section V contains a discussion of the experimen-
tally important question of the magnitude of the
mean free path, and also a consideration of the
adequacy of the particular approximate scattering
amplitude used to calculate the magnitude of the
transport coefficients.

E (d2+ (2}1/2 (2.3}

where $~ =(P -pr)v~ is the normal-state guasi-
particle energy, measured with respect to the
chemical potential and P~ is the Fermi momen-
tum. The quasiparticle velocity is

ap Fg (2 4)

which is an odd function of g~, in contrast to the
case for a normal Fermi liquid, where it is an
even function of $~, if one works in terms of the
usual quasiparticle states. The driving term for
the case of viscosity is therefore odd in $~, and
has l =2 angular symmetry.

In the case of thermal conductivity the driving
term is

the gradient of the quasiparticle energy cancel
in the usual fashion. Fo definiteness we assume
the velocity field u to have only an x component,
whose magnitude varies only in the y direction.

p is the quasiparticle momentum. v, whichdepends
on p, is the quasiparticle velocity, and n~ is the
equilibrium distribution function

n'=(e &~'& +1) ' (2.2)

where E~ is the quasiparticle energy. In (2.1) we

have retained only terms of first order in the
velocity gradient, which is assumed to be small.
We also suppress spin indices for the moment.

The quasiparticle energy in the state of global
equilibrium is given by

II. BOLTZMANN EQUATION (2.5)

Low-f requency long-wavelength transport and
relaxation processes in the superfluid may be
dealt with in the framework of a Boltzmann equa-
tion, provided (d and qv~ are very much less than

Here co and q are the frequency and wave num-
ber of the disturbance, VF is the Fermi velocity,
and ~ is the superfluid gap, which is isotropic
for the BW state. The streaming terms in the
Boltzmann equation have the standard form, and
in the hydrodynamic limit, when v and qv~ are
small compared with a typical quasiparticle colli-
sion rate, all distribution functions in the stream-
ing terms may be replaced by local equilibrium
distribution functions. Throughout this paper we
shall confine ourselves to the hydrodynamic limit.
Thus for the case of the shear viscosity the
streaming terms reduce to

Bu„On~0
vy ' +ny =Pgv

p
(2.1}

On the left-hand side of (2.1) the gradient operator
acts only on the velocity field. Terms involving

which again is odd in $&.

Let us now turn to the collision term. In I we
found that close to T, coalescence and decay pro-
cesses played an important role. However at low
temperatures and for superfluid states with a
finite gap everywhere, coalescence and decay
processes are less important by a factor -e ~

than the two-excitation scattering processes. The
total rate of coalescence processes is proportional
to the probability of three quasiparticles colliding,
-(e ~~'&r)', the rate for decay processes is also
proportional to e '~ &~ since a quasiparticle with
an energy of at least 3& is required for the decay
tobe kinematically allowed. On the other hand,
the rate for two-quasiparticle scattering processes
is proportional to e~~ ~~ . In this paper we con-
cern ourselves only with the low-temperature lim-
it, and corrections to the low-temperature limit
involving powers of T. Thus we may neglect the
coalescence and decay processes, and the colli-
sion term may be written in the standard form
for two-quasiparticle scattering. It is convenient
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to work with the deviation function g&„which is
defined in terms of the deviation 6n, of the dis-
tribution function from the local equilibrium dis-
tribution, by

so (29) has the form

E =++2meff+ y

with the "effective mass" given by

(2.11}

5n, =n', (1 —n', )g, , (2.6) m„, =n/v'„. (2.12)

where i denotes both momentum and spin variables
p, and o, . The linearized collision integral may
then be written

x5(E,+E2 —Es —Es)

x (4~+ 42 —4s —"s) . (2.V)

(ns+ p}s/s '+ "2/2~ (2.8)

That this expansion is valid at low temperatures
is apparent from the corresponding approximate
form of the distribution function n'.

n'(E} = e-"'s'e-"'"'s' (2.9)

which shows that the important values of g are of
order (nksT)'~' at low temperatures. The quasi-
particle group velocity corresponding to thp quasi-
particle energy (2.8) is

The usual factor (1 —n,')(1 —n', ) which takes into
account blocking of transitions due to occupation
of the final states has been neglected in (2.V} since
it differs from unity only by amounts of order
e ~~~sr. W, (1,2;3, 4) is the collision probability
for a transition in which quasiparticles in the
states 1 and 2 are scattered to the states 3 and 4.

At low temperatures the Boltzmann equation may
be further simplified. First, typical values of
P~ are small compared with &, and therefore we
may expand E~ in powers of $&.

1 Bu„
u r P" ey" =-H& (2.13)

The collision probability in (2.V), in general,
depends both on the angles between the momenta
p„p„p„and p4 and also on the quasiparticle
energies. As one can see from the detailed ex-
pression for the collision probability given in Sec.
III, the energy dependence comes from the $~ de-
pendence of the superfluid coherence factors. The
latter is on an energy scale of order &, and there-
fore in the low-temperature limit all values of
$~ of interest are much less than ~, which means
that the collision probability may be evaluated for

0. Note, however, that this is not
true for evaluating the finite temperature correc-
tions.

To reduce the collision integral (2.V) to manage-
able form we convert the nine summations over
momentum variables into three integrals over the
normal-state energies and two angular integrals
over 8 and Q in precisely the same way as is done
in normal Fermi liquid calculations. ' (To do this
we have used momentum conservation to remove
three of the nine momentum sums and performed
one integration over an angular variable which
does not enter the collision probability. ) Also in
the low-temperature limit we may use the ap-
proximate forms (2.8) and (2.10). It is then easy
to show that the Boltzmann equation for the case
of the shear viscosity, given by equating the
streaming term (2.1) to the collision term (2.7),
reduces to

v($q) =($p/n)vr, (2.10) where the operator H is defined by

(Hg), =-[n, (1 —n', )] '
coll

m" Cg) 00

2 2 2 2=sr's' s( "( ss(~)4s ( -s (s')s)'(s's-s-s)
mOO

(2.14)

(2.15)

Here

' d(cos8) "d4' W,'(8, $)2, 2w cos(—,'8) (2.16}

probability is defined by

W,'(8, $}=—x — g W,'(1, 2;3, 4).
1 1

a»a2, e3, e4

is the collision probability averaged over spins
and angles of the initial and final quasiparticle
states. 8 is the angle between p, and p» and f
is the angle between the plane of p, and p, and the
plane of p, and p, . The spin-averaged transition

