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We derive the Boltzmann equation describing long-wavelength low-frequency transport and relaxation

processes in a superfluid Fermi liquid close to the transition temperature T,. In the superfluid, the
quasiparticle number is not conserved and therefore one has to take into account the decay of one

quasiparticle into three and the inverse process, as well as the two-quasiparticle scattering process. We
calculate the collision term in the Boltzmann equation to first order in the superfluid gap b, and show that it
is related rather simply to the corresponding normal-state collision term. As applications of the Boltzmann
equation, we solve it exactly to calculate the shear viscosity, and the intrinsic spin relaxation rate. The shear
viscosity drops as h, ~(T,-T)" for temperatures just below T„and we determine the coefficient of 6, as a
function of the normal-state collision probability. Leggett and Takagi s characteristic spin-relaxation time is
shown to be equal to the relaxation time of a normal-state quasiparticle at the Fermi energy at T, . The results
provide one with a useful consistency check on experimental measurements which is independent of any
assumption about the normal-state collision probability.

I. INTRODUCTION

Transport and relaxation processes in super-
fluid 'He have been studied experimentally pri-
marily through measurements of the viscosity'
and the thermal conductivity' and through obser-
vations of NMR line broadening' and magnetic
ringing experiments. ' The present paper, which
is the first of two longer papers dealing with
transport and relaxation in suyerQuid 'He, pro-
vides a unified theoretical treatment of these
phenomena in the experimentally interesting tem-
perature region close to T, where the maximum
gap in the excitation spectrum is small in com-
parison with the thermal energy k~T. The second
yaper in this series deals with transport phenom-
ena at temperatures at which k~T is small in com-
parison with the gap. Brief accounts of some of
the results have been reported previously. ' '

To describe kinetic phenomena in Fermi super-
Quids one generally has to work with coupled
equations for the normal and anomalous parts of
the quasiparticle distribution and the correspond-
ing parts of the quasiyarticle energy. However,
for disturbances whose wave number is small
compared with the inverse superQuid coherence
length 4/Svz, where 4 is the superiluid gap and
e~ is the Fermi velocity, and whose frequency is
small compared to b,/S, the response of the gap
matrix (the anomalous part of the quasiparticle

energy} may be assumed to be instantaneous and
local in space. Under these conditions one does
not have to consider the anomalous averages ex-
plicitly, provided one always works with quasi-
particle states which diagonalize the instantan-
eous quasiparticle energy matrix. The evolution
of the quasiparticle distribution may then be de-
scribed by a Boltzmann equation of the standard
form, as Betbeder-Matibet and Nozieres have
shown in detail. ' The Boltzmann equation is ex-
pected to fail when the width of quasiparticle
states - S/v, where r is a typical quasiparticle
collision time, is comparable to or larger than
4, and this has been confirmed by explicit cal-
culations by Wolf le. ' However, such effects will
be important only at temperatures that differ from
T, by amounts less than the temperature resolu-
tion of most present experiments.

In calculating transport coefficients there are
two problems to solve. The first is to derive the
correct form of the Boltzmann equation. This
problem has previously been discussed by Shu-
meiko' for the BCS state of an s-wave superfluid,
by Seiden" for the Balian-Werthamer (BW) state
of a p-wave suyerfluid at temperatures well below
the transition temperature, and by Soda and Fu-
jiki." Recently, Geilikman and Chechetkin" and
Shahzamanian' have also considered this pro-
blem. The streaming terms in the Boltzmann
equation have the standard form, but the collision
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term is more complicated. In a normal Fermi
liquid at low temperatures the only important col-
lision process is the scattering of pairs of quasi-
particles, but in a superfluid the quasiparticle
number is not conserved, so one also has to take
into account decay processes in which a single
quasiparticle decays into three, and the inverse
processes, in which three quasiparticles coalesce
to form one. We shall evaluate the collision pro-
babilities for these processes in terms of normal-
state quasiparticle scattering amplitudes. Our
calculations go beyond the earlier ones in that we
calculate the collision probabilities in the super-
fluid state in terms of the normal state collision
probability, without making any detailed assump-
tions about the form of the normal state collision
probability. Also we fully take into account the
superQuid coherence factors in the superfluid
state.

The second problem in calculating transport co-
efficients is to solve the Boltzmann equation. For
a normal Fermi liquid the quasiparticle Boltzmann
equation has been solved exactly by Hgjgaard Jen-
sen, Smith, and Wilkins, "and by Brooker and

Sykes. Close to T, in the superfluid state the
Boltzmann equation differs little from the normal-
state equation, since the superfluid correlations
affect only the small number of excitations with
energies & 4, whereas typical quasiparticle en-
ergies are of order k~T, . We show that the Boltz-
mann equation may be solved exactly by treating
the difference between the collision terms for the
normal and superQuid states as a perturbation.
Among the results we obtain are that the shear
viscosity drops as (T, —T)'~ for temperatures
just below T„ in agreement with approximate cal-
culations, '~ '" and the coefficient of (T, —T)'~' is
expressed as a function of normal-state proper-
ties. The diffusive thermal conductivity has no
square-root singularity, due to the fact that the
low-energy quasiparticles affected by the super-
Quid correlations close to T, carry a negligible
heat current. The intrinsic spin-relaxation pro-
cess is discussed, and the relaxation time intro-
duced by Leggett and Takagi ' is shown to be equal
to the relaxation time of a normal-state quasi-
particle at the Fermi surface at T, . Without
making any assumptions about the normal-state
scattering amplitudes, we also find a relationship
between a number of experimentally measurable
quantities; this should provide a useful check on
the consistency of the experimental measurements.

The paper is organized as follows. Section II
contains a discussion of the collision integral.
The shear viscosity is calculated in Sec. III, and
spin relaxation is considered in Sec. IV. Section
V contains a discussion of some of the results,

and the consistency condition. A number of cal-
culational details are discussed in a series of
appendices. Estimates of parameters for liquid
'He both close to T, and well below T, are given
in the companion paper. "

II. COLLISION INTEGRAL

For the discussion of collision processes in the
superfluid at temperatures just below the transi-
tion temperature it is most convenient to work in
terms of quasiparticles which are related as
closely as possible to the quasiparticles in the
normal state. Accordingly we take the quasi-
particle energy to be

E;= ((';+ Lg)'~' sgn$;, (2.1)

where $; is the normal-state quasiparticle energy
measured with respect to the chemical potential,
and A~ is the magnitude of the gap in the direction
p on the Fermi surface. In writing the energy
in the form (2.1) we have implicitly limited our-
selves to unitary states, since both the Anderson-
Brinkman-Morel (ABM) state and the BW state,
which seem to correspond to the A and 8 phases
of liquid 'He, respectively, are unitary states.
We shall indicate how our results are modified
for the nonunitary state describing the &y phase.

For frequencies co much less than a typical gap
frequency 4/K, and for wave numbers much less
than the inverse coherence length 6/Rvz, the low-
lying excited states of a superQuid may be charac-
terized in terms of a quasiparticle distribution
function n~ as discussed in Sec. I. The stream-
ing terms in the Boltzmann equation have the
standard form and need not be discussed at length,
but the collision terms must be considered in
some detail.