(2.17}

In (2.1V) the factor of —,
' averages over initial

spins, and the factor of —,
' avoids double counting

final states. The superscript 0 indicates that the
probability is to be evaluated for g, = $2 $3 $4 0.
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It is simple to solve the Boltzmann equation

since if X is an odd function of $, then
One finds by combining (2.23) and (2.24) with the

definition of the viscosity p,

(ffx}i =xi/& (2.18)

where the relaxation time ~, which, as we shall
see, is independent of $„ is given by

BQj BQg 2
IIjf + —g ' u5. )

BXg BXj

that

(2.25)

dg dg dg g, n

(, +g —p, —(42

24

n =sp. (v'&,„~

=,—', (vm~ pm'/a)n, „r,
where

(2.26)

(2.2'7)

(2.19)

This follows from the fact that the y„X„and X,
terms in (2.15}vanish identically if X is an odd

function of $, irrespective of the angular depen-
dence of g, because the integral kernel is an even
function of the gj.

The integral over (, and t, in (2.19) is easily
performed if one works in terms of the variable
g', +g', and one finds

fr 2

v'(0) (Wo),
7' 6 5 n 2m

(2.20)

where

n,„=g n, =v(0}(2rbkeT)~e ~~'er (2.21)
P2 2

is the number density of excitations, which tends
to zero exponentially at low temperatures, and v(0}
is the density of states for both spins at the Fermi
surface in the normal state. fj is the number den-
sity of 'He atoms, and ~* is the effective mass.
The fact that the relaxation time is independent of
energy is a direct consequence of the fact that the
density of states of a pair of excitations in the
superfluid, moving in definite directions, is inde-
pendent of energy for energies small compared
with d. The quantity in large parentheses in (2.20)
is a dimensionless number which turns out to be
rather large for liquid 'He (-12 at the melting
pressure). Clearly by symmetry the solution to
(2,13}must be an odd function of f„and therefore
using (2.18) one finds

2„0p„=~ „p,n,
pg B B

is the density of the normal Quid, and

(2.28)

( v'),„=(keT/e ) v~~ (2.29)

is the mean-square thermal quasiparticle velocity.
Since v 0(- n,„' it follows that q is independent of
temperature.

An alternative way of writing the result (2.2V) is

q =—,'nm* v~v, ,
2 (2.30)

where

(2.31)

Here we have introduced the "Fermi energy"
Ez =P~z/2m*. The results (2.30) and (2.31) indi-
cate that the zero-temperature viscosity is not too
different from the viscosity at T„since 4-kBT, .
The detailed calculations below give q(0) =-', q(T, )
for the particular approximate normal-state scat-
tering amplitude used.

The diffusive thermal conductivity &~ may be
calculated by precisely similar methods to those
used for the viscosity. The driving term (2.5},
proportional to the heat current carried by a quasi-
particle E~v~ = $~v~, is again an odd function of (j,
and the Boltzmann equation may be solved exactly.
The deviation function i.s found to be

1 Bu„
TP, vy

8 By
(2.22) ((I&

&
--(1/keT2)E~v VTr, (2.32)

Having obtained |I}, it is straightforward to find
the viscosity from the expression for the shear
stress ll,„,

and the deviation from local equilibrium is

E - Bno
6n- = ~ v ~ VT7

T BE (2.33)

ll„„=gp, v„6n, ,

where &n, given in terms of (l& by (2.6), is

(2.23)
From this one can calculate the diffusive heat
current j~, given by

Be~0 Bu„
np =7' p v„

BE~ By
(2.24} Ev ~n

po
(2.34)



C. J. PETHICK, H. SMITH, AND P. BHATTACHARYYA 15

3D D (2.33}

is given by

Kv = s Cv( V )ih'f (2.36)

whence the diffusive thermal conductivity m~, de-
fined by

We return to a discussion of the magnitude of I in

Sec. V.
It is a simple consequence of the existence of the

energy independent relaxation time & common to
both the viscosity and heat-conductivity equation
that the ratio of these two transport coefficients
is independent of the collision probability. One

finds from (2.27) and (2.37) the simple relation

', (b, /T) v~2-n,„v (2.3'7)

(2.38)
III. COLLISION PROBABILITY

(2.42)

or

1

AT =, nvz~K v2(0)(W0) (2.39)

Here

c„=(n, '/keT')n, „ (2.40)

is the heat capacity per unit volume. As one can
see from (2.39), ~v has the same temperature de-
pendence as in the normal state, and DDT does
not depend explicitly on the gap. As we shall see
below Kg) T is not very different from the normal-
state value.

In contrast to the Boltzmann equation for the
normal Fermi liquid, that for the superfluid in the
low-temperature limit is very simple to solve, and
the reasons for this are perhaps worth remarking
on. One is that in the low-temperature limit the
collision probability can be replaced by its value
for g, =0, since its variation with the $, occurs
only on scales of order b, . If one were to do trans-
port theory for the normal state using only positive
energy excitations one could not neglect the $,
dependence, because the nature of the excitations
in the normal state changes discontinuously from
being holelike to particlelike at f, =0. The colli-
sion probability in the normal state is therefore
not invariant under the replacement of $; by -$,.
As we shall see in Sec. IV, this symmetry also
ceases to exist in the superfluid when the tempera-
ture is finite.

Another quantity of direct physical importance
is the quasiparticle mean free path l, since for the
concept of a transport coefficient to make sense
spatial variation must occur over length scales
large compared with l. L is given by the quasi-
particle relaxation time & multiplied by a charac-
teristic quasiparticle velocity, which we take to be
the root-mean-square thermal velocity (2.29).
Thus

To estimate the collision probability in the su-
perfluid state we wish to make use of the experi-
mental information one has about scattering in the
normal state. We shall make the standard weak-
coupling assumption that the residual interaction
in the superfluid is the same as in the normal liq-
uid. One might question this assumption in view of
the importance strong-coupling effects have in sta-
bilizing the A phase. ' However, in the case of
free-energy calculations the strong-coupling cor-
rections are particularly important because they
have to be compared with the rather small dif-
ference between the free energies of two phases.
In the case of transport calculations it seems un-
likely that strong coupling effects play such an im-
portant role. A second reason for neglecting
strong-coupling effects on the residual interaction
is that these are almost certainly small compared
with uncertainties in our knowledge of the normal-
state residual interaction. We note, however, that
estimates of the strong-coupling effects may be ob-
tained quite straightforwardly within the frame-
work of, for example, the spin-fluctuation model.

Once the weak-coupling assumption has been
made, the scattering amplitude for superfluid
quasiparticles may be found by performing a Bo-
goliubov transformation on the corresponding nor-
mal-state amplitude. As discussed in Sec. II we
take into account only the two quasiparticle scat-
tering processes. The result for the spin-averaged
transition probability is

=1((v') ~')r = ( 2)v' ' v~7, e ~&e (2.41)
FIG. 1. Diagrammatic illustration of the scattering

amplitudes entering the collision probability.
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W, (p„p„.p„p4) =-——— g W, (1, 2; 3, 4)
~X'~2 ~S'~4

=——((uzu2u3u, '+ vz v2 v3 v,')(Sz+ ST z)+ 2uz vzuz v2u3 v3u4 v~

x[cos'8»Sz+(2cos'8„+2 cos'8, 4
—cos'gz2)Tz+(cos28„—cos'8, )2TzSz]

—[u, v, u2 v, (ys v', + v', u~) +u, v, u, v, (v', u,'+u', v', )] cosg„(S„S„,—5T„T„,+S„T„,—T„S„,)
+(vzuzv3ug+uzv2u3v4)(Szz+3T, z)+2u, vzuz v, u3v3ug vz

x [cos'8„$'„+(2 cos'8„+2 cos'8„- cos'8„)T'„+(cos'8„—cos'8„}2$„T„]

[u, v, u, v, (u', u,'+v', v', )+u, v, u, v, (u', u', + v', v3)1 cosgz4(SzSzzz+5Tz Tzzz Sz Tzzz TzSzzz}

( zuQ 3vg+uzv2vsu4)(Szzz+3Tz, z)+2u, v, uzv2uzv3uzv,

x [cos'8„$2», +(2 cos'8„+2 cos'8„—cos'8») T»z+(cos 8» —«» gz&)2$zzz Tz»]
—[u v u v (u u +v v)+u v u v (u u +v v)]cosg (SzSzz+5TzTzz+SzTzz+TzSzz)}.

(3.1)

For brevity we have omitted the modulus signs on
the ~u; ~' and

~
v& (' in this equation.

The details of the calculation are given in the Ap-
pendix, in which the corresponding results for the
decay and coalescence processes are also included.
Here S and T are the singlet and triplet quasipar-
ticle scattering amplitudes for quasiparticles in
the normal state. The Roman numeral subscripts
label the various normal-state scattering ampli-
tudes which contribute to the superfluid amplitude.
S, and T, give the amplitudes for a process in
which the incoming quasiparticles have momenta

p, and p, and the outgoing quasiparticles have mo-
menta p, and p, . S» and T» are the amplitudes for
quasiparticles of momenta -p, and p, to be scat-
tered to states -p, and p, . Finally S»i and T»r
are the amplitudes for quasiparticles of momenta
—p, and p, to be scattered to states p, and —p, ~

The processes are illustrated diagrammatically in
Fig. 1. 8,, is the angle between p, and p&, and the
coherence factors u and v are given explicitly in
Eqs. (A8) and (A9).

We observe that the second and third group of
terms in (3.1) are obtained from the first group by
the replacements u, —v3 Q3 v cosH ~2 cosH „
and u, —v„u4- vg cosHy2 cosH j„respectively,
provided one makes the obvious replacements of
S', by S» and S~«and of S» S», by $,$», and S,S»,
etc. , in addition to making the appropriate changes
of sign in the cross terms.

First, let us consider the simplest possible case,
in which the singlet amplitude is a constant Sy S»
Sr„=S, and the triplet amplitude vanishes Tx = T»

=T», =0. As we shall see, this is a rather good
first approximation for liquid 'He. The corre-
sponding collision probability is

W', (8, y) =(2v/a) —,', S' sin'(&8)(3+ cos'P}. (3.2)

I

To obtain this result the coherence factors u and v

in (S.l) were put equal to 1/v 2, their value for
$; =0, and the angles 8,&

were expressed in terms
of the usual angles 8(=-8») and P defined below Eq.
(2 ~ 16). The relations are

and

cosH &2
= cos8

cosg» = cosg„=cos'(—', 8)+ sin'(&8) cosP,

(3 ' 3)

(3.4)

"dy 'd(cosg) W,'(8, y)
2m, 2 cos(—,'8)

= (2zz/8) —,', S'.

(3.6)

(S.V)

The corresponding quantity for the normal state is

(W„)=(2zz/}f)g S', (3.8)

which shows that the effect of the superfluid cor-
relations is to reduce the amount of scattering.

cosg„= cosg» = cos'(-,'8) —sin'(-,'8) cosQ. (3.5)

Note that W,'vanishes in the forward direction (8
=0}. This is due to two effects. First, the scat-
tering amplitude for initial or final states having
quasiparticles in the same state must vanish by
virtue of the Pauli principle; this is the argument
which shows that the triplet amplitude for 8 = 0
must vanish in the normal state. The fact that in
the superfluid the other amplitudes also vanish in
the forward direction is a consequence of a can-
cellation due to interference between S„S», and

S»y which occurs only when the singlet amplitude
is a constant. We remark that the angular depen-
dence of W,'(8, Q) in this simple case is due entire-
ly to the anisotropy of the superfluid state, since
the normal-state scattering amplitude is constant.

The angular average (Wo) is given by
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W: lees= Ws= (2x/ff) a S' (3.9)

We have also calculated the transition probability
in the BCS state of an s-wave superfluid for the
constant singlet amplitude and find the same angle-
independent value as in the normal state

cos8«= —cos8»=-x'+(1-x') cosp,

cos8«g = —cos8~~ = —x —(1 —x ) cosp~

(1 —x') cosp+ 3X' —1

(- 1+x') cos&f&+ 1+x' '

(3.13)

(3.14)

(3.15}

the angular average of which is of course the same
as for the normal state, Eq. (3.8). For a given
normal-state interaction, one therefore expects
less scattering in the BW state of a p-wave super-
fluid than in the BCS s-wave state.