In a normal Fermi liquid the total quasiparticle
number is conserved, and therefore the only al-
lowed scattering processes are those in which the
number of quasiparticles in the final state is the
same as the number in the initial state. At tern-
peratures well below the degeneracy temperature
the density of excitations is low, and consequently
the most important processes are those in which
two quasiparticles scatter. In a superfluid the
quasiparticle number is not conserved, and there-
fore processes other than scattering processes
similar to those in a normal Fermi liquid can oc-
cur. Thus, for example, one quasiparticle can
decay into three, or three can coalesce to pro-
duce one. On the grounds of phase space alone
one would expect all processes having the same
total number of quasiparticles in the initial and
final states to be equally important in a super-
fluid, and that the most important processes would
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be those with a total of four quasiparticles in the
initial and final states, as in the case of a nor-
mal Fermi liquiu. Thus in a superfluid one gen-
erally has to take into account processes in which
two quasiparticles scatter, the decay and co-
alescence processes mentioned above, and also
processes in which four quasiparticles are created
from the condensate or scattered into it. The col-
lision term in the Boltzmann equation due to the
two-particle scattering process has the standard
form

= —g W', (1,2; 3, 4) [n,n, (1 -n, )(1 n )
2, 3,4

—(1 -n, )(1 -n, )n~, ]

nl, e, (E )+nl, e, (E ) [1 nl, e, (E )]q (2.3)

Written in terms of g the linearized collision in-
tegral for two-quasiparticle scattering processes
ls

( W,' 1,2;3, 4 p
coll 2 34

x (I n,)(1 -n, )5;„-„,-„„;
x 5(E +E E E,)(q +y,

(2.4)
Here the distribution functions and quasiparticle
energies may be taken to be the values for global
equilibrium, but to avoid complicating the nota-
tion we shall not indicate this explicitly.

The collision term for the process in which
quasiparticle 1 decays into quasiparticles -2,
3, and 4 (and the inverse process} is

= ——Q W', (1; -2, 3, 4)
c011

~&~2' ~3'~4

(2.2)
where n, is the quasiparticle distribution function,
and the indices i =1-4 denote both momentum (p)
and spin (c) variables. In (2.2) the energies oc-
curring in the delta function include Fermi-liquid
effects, since the normal-state energies $, in (2.1)
contain them. W', (1,2; 3, 4) is the transition proba-
bility for the transition in which quasiparticles in
states 1 and 2 scatter into states 3 and 4.

In the applications studied here, we shall need
to consider only small deviations from local equi-
librium. It is therefore convenient to work in
terms of a deviation function g, defined in terms
of the local equilibrium distribution n', "(E,),
where the E, includes Fermi-liquid effects, by the
relation

x [n, (1 -n, )(l -n, )(l -n )

(l-n, )n ~p, ,]
5-,- -,- 5(Ei E e Ee-Ee), (2.5)

where W', (1; -2, 3, 4) is the transition probability.
Here by —2 we mean the state with momentum
opposite that of 2, but the same spin. When lin-
earized Eq. (2.5) becomes

W,' 1; -2, 3, 4
2~ 3I4

xn, (l-n }(1-n, )(1 -n )

x&--
p]++~ Q+N4

x 5(E~ E e Ee Ee)

X ($g $-e $e Pe) ~ (2.6)

We have adopted the convention that the sum over
states 2, 3, and 4 is to be made over all states 2
and all distinguishable states for the pair 3 and 4.
That is the sum is half the unrestricted sum over
all states for the quasiparticles 2, 3, and 4. The
factor of e in (2.5) and (2.6) results from the fact
that for the decay process one must sum only over
distinguishable states of the three final quasipar-
ticles, which introduces the extra symmetry fac-
tor 3.

For the process in which quasiparticles 1, 2,
and -3 coalesce to give quasiparticle 4 the col-
lision term is

4
~ t

x[n,n,n, (1 n, )

W,
' 1, 2, -3;4

~ t

x n,n~, (I -n,)5;.-;,.;,
X 6(E, +Ee+E e E,)-
x(4q+ 4e+ 0 e

—0e) ~ (2.6)

As we shall see in detail below when we consider
the transition probabilities, to calculate the lead-
ing correction to the transport properties just be-
low T, only the scattering, coalescence and decay
processes need be taken into account. Creation
of four quasiparticles from the condensate and the

—(l-n, }(l-n,)(1 -n. )n ]

X 5-,- -,„-6(E, +Ee+E e
—Ee), (2.7)

where W,'(1, 2, -3;4) is the transition probability
for this process, which must be identical to
W,'(4; 1, 2, -3). The linearized version of (2.7) is
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inverse process do not contribute to the leading
correction.

To simplify the total collision integral, obtained
by adding (2.4), (2.6), and (2.8) we must consider
the transition probabilities in some detail. The
matrix elements of the residual interaction be-
tween quasiparticles in the superfluid differ from
the corresponding quantities in the normal state
for two reasons. First, the quasiparticles in the
suyerfluid are linear superpositions of quasipar-
ticles and quasiholes in the normal state, and
therefore to obtain the matrix elements of the re-
sidual interaction between quasiyarticles in the
superfluid one must perform a Bogoliubov trans-
formation on the matrix elements of the residual
interaction between quasiparticles in the normal
state. As we shall see, close to T, the effect of
the Bogoliubov transformation is to give changes
in the collision integral of relative order 6/ksT„
where 4 is a typical superfluid gay. A second ef-
fect is due to the modification of the effective in-
teraction by the superfluid correlations, which is
the type of strong-coupling effect considered by
Anderson and Brinkman, "and Brinkman, Serene,
and Anderson in their calculations to account
for the stability of the ABM state. Examination of
these strong-coupling effects indicates that their
leading contribution to transport and relaxation
properties is of higher order than d/ksT and
therefore may be neglected. Thus the effective
interaction between quasiparticles in the super-
fluid may be obtained from the interaction between
normal-state quasiparticles just by performing a
Bogoliubov transf ormation.

Let us now consider in more detail the calcula-
tion of the transition probabilities in the super-
fluid state. The Bogoliubov transf ormation between
the normal quasiparticle creation and annihilation
operators a;, and a»„and the creation and annihi-
lation operators 0.'~, and a;, in the superfluid may
be written in the form

from the Fermi momentum by amounts greater
than n~/vz, where hg is the gap in the direction
p on the Fermi surface.

It is convenient to choose as the normal-state
quasiparticle states ones which have their spins
parallel or antiparallel to some fixed direction in
space (independent of p). For all applications of
interest to us it is then possible to work with
superfluid quasiparticle states such that u(p)„,
tends to the unit matrix for ~p-pz~ » h3/v3.

The interaction between quasiparticles in the
superfluid is found by performing a Bogoliubov
transformation on the normal-state interaction,
and zs

a=- P (2, 4~T~1, 2) 3ta~p, a,
132~ 3 4

=-' g (2, 4~T~1, 2}
1,2 ~ 3s4

x (u, n, —v, n~, }(Q3n3 —v,n', ) . (2.12)

Note that the Hamiltonian contains terms which
convert one quasiparticle into three or three into
one, and others which create and destroy four
quasiparticles, in addition to terms which scatter
two quasiparticles.