To make more-realistic estimates of the scat-
tering amplitude we need to take into account the
angular dependence of the normal-state scattering
amplitudes. S, and T, are functions of the vari-
ables 8 and Q. S«and T» are the same functions
of the angles 8xx and Qxx related to process II in
the same way as 8 and Q are related to process I.
Similar remarks apply for Sxxx and 1 xxxy and the
corresPonding angles are 8x» and ft}xxx. For the
normal-state scattering amplitude we use the s-
and p-wave approximation, as in Paper I:

and

(1 -x') cosg —3x'+ 1
(1 —x') cosQ + 1+x' ' (3.16)

v (0)(W, ) =
~ QD(~C(C~,

where the symmetric matrix D;& is given by

(3.17)

7 5
60 84

1
240

1
112

5 13
84 140

1
980

1
168

240 280 480 + 4 ln2 1120+ 4 ln2

We find then for the entire collision probability
(W, ) within the s- and P-wave approximation
[(3.10) and (3.11)]

and

v(0)S, =C, +C, cos8 (3.10)

(3.18)
v(0)T, =(C, +C, cos8) cosg. (3.11)

The dimensionless coefficients C, are related to
the Landau parameters by the relations given in
Eq. (E13}of l.

Substituting (3.10) and (3.11) into (3.1), and put-
ting all coherence factors equal to 1/v 2, one ob-
tains a rather lengthy expression for (W,'). The
number of distinct integrals may be reduced by
using the fact that

D=10 3X
—60 93 -4

4 —4 226 —98

9 6 —98 135

or approximately as

117 —60 4

(3.19)

may be replaced by

or

X = Cos(g 8)q (3.12)

since d(cos8}/cos( —', 8) =4 dx.
The angles 8xxy 8xxxy ~xxy and (t}xxx are expressed

in terms of x and Q by

as is obvious from the fact that the phase space
for the scattering process may be described equal-
ly well in terms of the angles for any of the pro-
cesses I, II, or III. To perform the final integrals
it is convenient to use the variable

The numbers in (3.19) with the exception of D» dif-
fer somewhat from those given in Ref. 4 due to a
computational error in the previous work, where
the integrals were done numerically rather than
analytically.

To calculate the zero-temperature viscosity 7)(0)
and the thermal conductivity we must finally com-
bine (2.30), (2.31), and (2.39) with (3.17)-(3.19).
The values of the coefficients C,. are obtained from
the available experimental information on the Lan-
dau parameters F'„F,', and F', with F', fixed by the
forward-scattering sum rule. The results of such
a calculation using Wheatley's' tabulated values of
the Landau parameters are shown in Figs. 2 and 3
and in Table I. We have used the weak-coupling
gap d = (v/y}ks T, = 1.76ks T, Adiscussion .of
these results will be given in Sec. V. Here we
shall only point out that the calculated q(0) is be-
tween 0.27 and 0.34 times the value of the viscosity
at T„ the ratio changing slightly with pressure be-
tween 0 and 34 bar. For ~~T the corresponding
variation is between 0.63 and 0.72 of xn(T, )T,.
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FIG. 2. Calculated zero-temperature viscosity g(0)
as a function of pressure. The rapid increase with de-
creasing pressure is due primarily to the decrease in
the magnitude of the zero-temperature gap.

The magnitudes of the matrix elements of D, Eq.
(3.19), cause the singlet part of the amplitude to
dominate the angular average of the collision prob-
ability because of the large value of C, in particu-
lar. Note that there is little mixing between the
singlet and the triplet parts of the normal-state
scattering amplitude due to the smallness of the
relevant matrix elements. In the constant singlet
approximation (C, w 0, C, = C, =C, = 0) the value of
(W, ) differs by approximately 10%%uo from the value
obtained from the s- and P-wave approximation.
However the ratio II(0)/II(T, } in the constant sin-
glet approximation is 0.53 which is signif icantly dif-
ferent because of the considerable change in the
value of rl(T, ) in the two approximations. For ther-
mal conductivity the corresponding number is 0.87.

IV. FINITE-TEMPERATURE CORRECTIONS

At finite temperatures the exact solution of the
Boltzmann equation is not given by the relaxation-
time expression. There are two classes of cor-
rections that must be taken into account. The
first arises because one must retain higher-order
terms in $ in the expressions for the quasiparticle
energy and related quantities. We shall refer to
these corrections as kinematical corrections. The
quasiparticle energy (2.3) is thus approximated by

I i I I I I I I I I I I I I I I I

0 10 20 30

Pressure [bar)

FIG. 3. Calculated zero-temperature limiting value
of KDT. Note that ~~T is given in terms of g by the re-
lation DDT/g = m'/p~.

n (E)=e ~ & e ' [1+~(ksT/a)x ]. (4.4)

The second class of corrections comes from
changes in the collision probability due to the $
dependence of the coherence factors. We shall
refer to these corrections as dynamical ones.
The coherence factors are given by

u = [—'(1 + $/E}] ' '
and (4.5}

When expanded to second order in $ the quantities
u', v', and uv, which are the only ones that enter
the expression (3.1) for the collision probability,
are

u' =-,'(1+ (/a),
v' = —,'(1 —(/a},

(4.6)

cupation factors n'(E) change as well, and for the
purposes of calculating the leading finite-tempera-
ture corrections may be replaced by

E = g+ ]'/2z —t'/6g' . (4.1)
and

v = v~(t'/a)[ 1 —(ks T/k, )x'],
where

2a

(4.2)

(4.3)

is a convenient dimensionless variable. The oc-

Previously we kept only the quadratic term in the
expansion (4.1). The inclusion of the quartic term
modifies the group velocity of the excitations ac-
cording to

uv = r./2E= —,'(1 —$'/2a') . (4.7)

The corrections to the viscosity and diffusive
thermal conductivity due to the above sources are
of order ksT/a relative to the low-temperature
limiting value. A further source of corrections
comes from decay and coalescence processes,
and the 1 —n factors in the two-quasiparticle scat-
tering process. These give contributions of rela-
tive order e ~ ~&, and thus at low temperatures
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q ~ ks T[ (U, X) '/(U, H U)],
where the scalar product is defined by

(4.8)

vanish more rapidly than the contributions dis-

cussed above. Finally, we remark that the tem-
perature dependence of the gap may also be ne-

glected, since the leading term is proportional to
«6/k~T

The simplest way to calculate the leading finite
temperature corrections to the transport coeffi-
cients is to use the variational principle which

gives a lower bound on the viscosity and the
thermal conductivity. For the viscosity one has

(4.11)
P101 (1Pl«P1&

Let us consider the numerator and the denomi-
nator of (4.8) in turn, leaving out for the moment
the dynamical corrections, which will be added
later. For the term in the numerator in (4.8) one

finds

deviations of g from the zero-temperature solution
do not affect the leading corrections, and there-
fore one can avoid solving the finite-temperature
Boltzmann equation. The trial function U is there-
fore taken to be proportional to the zero-tempera-
ture solution (2.22),

(4 9) (X, U) =(X, U), (1+s3k,T/ A), (4.12)

and the linear operator H is given by Eqs. (2.14)
and (2.15). Also

where (, ), is to be understood as the T- 0 limit
of the quantity. This result is easily established
by noting that (X, U) is proportional to the integral

d$ $v $ n

which equals the driving term in the Boltzmann
equation (2.13) with -Bu, /By replaced by unity.
The trial function U in (4.8) is arbitrary, but for
U equal to p, the exact solution of the Boltzmann
equation, the bound (4.8) is equal to the true vis-
cosity, given by

(4.10}

One may calculate the leading finite-temperature
corrections by evaluating the variational expres-
sion using the zero-temperature solution as the
trial function. Because of the variational property,

If one now expands v and n in powers of ~, using
(4.2) and (4.4), the integral is proportional to

1+— ~ 4 13

to linear order in ksT/A.
When the changes in the collision probability are

ignored, the relevant integral in the denominator
ls

«2) 2 1 k&T 2 1 k&T
2

x 5 x, + x2 —xs —x~ —— (x, + x2 —x, —x~) = —1+— (4.14}
1k~T 4 4 4 4 g 15 k~T

to linear order in ksT/d„since the delta function when integrated with respect to x, and x, gives

dx, dx, 5 x, +x, —x, —x, —— (x +x —x —x ) =v 1+—(x +x )t 1 k~T 4 4 4 4 3 2 2 k&T
3 4 1 2 3 4 2 g 1 2 3 4 4 1 2 (4.15)