Because we are interested only in changes in the
collision integral of order 4, we need to retain
only terms involving no more than a single v fac-
tor. This follows from the fact that the v factors
are appreciable only for quasiparticle energies
within -

h~ of the Fermi energy, and therefore for
small b~ the terms containing larger numbers of
v factors are relatively less important. Also in
the expressions for the transition probabilities
all interference terms can be dropped since they
contain at least two v factors associated with dif-
ferent quasiparticle states, and are therefore neg-
ligible near T,. The transition probabilities for
the various processes of interest are thus

a;,=u(p).~n;„-v(p)„,n';,„
a';. =v*(p).~ n;~+u(p), ~ n'~,

(2.9) W,'(1, 2; 2, 4) = W„(1,2; 2, 4)

X gl ~2 g3 ~4 (2.12)
where repeated spin indices are summed over. &r,

is even under reversal of p,

Q(- P) .=B(P) (2.10}

v(- p)„,=v(p)„, (singlet pairing),

v(- p) .= —v(p)„. (triplet pairing) .
(2.11)

As we mentioned earlier, we define the quasi-
particle energy by Eq. (2.1}. This is equivalent to
the condition that v should be small for p differing

and v is even for singlet pairing and odd for triplet
palringy

or, with spin indices written out explicitly,
I/~

W3(P3vx& P3+3i P3+3t P4+3)

N(pl lt P2+3t P3+3& P4+4)
Olt 023 a3t fy4

x lu(P3).;., I'lu(p. )..., l' (2.i4)
for the two quasiparticle scattering process. For
the decay and coalescence processes one finds
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W,'(1; -2, 3, 4) = W„(1,2; 3, 4)
I v~ I

+ w„(1, -3; -2, 4)
I v, I'

+w (1 -4 -2 3) I&.I'

where

w„(i, 2; 3, 4) Ie, I'

= Q wn(PPi Pa+2i Psos P~o4)I "(»);,I

02

(2.is)

gies $„since this does not affect contributions
of order d. If f'"' is put equal to unity in (2.18)
one recovers the normal state collision operator.
In more general situations where g does not have
a definite symmetry under reversal of 0, p, and
E the collision term is a sum over v of terms of
the type (2.18}, with g there replaced by that part
of P having the symmetry specified by the index v.

HI. VISCOSITY

and

W,'(1, 2, -3;4)=W,'(4; 1,2, -3) . (2.17}

In the transition probabilities for the coalescence
and decay processes the differences between the
Iu I' factors and the unit matrix have been neg-
lected since these are small except for quasi-
particle energies small compared with &. Be-
cause the probabilities already contain one Iv I'
factor the corrections from the Iu I' factors do
not contribute to the leading corrections to the
collision rate close to T, .

In the present paper we shall be interested al-
most exclusively in unitary states, and in situa-
tions where the driving term in the Boltzmann
equation and the deviation function g have a def-
inite symmetry with respect to reversal of the
quasiparticle momentum, spin, and energy. If
one denotes by &~, f„and &E the parities under
these various interchanges one finds

W„nÃ2 1-n, 1-n4
2, 3,4

xs- - -; 5($~+ $~ —$~ —$4)

(2.i9)

(2.18)
where v stands for e, and the product E~fE, since
the form of the collision integral depends not on
the symmetry of g under reversal of the momen-
tum and energy separately, but only on the sym-
metry under reversal of both simultaneously.
Here

In the hydrodynamic limit the distribution func-
tions in the streaming terms in the Boltzmann
equation may be replaced by local equilibrium
distribution functions. To calculate the viscosity
one needs to consider a local equilibrium dis-
tribution function corresponding to a spatially
varying velocity u,

(e(E&-yj u)/a sr I )-x
1 (s.i)

If u has only an x component, which varies in the
y direction, the Boltzmann equation reduces to

(3.2)

in terms of the quasiparticle group velocity v, .
It is obvious that the driving term (3.2} is un-

changed when p is reversed, so the parity eigen-
values of (2.19) are

Eq= E'p = &E = 1 . (3.3)

The renormalization factor f defined in (2.19) is
therefore

f-=vs = $-/E-= V-. —
y F ~ u p (3.5)

Note that V is anisotropic in the ABM state, where
bg=b sin6, with 6 being the angle betweenP and
the orbital anisotropy axis f,

(3.4)

This is just the quasiparticle group velocity di-
vided by the Fermi velocity, since the velocity
associated with the normal-state quasiparticle
components of the superfluid quasiparticle is vF,
and the velocity associated with the quasihole
components is —v„. Thus

+E $ -e c@[g ~(-Eg)+ yk ya(-- VAsu= I$ I /($ + 6 sin 6) (3.6)

(we use the symbols i, i synonymously with the
values +1, —1 for the spin index cr). Details of
the derivation of (2.18) are given in Appendix A.
In the form (2.18) for the collision integral we
have replaced the superfluid quasiparticle ener-
gies E, by the corresponding normal-state ener-

according to (2.1). In the BW state V is isotropic
and is given by

(3.7)

E, may be replaced by $, in the Fermi function in
the driving term in the Boltzmann equation, since
this does not affect the leading corrections to the
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viscosity close to T,. The Boltzmann equation for
viscosity with f put equal to V in the collision
term is therefore

in the Boltzmann equation. It is therefore con-
venient to introduce a function Q, which depends
only on $, defined by

(P-.}.(~x),Vx&z,.', *
l. 1 1 Ee

&& 5(5,+ 4 —t', —(,)
"~&a+ Vx(VA —VA's - VA)~ . (3.8}

=- g W„(1,2;3,4)s,n, (I &,)(I „,)5- - --
2, 3,4

g, = (p, )„(vj)yvzVi

su,
( 2

cosh ($,/2k~ T)x ~q Qg (3.11)

where 7'o is defined in Eq. (B5) in Appendix B. The
Boltzmann equation (3.9) may be reduced to a one-
dimensional integral equation in essentially the
same way as for the normal state. One finds

One would like to express g in terms of the cor-
responding quantity for the normal state. How-
ever, because of the V, factors occurring in both
the driving term and the collision term, g differs
appreciably from its normal-state value for quasi-
particle energies &4. It is more convenient to
introduce the function X, =p, /V, . This satisfies the
equation

)
8q) 8$

= —Q Wg(1, 2; 3, 4}s~s~(1—n~)(1 —n4)
2sSs4

,h
.t =(&'+t')Q(t)

cosh &t

dt' F (t —t')V (t')Q(t'),
a OO

where

t =)/ksT,
da W„(e, y) . , 9 . ,a = 2 —",' 1 —3 s in4 —sin p4v cos(28) 2

dA 8' 8,
2

(3.12)

(3.13)

(3.14)

x(X, + V,'X, —V,'X, —V.'X,) . (3.9)

Although V'- 1 has structure on an energy scale
-a, the right-hand side of (3.9) has none due to
V' factors, since these all occur in summations.
It is therefore clear that )( can have no structure
on an energy scale h. The deviation functions in
(3.9) may be written

(X +X -X -X )+[(V', - l)X. —(V —1)X,—(V', —I)XJ .
(3.10)

The contribution to the right-hand side of (3.9)
from the first of these terms is just the normal-
state collision operator acting on X, and is (apart
from a Fermi function derivative) of order X/r,
where v' is a typical quasiparticle relaxation time.
Now V -1 is of order unity for (~ 4, and is es-
sentially zero otherwise, and therefore the con-
tribution fo (3.9) from the second term in (3.10)
is of order d/ksT times that from the first term.
Thus the contribution from the second term is
small compared with that from the first for all
values of $„and therefore the second term may
be treated as a perturbation. Consequently, in the
superfluid close to 1;,gdiffers from the normal-
state value only by amounts of order d/ksT, . Note
that the same cannot be said of g.

Let us for simplicity first consider states with
an isotropic gap. Then V' is isotropic, and g has
the same angular dependence as the driving term

Y= dt, Qt . 3.16

As we shall be interested only inratios of vis-
cosities the proportionality factor is unimportant,
since changes in it give changes in the viscosity
proportional to T, —T, while the changes in Y give
terms proportional to (T, —T)' '.

To solve (3.12) we observe first that V' is es-
sentially equal to unity, except for quasiparticles
with energies less than or on the order of the gap,
that is for t s n/ksT. Thus for any function G(t)
having no structure on a scale r/ksT we may
write

Gt 1 —V t dt=G 0 1 —V t dt

= wG(0)
B

(3.17)

and F (X) =x/2 sinh(kx). Note that o.'„ is 2X„ in the
notation of Ref. 16. In (3.14), W„(8,P) is the
normal-state collision probability as a function of
the usual angles 8 and P„as explained in Appendix
B.

The momentum flux II„„is given by

8Q~= g (P~),(v, )„V,van~(1 -n~)tl'z = —'0
&
", (3.15}8$

and thus, from using Eq. (3.11), one can see that
the viscosity q is proportional to
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where we have used Eq. (3.7) for V in evaluating
the integral. Since the kernel in the integral equa-
tion has no structure on a scale t'-b/ksT we may
write the integral equation (3.12) in the form

X = (Ho+H~}Q,

where X = 1/cosh(kt), H,Q is the right-hand side of
(3.12) with 7= 1, and

(3.18)

HiQ = a„ I dt'F (f —t')[1 —V (f')]Q(t')
a Ct

=no. „Z F(t)Q(0),

with 6= rt/ksT. The dimensionless viscosity Y is
then given by

Y =(YX, &Q) = (X,Q) —(X, (1 —&)Q)

= (X,Q) -wb X(0)Q(0), (3.19}

where (A, B) denotes the scalar product

J dtA(t}B(f). Writing Q =Q, +Q„where Q, is the
unperturbed solution and Q, ~ b, is the change due
to the perturbation, we obtain, by equating to zero
the terms independent of 4 and those linear in b, ,

HpQp and 0 HgQp +HpQ j (3.20)

Thus

= v ~Q,(0)c(„dfF (f)Q,(t) . (3.22)
w oo

)=(X,q,)- 000(0)(X(0) +0f dttt(t)tt, (t)).
a IO

(3.23)
From the integral equation for Qp, the term in
large parentheses is just w'Q, (0), and therefore

Y=(X, Qo)-v3ZQO(0), (s.24)

The first of these is the normal-state Boltzmann
equation, and from the second one finds Q,

Hp HyQp Then to lowest order in

Y=(X, Qo) -vhX(0)QO(0) —(X,HO H,QO), (3.21)

the last term in (3.21) may be written

(X,Ho'HiQO) = (Qo, H, QO)

As we show in Appendix B, this is given by

1 2@+1 1
m' " ~ n'Ipr+, 1)' n(n+ 1) —(r „

((0 —I) I t) (3.27}

The series converges very rapidly, so for practi-
cal purposes it is sufficient to include only the
first few terms.

The relative change in the viscosity may there-
fore be written in the form

8)7/(7= D(a„)~/k, T„ (3.28)

(3.28)

(Q ()0 [cosh(2t)] ' is a solution of the Boltzmann
equation in both the normal and superfiuid phases)
and therefore

where D =v'Q„'(0)/Y„ is a function of the normal-
state parameter &„alone. It is plotted in Fig. 1
as a function of n„. Note the divergence near
o„=a, where D behaves asymptotically as ~() /(2
—ng. This limit corresponds to a collision proba-
bility which is strongly peaked in the direction of
small momentum transfers. Since calculated val-
ues of o'„ for 'He are typically around 1, it follows
that 8)}/q is quite different from the value obtained
by neglecting the integral terms in (3.12} (n„=0}.
Note also that the viscosity always falls on entering
the superfluid phase.

If one makes a relaxation-time approximation
for the collision term in the Boltzmann equation
and replaces it by -sn, /v, where 5n, is the devia-
tion from local equilibrium and & is an energy-
and temperature-independent relaxation time, the
viscosity is proportional to

and the change in the viscosity is

5q 5Y, a Q'„(0) (3.28}

Z
3

0
coZ

where

1 4 ~ 2n+1 1&.=-+—.~. ~
3 w " ~ n'(n+1)' n(n+1) —o(„ (s.ae)

p
-4 -3 -2 -1

is the exact (reduced) viscosity of the normal
state~s and QN (0)[~0(0)] is the value of the normal-
state solution Q„(f) at the Fermi energy (f =0).

FIG. 1. Function D(a„)= 7t Q„(0)/F~ of Eq. (3.28) as
a function of n„. Note the rapid variation vrith e„ in the
region of main physical interest for 3He, 1~ n„S1.5.
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5q/ri=- 'sh-/k T, . (3.30)

and

~x5l f)(~g] 5 P 2 2

4r " "k~T (s.sl)

where the angular integrals are to be performed
over all directions on the Fermi sphere. For the
ABM state, where 4': sine,

'}@sr D( g
Wkx

256k&Tc
(3.33)

(s.s4)

The results above are adequate for dealing with

the BW state, which has an isotropic gay. How-
ever for the ABM state the gay is anisotropic, and

as a consequence the viscosity is a tensor. If one
chooses as the z axis the direction along which the

gap vanishes, the viscosity has two different
components: g„„for shearing in the plane perpendi-
cular to the anisotropy axis, and g =q„, for shear-
ing in planes containing the anisotropy axis. When
the gap is anisotropic X does not have the same
angular dependence as the driving term in the
Boltzmann equation, but as we show in Appendix
C one can still solve the Boltzmann equation by
a perturbative approach similar to the one we
described above for isotropic states. One finds

surements of 5q/q as a, function of pressure. Such
information cannnot be obtained from normal-
state measurements, because the normal-state
viscous relaxation time v„ is a function of &„and
v(0), the quasiparticle relaxation time at the
Fermi energy. Measurements of the pressure
dependence of 0,'„may therefore lead to a better
understanding of quasiparticle scattering ampli-
tudes in liquid sHe

As shown in detail in Sec. IV measurements of
spin relaxation close to T, make it possible to ob-
tain the value of the quasiparticle relaxation time
7(0). This provides one with additional motivation
for measuring the pressure dependence of 50/q,
since &„and v(0) together uniquely determine v„,
which is known experimentally as a function of
pressure in the normal state. The fact that our
calculations give relationships between various ex-
perimentally determined quantities, independent
of any assumptions about the scattering amplitude,
is particularly important since our present under-
standing of the scattering amplitude is rather
limited. In the companion paper" we give the re-
sults of using the s- and p-wave approximation"
for calculating 7 „T' as a function of pressure in
the range 0-34 bar. It is evident from comparing
these theoretical calculations with experiment
that this approximation to the normal-state quasi-
particle scattering amplitudes does not completely
account for either the pressure dependence or the
magnitude of 7 „T'.