Consequently, the kinematical corrections combine to reduce the viscosity by the factor (1 —3ksT/A}.
Now let us turn to the dynamical corrections. After performing integrals over all angular variables

~~~ept 8 and p one finds for the denominator in (4.8), neglecting kinematical corrections,

(U, HU)~, dx, dx, dx, dx, e '*& "2'5(x', +x', —x', —x', )W, (8, Q, x„x„x„x,)
27k 1 cos 28

x x,[x, +x,P, (cos8) x,P, (cos8„—) —«, P, (cos8„)],
(4.16}

where 9» and 8,4 are the angles between p, and p„and p, and p, . The P2 functions are l =2 Legendre poly-
nomials, which enter the viscosity by virtue of the l=2 symmetry of the driving term.

We now evaluate (4.16) assuming that the normal state scattering amplitude is a constant S acting only in
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the singlet spin state. This approximation gives results for the low-temperature viscosity which differ by

less than 10% from those of the full s- and p-wave approximation. The collision probability expanded to

second order in the g, is

k~T
Wg (8y Qs xlt x 21+39 x4) 6 (xlx2 + xsx4 x jx3 x 1x4 x2x3 x2x4)

+2 1 — x', cos'g+cos'g«+cos'g»,

4 —2 x
&

cos g —cos g» —cos gi«
k~T

+ (x qx2+ x ~x~) cos8+ (x qx4+ x2x3) cos8» + (x qx3+ x2x4) cos8») (4.17)

When this is substituted into (4.16), the only terms proportional to k»T/a which survive are ones involving

integrals of x z z x z or z,z4! the rest vanish by symmetry. The final angular integra. l to be per-

formed is

d ' d(cos8)
2[ (1 —cos8}'+(1+cos8» }'+(1+cos8 «i }')2», cos(-,'8)

8k T (cos 8+ cos 8» + cos 8») —cos8+ cos8 «+ cos8«) ) — (1 —cos8)P, (cos 8}2k~T

4k~T (1+cos8„)P,(cos8„)— » (1+cos8«, )P, (cos8„} 0: 1 — » . (4.16}

Note that this integral depends on the angular part
of the trial function, through the P„and will there-
fore not be the same for other transport coeffi-
cients. It is therefore not possible at finite tem-
peratures to use a common relaxation time to de-
scribe both the viscosity and the diffusive thermal
conductivity. Combining the kinematical and dy-
namical corrections one finds

q =q(0)(I —~98 k»T/a), (4.19)

EgV I
—(g VP (4.20)

The appropriate trial function is again proportional
to the zero-temperature solution p, given by

where q(0) denotes the zero-temperature viscosity
calculated in Sec. IG, in this case corresponding
to the result (3.7) for the collision probability. In
weak- coupling theory

4(T = 0) = (&/y)k»T~ 1.76 k»T„—
and therefore the finite-temperature correction
term is close to q(0)T/T, . We h-ave not made
estimates of the correction term for more general
interactions, but it seems likely that for ones ap-
propriate for liquid He, g will decrease with in-
creasing temperature.

Analogous calculations can be carried out for the
finite temperature contribution to the diffusive
thermal conductivity. The variational expression
for the diffusive thermal conductivity is similar to
(4.8) but with X-... proportional to the heat current
carried by a quasiparticle

(4.21)

(X, U) =(X, U),(1+~k,T/~), (4.22)

(U, HU) =(U, HU)0(1+ ~4 k»T/a} . (4.23)

Thus the kinematical corrections to g~T vanish.
For a const nt singlet effective interaction in the

normal state the dynamical corrections are given
by an expression identical with (4.16), apart from
the replacement of the P, that occur there by P, .
One finds

(U, HU) = (U, HU)0(1 —
p~ k»T/6},

and hence

(4.24)

g»T=»»T ~r 0(1+ p~k»T/6) . (4.25)

Thus g~T, in contrast to q, increases with in-
creasing temperature. The main reason for the
different behavior is that the current X is rigor-
ously proportional to g for all $ in the case of the
heat current, but not in the case of the momentum
current.

V. DISCUSSION

In this concluding section we first discuss the
experimentally important question of the mag-
nitude of the mean free path at low temperatures.

$p Ejvg' V T = (gVgP1'VT ~

Note that P is linear in $ „as in the case of vis-
cosity, but has l= j. angular dependence. After cal-
culations similar to those described above for the
viscosity, one finds for the kinematical corrections
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FIG. 4. Calculated values of the low-temperature
mean free path l. le a is shown as a function of
pressure [cf. Eq. (2.41)].

Subsequently we shall deal with the adequacy of
the s- and p-wave approximation to the scattering
amplitude used in the calculation of the magnitude
of the transport coefficients.

To perform an experiment which measures the
low- temperature viscosity characteristic of the
bulk liquid the mean free path must be less than
the dimensions of the sample and other character-
istic lengths such as the viscous penetration
depth. We have defined the mean free path l by
Eq. (2.41) in terms of the thermally averaged
group velocity of an excitation and the relaxation
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FIG. 5. Pressure dependence of the normal-state
viscous relaxation time ~„ times T, where the viscosity
is related to ~ by g=-m~nv+7 . The circles are ex-
perimental values from Ref. 3, and the full line is the
theoretical value calculated using the s- and p-wave
approximation to the scattering amplitude.
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~~ 0.3
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FIG. 6. Pressure dependence of the normal-state
thermal-conductivity relaxation time 7„ times T,
where the thermal conductivity ~ is related to ~„'by
~ =3czvzr„. The circles are experimental values taken
from Ref. 3, and the full line is the theoretical value
calculated using the s- and p -wave approximation.

time v. Once the angularly averaged collision
probability is calculated, one can from it derive
r„Eq. (2.81), and hence the magnitude of the
temperature- independent quantity Ee ~~ ~& ~. The
latter is shown in Fig. 4 as a function ofpressure. The
rapid increase at lower pressures reflects the in-
crease in the normal- state mean free path at the tran-
sition temperature T, withdecreasing T,. To ob-
tain the low-temperature value of l at a given tem-
perature and pressure, one may use the plot in
Fig. 4 together with the value of the exponential
e~ ~& at the temperature in question. Note that
on the melting curve l is no greater than about
6 p at T= 2 T,. It is therefore possible to have l
smaller than any characteristic length in an ex-
periment, even when k~T& Ll. In this connection
one should note that the viscous penetration depth
6 also increases as the temperature is lowered,
since 8= (I}/p Id)' '~ T' ' e~~I"&r'. The magnitude
at a given frequency (d is readily calculated from
the value of the zero temperature viscosity to-
gether with the expression for p„given by Eqs.
(2.28) and (2.21).

In Figs. 2 and 3 we displayed results for the
shear viscosity and diffusive thermal conductivity
calculated using the s- and p-wave approximation
for the normal state scattering amplitude. To
give some idea of how good the s- and p-wave ap-
proximation is we give in Figs. 5 and 6 and in
Tables I and II results for various normal- state
properties and II(0) calculated using this ap-
proximation. The theoretical expressions for the
normal-state quantities are all given in the pre-
ceding paper. ' The first point to be made is
that the s- and P-wave approximation accounts
rather well for the magnitudes of the measured
normal- state relaxation times, considering the
limited amount of experimental information the ap-
proximation employs. The scattering amplitude
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TABLE II. Experimental and theoretical values of
~(0) T2.

~(0) Tc
(@secmK2)

120

Pressure
(bar)

Experiment

Theory
(s- and p-wave