IV. SPIN RELAXATlON

where 4 is the maximum value of the gap. The
anisotropy of the change in the viscosity is there-
fore only 25%. We have made estimates of o.'„ for
liquid 'He at various pressures using the s- and
p-wave approximation" for the collision probabili-
ty. The expression for o„ is given in Appendix E,
but the results of the calculations are to be found
in the following paper. "

To calculate the viscosity in the presence of a
magnetic field one must be able to make calcula-
tions for nonunitary states. In general this is
complicated, but for the ABM state, with different
superfluid gaps for the two spin populations, the
calculations are relatively straightforward. The
final result is that in the expressions for the vis-
cosity the gap must be replaced by the average gap
for the two spin populations. In a previous publi-
cation' we applied these results to analyze Otaniemi
measurements' of the viscosity in the A and A,
phases at the melting pressure.

Since 5q/q depends on pressure through the nor-
mal-state parameter o.„one may learn about the
pressure dependence of the latter through mea-

In many NMR experiments the most important
dissipation mechanism is the intrinsic process
discussed by Leggett and Takagi, " in which quasi-
particle spin is converted into the spin of Cooper
pairs. The dipole forces change the spin of the
Cooper pairs thereby producing a disequilibrium
between the spin of Cooper pairs and the quasi-
particle spin. The return towards equilibrium is
brought about by collisions, which convert quasi-
particle spin into the spin of Cooper pairs (or vice
versa).

To see in more detail how the relaxation process
comes about, let us consider the particular case
of longitudinal resonance. The operator 8„for
the z component of the total spin is

(4.l)

where a~ and a- create and destroy normal-state
quasiparticles. Written in terms of creation and
destruction operators for quasiparticles in the
superfluid, S„will generally have terms like
o'. &~ and e&, as well as ones involving the quasi-
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particle number operator «. However if one

works in terms of quasiparticle states which are
eigenstates of the quasiparticle energy for the in-
stantaneous value of the gap matrix (not the gap
matrix in the unpolarized state), the o.tat and ao
terms will not contribute to the expectation value
of 8„. Consider now the spin of a state which dif-
fers little from the unpolarized equilibrium state,
so that we need to consider only first-order
changes. The spin may then be written as the sum
of two parts. The first is proportional to the de-
viation of the quasiparticle distribution from its val-
ue in the unpolarized state, and is what is referred
to as the quasiparticle spin. The second is due to
deviations of the superfluid coherence factors from
their values in the unpolarized state, and is re-
ferred to as the spin of Cooper yairs. The z com-
ponent of the quasiparticle spin S, may be written
in the form

9, = —Q (s;)„,(6n;)„.,
yaa'

(4.2)

where (s;)„, is a 2 x 2 matrix in spin space and

(5s;)„.is the 2 && 2 matrix quasiparticle distribu-
tion function. It is convenient to work in terms of
quasiparticle states in which (s;)„, is diagonal.
Using the fact that for a unitary state (s;) i~

= —(s;) ~~ one may therefore write for the z compo-
nent of the spin

S = —~ Os-~n-
q 2~ 0 P~& (4.2)

where &n~ is the diagonal part of the matrix
(5n;), , and is the only part of interest in the case
of longitudinal resonance. s; is just (s;) i~
= —(s;)~~. If one works with these eigenstates,
calculations are particularly simple since one
never has to deal with off-diagonal spin components
of the quasiparticle distribution function. The
quantity s; is just the renormalization factor f
of Eq. (2.19) for the spin operator, corresponding
to &, = —1, a~ = a~ =+ 1, and gives the z component
of spin carried by a quasiparticle in the superQuid
compared with that carried by a particle. For the
ABM state a quasiparticle in the superfluid has a
probability Iu; I' = a (1+)~lE-) of being a normal-
state quasiparticle of the same spin and a probabil-
ity Iv;I'=-,'(1 —)ATE) of being a normal-state hole
of the same spin. s; is therefore Iu; I' —Iv;I'
=(~/E;. In the case of s-wave pairing s; is just
1, since the normal-state hole component of the
superfluid quasiparticle has the opposite spin, or,
put in other words, the condensate carries no
spin.

The collision integral may be obtained straight-
forwardly from the general results derived in Sec.

since

—O'S
2

aE;.
8H

(4.5)

This follows directly from the fact that the total
energy, measured with respect to the chemical po-
tential of the up and down syins is

E —p, )Nt —p. tNt =E 0 &+Pi
2 (N) +Hi )

4.6

where E is the total energy and N~ and N& are the
numbers of up-spin particles and down-spin parti-
cles, respectively.

We are interested only in spatially homogeneous

II by putting f "' =s;.
One important point to note is that the collision

term will vanish when the distribution function is
equal to the local equilibrium distribution function
corresponding to the instantaneous value of the
difference between the chemical potentials for up-
and down-spin particles in the condensate. Any
external magnetic field is irrelevant so far as the
question of to what distribution the system is re-
laxing is concerned. The fact that the system is
relaxing to a local equilibrium distribution function
rather than a global one makes itself felt through
the quasiparticle energies which occur in the ener-
gy conservation condition. Since the total spin
(not just the quasiparticle spin) is conserved in
collisions, if one neglects the very small effects
due to the magnetic dipole-dipole interaction, the
total energy associated with coupling of the system
to the external field is conserved and therefore
it must drop out of the conservation condition.
Note however that if one wished to include explicit-
ly the coupling energy to the external field one
must remember that the spin of the Cooper pairs
generally changes in a collision; the change in the
coupling energy of the pairs to the external field
must therefore also be included in the conserva-
tion condition. The local equilibrium distribution
function to which n;, is relaxing may be written in
the form

nl, e, (eBEy(H) + I ) (4 4)pfy

where E;,(H) is the quasiparticle energy evaluated
when the difference between the up- and down-spin
chemical potentials for particles in the condensate
is finite, and equal to 2(2I)H Note th.at H must
not include the contribution from the external
field. For small values of H we may write

o 8 ~n;n-" =n- ——os- ' H
pfy 9fy 2 P QE
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situations, and therefore the terms in the Boltz-
mann equation containing spatial gradients may be
dropped. Also we are considering the case of
longitudinal resonance so the precession terms
need not be included. The streaming terms in the
Boltzmann equation thus reduce to just the time
derivative, which we rewrite in terms of tc:

&n~ ~H"n-'(1 —no& ——as-st & IV 2 Il 8E eg
(4.7)

The linearized Boltzmann equation is therefore

=- g W„(1,2; 3, 4)n~an20(1 —no)(1 —n40)

8 e3s4

x 6 + + 6((~ + t~ —(g —Q}[pg + st(s2$2 —ssf~ —s4$4)]. (4.8}

In the normal limit s, -1, and therefore for
P, ~ ~, the collision term vanishes since quasi-
particle spin is conserved in the normal state.
This just reflects the fact that in the normal state
the quasiparticle spin is the total spin.

I.et us first consider the solution of Eq. (4.8)
in the hydrodynamic limit in which the charac-
teristic times for changes in H to occur are long
compared with a characteristic relaxation time for
the quasiparticle spin. (After having obtained the
solution of the equation below we shall explore
what this limit means physically. ) In that case the
Sg, /St term can be neglected, and the equation then
has the same form as in the case of the viscosity.
Also H on the left-hand side of (4.8) may be re-
placed by the local equilibrium value y'S, /x„,
where g,o is the quasiparticle susceptibility, with
Fermi liquid effects excluded. However for the
spin relaxation problem the equation is singular in
the normal limit, because of the conservation of
quasiparticle spin in the normal state. To leading
order in n. /ksT, the solution g-, is given by

verges as the normal state is approached.
To derive an equation for the quasiparticle spin

S„we calculate from g the deviation n, —n,
and insert it into Eq. (4.3), with the result

or

~as —(n -n-, }=S—y 'X HP 2 P& Pfy
PQ

7(o} ss,
et

A.