approximation)

33.45
29.34
24.02
20.7

0.26
0.26 '
0 30
0.36 b

'Orbital relaxation (Ref. 8) .
Spin relaxation (Ref. 9) .

0.20
0.21
0.22
0.23

80
O
CL

60
E

lh
O
V

40
for /=0, and, because of the Fermi statistics,
for p=n, may be expressed in terms of Landau
parameters, but one has no direct way of investi-
gating the scattering amplitude for Q WO. The in-
terpolation used in the s- and P-wave approxi-
mation is the simplest consistent with the Fermi
statistics, but for a system as dense as 'He
there is no reason to expect the contribution from
higher partial waves to be negligible. One can
understand why the discrepancy between theo-
retical and experimental values is greater for
the viscous relaxation time than for the other re-
laxation times, because the viscous relaxation
time depends most strongly on the scattering
rate for P ~ v, where our knowledge of the scat-
tering amplitude is poorest.

One may ask whether it is possible to find a
scattering amplitude which accounts for all the
measured normal state properties. There are
many ways in which one can modify the scat-
tering amplitude when one goes beyond the simple
s- and P-wave approximation. We have explored
the consequences of treating A; as an adjustable
parameter in the s- and p-wave approximation
rather than fixing it by imposing the forward-
scattering sum rule. In Figs. 7 and 8 we show
g at T = 0 and at T = T„and ~~T in the normal
state, and in the superfluid close to T = 0 at the
melting pressure as functions of A;, the other
Landau parameters being kept fixed at the values
given by Wheatley. ' For A; =- 1.8 (E;=—1.1)
the normal-state properties agree with the ex-
perimental values. At other pressures it is pos-
sible to obtain agreement between theory and ex-
periment by adjusting A;. At zero pressure the
value of Af required is —0.9 (Ff = —0.7), which is
close to the value needed to satisfy the forward-
scattering sum rule if one neglects Landau param-
eters with l) 1.

The effect of making A', more negative is to
shift weight from 8 —w to 8 =0 in the singlet
scattering amplitude, which is much more im-

20

0
-2.0

I

-1.0
I

0
A 1

I

1.0 2.0

portant than the triplet amplitude. Since the in-
verse viscosity and hence ~„' to a good approxi-
mation is proportional to the angular average
( W„(8, P)sin'/sin'(28)) of the normal-state col-
lisionprobability W„, a shift of weight from 8= m

10

E
V
V4
Ol

~ 6
4l

0
-2.0 -1.0

A

I

1.0 2.0

FIG. 8. Calculated A
g dependence of the quantity KpT

at the melting pressure in the normal state and in the
superfluid at low temperatures (cf. Fig. 7).

FIG. 7. Calculated normal-state viscosity q(T, ) at
the melting pressure shown as a function of the param-
eter A f =Ff/(1+3E& ). For comparison the correspond-
ing dependence of the zero-temperature viscosity g(0) is
exhibited.
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to 0 will increase the viscosity by decreasing the
magnitude of this average. For the thermal con-
ductivity the difference in weighting of transitions
with 8=0 and 8=m is less than for the viscosity,
and therefore the relative change in the thermal
conductivity with variation of Ay is not so great
as the relative change in the viscosity. g and

K~T in the superfluid depend much less on Ay
than do the normal-state properties. The es-
sential reason is that the averages of the scattering
amplitudes occurring in the relaxation time in the
superfluid do not, in contrast to the viscous re-
laxation time in the normal state, weight strongly
any particular angles for the normal-state scat-
tering amplitude. The relaxation time of a normal-
state quasiparticle at the Fermi energy 7(0) shows
1ittle A j dependence for similar reasons.

The s- and P-wave scattering amplitudes with

A, adjustable are unphysical, in that they generally
violate the forward-scattering sum rule and the
values of F', required are more negative than those
obtained from spin- echo measurements. ' How-
ever, the calculations suggest that it may be pos-
sible to find a scattering amplitude that can give
a consistent account of normal-state transport
measurements. Clearly when one goes beyond
the simplest s- and P-wave approximation there
are many possible forms one could use for the
scattering amplitude: among the possibilities are
to include higher Landau parameters, and higher
partial waves.

All the transport quantities exhibited in Figs. 2-8
were calculated from %heatley's tabulated Landau
parameters. ' Recently, Halperin et al."made
specific-heat measurements at the melting pres-
sure in the normal state and obtained an effective
mass ratio m*/m = 5.6, which is 10% lower than
the value given in Ref. 3, m*/m=6. 2. To in-
vestigate the effect of thi. s 10% difference we have
calculated transport coefficients using a value of
F', obtained from the new value for m*/m and
Fo and Fo derived from the measured sound
velocity and magnetic susceptibility using the new
value of m~/m. The results of the calculations are
shown in Table III. The first column gives the
results obtained using m "/m = 6.22, and 2; is
equal. to the value -0.69 which satisfies the for-
ward- scattering sum rule. The next two columns
show results for m~/m = 5.6. In both cases
F'„E', , and F', were altered to be consistent
with the value of m*/m, as explained above. For
the second column we kept A, at the old value —0.69,
and the resulting scattering amplitude thus does
not satisfy the forward scattering sum rule. For
the third column A; was set equal to -0.21 to
satisfy the forward-scattering sum rule with
A, , A'„and A; having their altered values. The

TABLE III. Dependence of transport properties of 3He

at the melting pressure on m*/m. The value m*/m
=6.22 is taken from Ref. 3, and the value m*/m= 5.60

from Ref. 11. The calculations were made using the
s- and P-wave approximation. In the first two columns
A

&
was taken to be the value obtained from the forward-

scattering sum rule, with m*/m=6. 22. In the third
column, A

&
was obtained from the forward-scattering

sum rule, with m */m= 5.60.

m*/m 6.22 5.60

nT2
(PmK )

KT

(erg/sec cm)

g)+2
(cm~ mK~/sec)

(XD

T(0) T
(ysecmK )

R(0)
(m P)

0.44

6.9

0.111

1.05

1.89

—0.350

0.20

21

0.38

6.3

0.099

0.978

1.71

-0.482

0.17

20

0.31

5.4

0.084

0.802

1.25

-0.770

0.16

18

changes in the normal-state transport coefficients
can be as large as 30% for the viscosity, and 20%
for the thermal conductivity, but unfortunately in-
crease the discrepancy between theory and experi-
ment. Note also the relatively large effect of
allowing A; to change to preserve the forward-
scattering sum rule. These results indicate that
the discrepancy between theory and experiment
is not due to uncertainties in our knowledge of
m+/m.

Clearly the above discussion shows that more
experimental and theoretical work is needed to
arrive at a satisfactory expression for the scat-
tering amplitude. Accurate measurements of the
zero temperature viscosity and thermal conductiv-
ity in the superfluid state would be of value, since
they constitute measurements of different angular
averages of the collision probability than in the
normal. state. In this sense they complement the
normal- state transport coefficients which have
been so useful in giving insight into the nature of
the quasiparticle interaction in mixtures of 'He in
'He as well as in pure 'He.

The work described in this paper and the pre-
ceding one provides the framework for analyzing
low- frequency long-wavelength transport and
relaxation processes in superfluid Fermi systems.
Since the transport equation has been solved ex-
actly in a number of cases of experimental im-