(0) (S, —r X,o&) ~

(4.12)

(4.13)

Equation (4.13) is of the same form as the equation
one obtains by summing Combescot and Ebisawa's
kinetic equation, "and shows that their charac-
teristic relaxation time must be identified with
r(0)/&, ' which diverges as (T, —T) ~' as T ap-
proaches T, . If we now make use of the fact that
the Cooper-pair magnetization responds essen-
tially instantaneously, in a time -8/6, to changes
in H, and introduce the Cooper-pair spin sus-
ceptibility function p~, we may write

where

, as.=-a —s-r(0) — y'
k~T Bt (4.9)

or

S&=S S =y 2ycoH (4.14)

v(0) =2m /w' (4.10} &=r'(s —s, )/x (4.15)

is the relaxation time of a normal-state quasi-
particle at the Fermi energy at T, . This is demon-
strated in Appendix D. Note that this solution is
equivalent to g, fx-o'„ the deviation function which in
the normal state does not relax. The parameter ~
is the susceptibility of the Cooper pairs relative
to the total susceptibility, with Fermi-liquid ef-
fects neglected. To leading order in 4 it is

Substituting this result into (4.13}one finds, using
x„/x„=x/(I —x),

as, 1
st ~(0) @ (4.16)

where S,o = (1 —&)S is the equilibrium value of S,
for the given total spin S. Finally if one writes an
equation for S~ = S —S, one finds

(4.11)
as, as aS,
Bt Bf 8t (4.1V)

where v(0} is the density of quasiparticle states
(of both spins) at the Fermi surface in the normal
state. & is of order n, /ksT„and therefore f di-

=Rs —[1/v (0))j'S~ —S~), (4.18)
where S~o =% is the equilibrium value of $~ for
given total spin S, and &~ is the dipolar torque.
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So far we have considered only the hydrodynamic
limit, and have neglected the sf/st term in (4.7).
By using the solution (4.9) for f one can see that
this term will no longer be negligible when the
characteristic frequency ~ of the variations of H

is of the order of or greater than &/~(0). The
characteristic frequencies are usually of the order
of the longitudinal-resonance frequency, and there-
fore all experiments to date have been in the hy-
drodynamic regime. However, the Boltzmann
equation (4.8}can be solved exactly outside the
hydrodynamic limit. The equation is very similar
to that for the frequency dependent conductivity. "
In the extreme collisionless limit [&u» A/7(0)] the
solution is g, ~ a„and the characteristic spin re-
laxation time is again just v(0}/&, as in the hydro-
dynamic limit. Generally the intermediate range
of frequencies, when &u-&/7(0) is difficult to treat,
but for this problem one finds that the solution to
the Boltzmann equation is again of the simple form
$; ~o;. The reason for this is the existence of a
nearly conserved quantity, here the quasiparticle
spin. The calculation is analogous to that of the
electrical resistivity of electrons in a metal when
a, (1,1) in the notation of Appendix B is close to 2
(electron momentum almost conserved), "or the
attenuation of sound in a normal Fermi liquid when
n, (1, 1) (= e„) is close to 2 (momentum flux almost
conserved). '4 In summary then, the collision term
in the Boltzmann equation may be replaced by
-X(n, —n,")/7(0) in the hydrodynamic, collision-
less and intermediate regimes. As a consequence
Eqs. (4.13) and (4.18) hold for all frequencies for
which the Boltzmann equation is valid. Note that
the justification for this is somewhat more com-
plicated than stated in Ref. 7.

Expressions for ~(0) obtained using the s- and
P-wave approximation are given in Appendix K, and
estimates of r(0} for liquid 'He at various pres-
sures are given in the companion paper. "

These estimates may be compared with the values
of 7 (0) extracted from the width of the longitudinal
resonance' and magnetic ringing experiments. 4

Note that magnetic-relaxation measurements in
the superfluid phases, like measurements of &q/q,
enable one to obtain information about normal state
properties which cannot be found from measure-
ments in the normal state.

V. DISCUSSION

In the calculations described above we made no
assumptions about the normal-state transition
probability, and solved the Boltzmann equation
exactly to lowest order in the gap. Thus measure-
ments of transport and relaxation processes in
superfluid 'He close to T, can now be used to pro-
vide precise information about quasiparticle inter-

actions in normal 'He, provided only that the mag-
nitude of the superfluid gap is known. One parti-
cularly useful result is a consistency check relating
the normal-state viscosity, the relative drop in the
viscosity in the superfiuid state close to T„and the
intrinsic spin relaxation time at T, . The relative
drop of the viscosity in the superfluid may be used
to determine a„, the spin relaxation time is 7(0),
and therefore the normal-state viscosity, which
depends on the normal state collision probability
only through n„and r(0), may be estimated in
terms of directly measurable quantities, indepen-
dent of any assumption about the angular depen-
dence of the normal state collision probability.
The form of this consistency relation becomes par-
ticularly simple if one limits oneself to the first
two terms in the series (3.26) and (3.27), which
is an excellent approximation for the values of
o.„of interest. In terms of the normal-state vis-
cous relaxation time 7„, which is defined in the
usual manner by q = &nm*v2~~„, the relative change
6q/q in the viscosity on entering the B-phase may
be expressed in terms of 7 „and v(0) as

e„v r' 7, '7(o)
q 4 12 7(0) 7„&sT (5.1)

It is a pleasure to acknowledge useful conversa-
tions with Dr. A. J. Leggett, Dr. S. Takagi, and
Professor J. C. Wheatley.

for an arbitrary collision probability W„(8, P).
Analogous relations hold in the A phase, with a
slightly different numerical coefficient that depends
on the particular orientation of the orbital vector
l in a given experiment.

We have derived the collision integral close to
T, in a generally applicable form, which empha-
sized the role of the symmetry of the deviation
function under reversal of spin, momentum and
change in sign of energy. An important point is
that the coalescence and decay processes play a
significant role close to T, .

The methods developed in this paper have also
been applied to calculate the attenuation of low-
frequency sound, "and orbital relaxation in
'He-A. 26 In the latter ease one finds that the char-
acteristic quasiparticle relaxation time to be used
is again r(0), the intrinsic spin relaxation time.
Thus measurement of orbital relaxation" close
to T, enables one to determine the value of r(0),
which must be consistent with that obtained from
measurements of the normal state viscosity and
the relative drop in the viscosity on entering the
superfluid state, irrespective of any assumptions
regarding the form of the quasiparticle scattering
amplitude.

ACKNOWLEDGMENTS
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APPENDIX A: DERIVATION OF THE COLLISION INTEGRAL

15

The contribution to the collision term from two quasiparticle scattering processes is given by Eqs. (2.4)
and (2.13), and is

=- Q W (1,2; 3, 4)lu, l'Iu. l'lu, l'Iu. l'n n, (1 -n, )(1 —n. )N

x 5- +-
z + z

5 (E, + E2 —E~ —E,)(g, + (,—$3 —$4) .
The decay process gives a contribution which, from (2.6) and (2.15), is

(Al)

=- g W„(1,2; 3, 4}lv,l'n, (1 —n, }(1—n, )(1-n,)
2a3s4

(A2)x5 + + 5(E, —E 2
—Es —E4}($,—0 2

—
$~

—4~),

since the three terms in the expression for W,' all give identical contributions to the sum. E, is identical
with E„but we retain the minus sign to preserve the symmetry of the notation. Finally, for the coales-
cence process, one finds from (2.8) and (2.15)-(2.17},

= —g W„(1,2;3,4}5-,- -,- [Iv, l'n, (1 —n )n,n 5(E, —E, +E +E )(P, -g, +f, +i' )

+ lv, l'n, n,n, (1 —n, )6(E, +E, +E, —E,)(g, + g, +P, —f,)

+Ivy'n, nm(1 —n, )n 45(E, +E2-Ei+E ~}(g,+$2-P, +g ~)]. (A3)

If we now make use of the particle-hole symmetry of degenerate Fermi systems, we may replace E,.
by E, (and -as a consequence n, by 1 —n, ) in (A2) and (A3).

The decay contribution then becomes

8'„1,2;3, 4 v, 'n, n2 1 —n, 1 —n,
2e3i4

"'(Ei+E2 —E3- E4}[&i —&-R(-E2) —&3- &4j.

and the coalescence term is, from Eqs. (2.7), (2,15), and (2.1V),

( W~ 1 2; 3, 4 Pa 1 —n3 1 —+~ &, + ~ Ex+E2 —E3 —E4
2o3s4

(A4}

x 7 lv, l'[0, —0 .(-E.)+0,(-E-.)+4,(-E.)l

+Iv, l'[0', +ij', +0,(-E,)-4,]+lv, l'[0, +Q, —it', +Q, (-E,)1). (AS)

(AS)= (I —
I v, l' -

I v.l')e. - (Iv, l'+ lv. l')0-.(-E.) .
If Q, =tp, ( E,), this-reduces to (lu, l' —Iv, l'}(lu, l' —Iv, l')f„and if Q, =-Q, (-E,), to just g, . This is ln
agreement with the expression (2.19}if the spin indices there are suppressed.

When spin sums are included the collision integral may be calculated in a way similar to the simple
spinless case considered above. In deriving the final result (2.18) one has to make use of the invariance
of the scattering probability under reversal of all the spins, and the fact that for unitary states

Iu I =lu .
I and Iv .

I =lv (AV)

Here by $, ( E, ) we mea-n P evaluated for the quasiparticle state whose momentum is in the direction op-
posite that of p„and whose energy is -E,.

To illustrate how the various terms combine let us neglect the spin variable for the moment, and assume
the coherence factors are just numbers satisfying the normalization condition Iu, l'+Iv, l'=1. Since near
T, we may neglect terms containing products of Iv, l' factors for different states, we may write
lu, l Iu~l lu, l lu4I'=1 —lv, l2 —lv2I' —lv, l' —lv4I2. The contribution proportional to Q, in the sum of (A1), (A4),
and (A5} involves no coherence factors, and is identical in form with the corresponding normal state colli-
sion term. The g, and g, (-E,) terms in the sum are

(1 —lv, l' —Iv.l' —lv, l' —Iv. l')e. —Iv, l'0-. (-E,) —
I lv'0, ( E.) I

+vl-'O.
I +lv'e.



TRANSPORT AND RELAXATION PROCESSES IN SUPERFLUID. . .

APPENDIX B: NORMAL-STATE BOLTZMANN EQUATION

Here we discuss a number of important proper-
ties of the solution of the normal-state Boltzmann
equation. Further details of some aspects of the
calculations may be found in the original pa-

5, s6 and jn a recent revjew 28 Our ajm here js
to present the properties of the normal state equa-
tion in a unified notation which will enable us to
apply it easily to a number of different physical
problems. The normal-state collision operator is
given by Eq. (2.18) with f '"' put equal to unity:

W„(1,2; 8, 4}

a function only of 8, the angle between p, and p„
and ft}, the angle between the plane containing p,
and p„and the plane containing p, and p4. There
are two independent scattering probabilities,
W& & (8, Q) for scattering of quasiparticles with the
same spin, and W& i(8, Q) for scattering of quasi-
particles with opposite spin. Performing the in-
tegrations one finds

dQ~
4„n(&s~ &z~P& ' p')

2p 3p4

n, n, (1- n)(1 n, )-5; „-;„-

OQ
~li g g & gI

x dt'F(t, —ti} ~~ z~P ~

2 cosh(~ t')

x 8(5q+ h2 —$3 —hq)(kg+ 42 —tt'q —4q).

(Bl)
Let us now consider the result of acting with the
collision operator on the components of tt) which
have a definite symmetry under spin reversal and
are either even or odd functions of the energy $;
we specify these components by P(e„as,p, t),
where e, and cz (= +1) give the symmetry under the
two interchanges o -—a and $- —$. Instead of the
variable p we use p a,nd t = (~/ksT Next we .expand

P in terms of spherical harmonics

t'+r'
n, (l —n, )g,

Tp

1 pn, (e„cs)Y, (P,)

dt~F(t ti) Am( ~~ zi )
2cosh(~t') ' (B4)

where the characteristic relaxation time Tp is giv-
en by

8W4S' 1
m*'(ksT}' &W~)

'

g(g, es, p, t) = Q g, (a„& t)sY, (P). (B2)
and F(t) =t/2 sinh(-,' t). Also

l, m

The sums over p„p„and p~ in (Bl) may be con-
verted into integrals over the quasiparticle ener-
gies (» $» and g4 and over angles. Since all
quasiparticles have momenta essentially equal to
the Fermi momentum, the transition probability is and

w„(e, p) =-.' [-.'w» (e, y) + w«(e, y)],

d(cose)dg
4v cos(—,'8)

(B6)

(B8)

&W«(8, 0}[ e:.8(t '-t.).-8(f '-t, )".8(j '-t.)]& &W.)

= Zni(~;es)Yg (P,)Y,„(p')

Thus

~,(.=+, ,)= & „(8,4)[-~,F,(e„)+s',(8„)+F,(e,,)]&/&w„&

with 8,~ denoting the angle between p& and p&, and

o'i(&. =-1 vE) =
2

' [-egFi(ei, )+&i(ei.)+&i(ei.)l
W( )(8, P)

(Blo)

+ ii(8~ &)[ sp~(8»)+&i(8») —Pi(8«)] &W~).
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As a result of conservation of quasiparticle num-

ber, momentum, and spin in collisions between
normal-state quasiparticles a, 0(+1,+1),
n, =,(+1,+1}, and n, 0(-1,+1}are identically equal
to 2. For ~E = + 1 all other n 's are less than or equal
to 2 and for e~ = - 1 the n's are less than or equal
«6, the equalities obtaining only for pathological
forms of the scattering probability O'. Note also
that the quantity referred to in the body of the pa-
per as o'„ is just a, (+ I, +1). The expression (B3)
is a particularly useful form for the collision term
for the case of spin relaxation.