portance, it is possible to obtain quantitative in-
formation about microscopic properties of liquid
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'He. Also, the exact solutions serve as a useful
starting point for variational calculations in the
intermediate temperature range in which our re-
sults are not applicable.

(a,a, ),„= ' [n, —(1 —n, )],&(p;)

(a,a, ),„= [n, —(1 —n, )].

(A6)
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= 2(1+ 0( /Eg ) (A8)

(AQ}

All these contractions depend on the spin vari-
ables, which we have not written out explicitly.
( u, [' and [ v, [' are diagonal in the spin index and

have the values

APPENDIX: TRANSITION PROBABILITY

The basic scattering amplitude may be written
in the form of an interaction Hamiltonian

H = — P (3, 4( T ~1, 2) a,a, a,a„(A1}
j. e2 s3 t4

where a~ and a are creation and annihilation op-
erators for normal-state quasiparticles. Within

the weak-coupling assumption we are making
this Hamiltonian is the same in the superfluid and

normal phases. According to standard time-de-
pendent perturbation theory the rate at which
transitions are being made from some state [ 4, )
with a quasiparticle distribution n, to other states
is given by

—( g, ( H5 (E, —Ho}H [ g,.), (A2}

(H~),„=—g (7, 8( T) 5, 6)
1
16 i. ~ ~ 8

x t t t t(a,a,a, a, a 4a, a, a,),„
x(3, 4I T I 1, 2). (AS)

The thermal average in (A3) may easily be eval-
uated with the help of Wick's theorem, and the
expressions for the elementary contractions:

(a(ag) „=lupi n +i vgi (1 n (),

(a, ay),„=[up ['(1-ng)+[ vg ['n g,

(A4)

(A5)

where H, given by (Al), is the interaction Ham-
iltonian, and Ho is the unperturbed Hamiltonian.
The simplest way to extract the transition proba-
bility for quasiparticles 1 and 2 to be scattered
to states 3 and 4 is to pick out in (A2) the coef-
ficient of n, n, (1 -n3)(1 —n, ) Since t.he argument
of the energy-conserving delta function may be
easily read off, we may alternatively find the
coefficient of n, n, (1 —n, )(l-n, ) in(g, ( H'( g, ),
or, since we are interested in a therxnal ensemble,
in ( H'),„where ( ),„denotes a thermal average.
The average of H' is

4 is the usual gap matrix. All contractions apart
from the ones in (A4)-(A7) vanish.

The contributions to (H'),„may be divided into

three classes, according to whether they have

0, 2, or 4 anomalous contractions of the types
(A6) and (A7). A typical term of the first class is

&»2I Tl 3 4)lull I u21 IusI'I up (3, 4[ T/ 1, 2)

x n, n, (1—n, )(1—n, ). (A10)

a'a 2 8'8 [u[2[v[a
2$, 3 4

x(3y, —lu~ T
~

—46, 2p) n, n, (l-n, )(l —n, ).

(A12)

The spin traces are most easily calculated if one
uses the crossing relations to express the scat-
tering amplitudes as follows:

and

( la', - 45( T ( Sy, —2P') = (- &8»+ 4T»)6 & 6z&

1 1 ~
~
~

+ (gS»+ 4T»)gzi8 og&t

(A13}

To complete the evaluation, one has only to cal-
culate the spin trace implicit in (A10). This is
precisely the same as in the normal state, and

one finds a contribution

(I Sal'+SI T I')Iuil'Iu, l'Iu, l'Iu, l'n, n.(l-n.}(l-n,)
(A11)

The notation for the singlet and triplet scattering am-
plitudes is explained in)Sec. III of the text. There are
five other terms related to (All} which have some
(or all) of the [ u, (2 factors replaced by ( v& (;
these are obtained from the ) v, (' terms in the
contractions (A4) and (A5).

The next class of terms are those involving
two anomalous contractions. With spin indices
written expl. icitly a typical term is
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&3y, —«I TI -4|%, 2fl& =(ISm+~T, }6„8~ 8
1+(- ~ m+ ~Tirr)rvys rvas

(A14)

The gap matrix for a P-wave superfluid may be
expressed in terms of a vector Z(%) by means
of the relation

A$)„B= iZ(tr) ~ (riley, )„„ (A15)

rr( n m TnSni+ nTni 5Tn rn)

x I u I I v I2n, n (1 —n, )(1 —n ).A*(I) ~(2)
j. 2

The final class of terms are those involving
four anomalous contractions. A typical. contribu-
tion is

and thus the final task is to evaluate the spin
traces. The required traces are

6a'8'68 + ( Pr)n'n+( P2&8'86 86 8

= Tr(1)Tr[b. t(- pr)ir (- p2}]

=4Z+(-1) Z(- 2) (A16)

and

rya'8''osy+*( Pr)a'a+( P2}8'Boys oas

= Tr(rv,. rvi ) Tr[ryi b (-P, )ryr &(-P,)]

= 4&*(-1)' &(- 2). (A17)

The trace involving a single a' v operator van-
ishes. Collecting the results together, one finds
the contribution (A12) is

TI I 2p&
~(p) (P)s 8

x &*(p.}y'v &*(p.)s 8

x(3y, 46I T I la, 2p} n, n2(l —n, }(1—n4). (A18)

If one writes

(3y, 46l TI 1m., 2P) =(4sr +4Tr)&ny688

+(- 4Si +4Ti}ryay '(yss,

(A19)

the spin traces may be performed straightfor-
wardly. One finds

6 n'y' 68'8' +(Pr&n'n (Pm)8' 8 (ps&y 'yA (Pe&fi'86 ay688

= Tr[&(1)A(2)] Tr[Ay(3)hy(4)]

=4[~(I) ' &(2)] [&*(3) A*(4)].

(A20)

The trace with one of the 56 terms in (A20) re-
placed by 0 0 is

Tr[&(1)o, Ay(3)] Tr[o, Ay(4)b (2)]

= —4[&*(3)x«(I}] ' [rr *(4)&«(2)]

= -4{[&*(3)'&*(4}][&(I)' &(2)]

—[&*(3)'&(2)] [&(I)'~*(4&]).

(A21)

The term with the v v and 66 terms reversed is
the same, and the term with two 0' 0 operators
is

Tr[ryr 4(1)rv, h (3)] Tr[o;r (4)&y, rs(2)]

= ~~(I&~*r(3&(~;ssir+6rrsia-6;i68!)rr*(4)&. (2)(6r ~,.+6;.~i. 6.6;i-)

=4{2[Z(1) Z*(4)][&(2) ' Z*(3}]+2[a(l) Z(2)] [A*(3) Z*(4)] —[i(l) a*(3)][i(2) ir, *(4}]j. (A22)

r -t3 1 4
(A23)

3 j, 4 j.

In the BW state the vector Z(Pr) has a constant
magnitude 4, and a direction obtained by per-
forming a (p, independent) rotation on p, . Thus
&(pr). &(pi) = b'Pr P, . Substituting this expression
into the various contributions, and adding them
one obtains Eq. (3.1) for the transition probability.

Our result, Eq. (3.1), differs from that of Geil-
ikman and Chechetkin" in a number of important
ways, as can be seen by making the identifications
appropriate for potential. scattering described
by the scattering amplitude V „

For instance, when all four momenta are paral-
lel the collision probability should vanish in the
constant singlet approximation [cf. Eq. (3.2)].
This property is not shared by the collision prob-
ability exhibited below Eq. (16) of Ref. 12. Also
the terms in Eq. (3.1) of the type u'r usausmu24, which
are independent of angle but do depend on energy
seem to have been replaced by a constant, equal
to their value at f, , =0.

A number of other results may easily be ob-
tained using the above calculation. One simpl. e
case is the transition probabil. ity for the Anderson-
Brinkman-Morel. state, which is obtained by in-
serting the appropriate values of Z(pr). Z(pi) in

the expressions above. A second example is the
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transition probability for a process in which a
quasiparticle in the state 1 decays into three quasi-
particles in the states —2, 3, and 4. This is ob-
tained by finding the coefficient of n, (1 —n 2)(1
-n, )(l-n, ) in (A3). From the general form for
the contractions (A4)-(A7), it is clear that the
transition probability for this process is obtained
from the one we have calculated by replacing ( u, ('
by [ v, [', [ v, (' by [uJ', and changing the sign of
terms containing Z(p2), Z(- p, ), or their Hermitian
conjugates. Finally we remark that results may

easily be obtained for the BCS state if one uses
for the gap matrix iv„4, where ~ is the mag-
nitude of the gap.

As an alternative to the procedure described
above we have also determined the collision prob-
ability (3.1) directly from the superfluid guasi-
particle scattering amplitude, obtained by ex-
pressing a and a in (Al) in terms of the creation
and annihilation operators for superfluid quasi-
particles. The two methods give identical re-
sults for the collision probability.
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