It is convenient to expand g, in terms of the
functions &f&„(t) which satisfy the equation

1 g 2 10„=, n-m*v'r, (xY„),

where

(B20}

r„=(X,q„)

= X, + 1" Xy Q„

Only odd n contribute to the sum since for even n

Q„ is an odd function of t, and therefore (X, P„)
vanishes.

The normal-state viscosity q„may then be found
from (3.15), (3.11), and (B19), with all V's put
equal to one, and is

OO 1dt'F(t —t')q'„(t') = —(t '+ v')P„(t). (B12) 1 4n„~ 2n+ 1 1
3 v' „-,~ n'(n+1}2n(n+1) —n„' (B21)

This equation may be solved by Fourier trans-
formation, and the eigenvalues are given by

X„=n(n+ I), n ~ 1,

and the eigenfunctions are

(B13}

P„(t}=c„dqP„'(tanhq)e"'', (B14)
«00

where c„ is a normalization constant, and P„' is the
associated Legendre polynomial. The P„may be
taken to be real, and the c„are chosen so that the
orthonormality condition

dt (t '+ v')P„(t)P„.(t) = 5„ (B15)

—a, dt'F(t —t') Q(t'} .
«Cg

(B16)

is satisfied.
To calculate the viscosity in the superfluid state

we need the solution of the normal-state Boltz-
mann equation at the Fermi energy. In the normal
state the deviation function is given by (3 ~ 11) and
(3.12) with V put equal to unity. The equation for
Q in the normal state, which we denote by Q„, is

1
„(,,}= (v'+ t ')q„(t)

since (X, Q„) =2c„, and ~c„~'=(2n+1)/[n(n+ I)v]'
To evaluate Q„(0) one needs Q„(0), which from

(B14) may be shown to be

(B22)

Thus

1 ~ 2n+1 n!!
Q ( ) + ~

( 1) ( 1)

1
X

n(n+ 1) —a„ (B23)

The series (B23) converges rapidly, since for
large n the terms in the sum behave asymptotically
as n~, as compared with the terms in the series
for F„(B21)which vary as n '.

APPENDIX C: VISCOSITY IN STATES WITH AN

ANISOTROPIC GAP

In a superfluid with an anisotropic gap the devia-
tion function does not have the same dependence on
direction on the Fermi surface as the driving term
in the Boltzmann equation. If one introduces a
modified deviation function Q(P, t), defined by

The solution may be written

Q.(t) =„,„,+ ps.4.(t), (B17)

where X= I/cosh(~ t) Inserting t.his into (B16) and
using the orthonormality condition (B15) one finds

'pzr, 2 cosh(~ t,)q(p„ t,),k~T ey r O

one may show that this satisfies the equation
A A

'„„',}= (v'+ t ')q, (p, t)
cosh~-, t)

(Cl)

a„=[n„/(a„—o'„)J(X, p„) (B18)

[where the product notation is defined following Eq.
(3~ 19)], whence

~ a 1, 1,p p'

X dt'F(t —t')V'(P', t')Q;;(P', t') (C2)
«CQ

X 1
t 2+ o'~ (» 4.)4.(t) (B19)

Here the indices on Q indicate the symmetry of the
driving term in the Boltzmann equation. Equation
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(C2) is a straightforward generalization of Eq.
(3.12) for the isotropic case, and may easily be
derived from (3.9) and the properties of the nor-
mal-state collision operator discussed in Appendix
B.

The viscosity is a tensor, and the momentum
flux is given by

~Ng, &+)
I &g=- 1&y, a~ 8 +& (C3)

Here the x,. are spatial coordinates, and in this pa-
per we restrict ourselves to the case where itj,
and k el. Equation (C2} may be solved by a per-
turbative approach, just as in the isotropic case;
the only difference is that in the anisotropic case
the inner product must include an angular integral
as well as an integral over t. The viscosities are
given by

Kos2@ =Kog —Ka(l —s~)Q. (D6}

The first of these may be evaluated by using the
properties of the eigenfunctions P„discussed in
Appendix B to show that

(Kag), = o,(t ', + v')

The second term in (D6} may be written

Ka(1 —s )Q( 2 sinh( —' t, )

Close to T, the only term of importance in the sum
is the one with e = 1 and l =m =0. To show this one
first writes

""=1-D(a„)15 'p, p, p, p,„' . (C4)

The reason that no n's other than (M„[=n,(1, 1)] en
ter is that the expression for the change in viscos-
ity may be written in such a way that the normal-
state collision operator acts only on the deviation
function for the normal state, which has only l =2
terms.

where

z(}}} 4f d}[}=—ii'(i, }}}

'F*, P 4X P q p, p, D8

dg~ — ~ (1 —s.'). (D9}

I t, 8H Q]
g] = —0') —s)T 2 cosh

2 2 et k~T

The Boltzmann equation then becomes

(Dl)

APPENDIX D: SOLUTION OF THE BOLTZMANN
EQUATION FOR SPIN RELAXATION

To reduce the Boltzmann equation (4.6) (with the
Sg/St term neglected) to a dimensionless form we
introduce the deviation function Q which is related
to /by

This follows from the fact that 1-s-'behaves es-
sentially as a delta function at the fermi surface,
just as 1 —V did in the calculations of the viscosity
[see Eq. (3.1V}].

Multiplying Eq. (D2} by (P„(t,)Y,* (P,) and inte-
grating over t, and solid angles, one finds

dt
Iq0 h(l t) P}}()

cosh(& t,)
.= (t ', + v')Q, o, —(Ks'o(I(}), ,

where the operator K is defined by

(KX), = g M(1, 2;3, 4)

(D2)
n, (-1,1) 2 a, (- 1, 1}1-

( 1) a„,~+4v'$„(0) '( 1)

x ~y', pape p, p. (Dlo)

and

2y F4

~ (- X2+ Xg+ X
3v 4

M(1, 2; 3, 4) (D3)
The equation (D10) for n = 1 and l =m =0 is

t =4g2Q, 0
dt

M (1, 2; 3, 4) = W}}((1,2; 3, 4)n, n2(1 —n, )(1 —n~)

y +y ~ }} +}} 6((g+ (g h3 hg)' (D4)

We now expand Q in terms of the eigenfunctions of
the normal-state collision operator, defined by
Eqs. (B12}-(B14):

Q(p, t)= Za. 4.(t)Y, (p).

x ~gPqP 0 D11

since o.,(- 1,+ 1)=2 as a consequence of quasipar-
ticle spin conservation in the normal state. Since
X(P) is of the order of magnitude of d/kent, and the
left-hand side of (D11) is of order unity, Q(P, 0)
must be of order ksT/d, , and therefore for all val-
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y=2/v'~,

where

(D12)

is the ratio of the Cooper-pair susceptibility to the
total susceptibility, both calculated neglecting
Fermi-liquid effects, and near T, it varies as 4
-(T,—T)' ' [cf. Eq. (4.10)]. From Eq. (Dl) and
this result for Q one immediately finds Eq. (4.9)
for g.

APPENDIX E: s- AND p-WAVE APPROXIMATION (REF. 21)

If one neglects the small dipole-dipole interac-
tion between nuclear spins and any other interac-
tions that do not conserve the total spin, the quasi-
particle scattering amplitude may be expressed in
terms of the scattering amplitudes for pairs of
quasiparticles in singlet and triplet states, T, and

T, . The amplitudes are given by

(El}

«» IT It» =&» IT I
&&& =-'(T. +T~» (E2}

ues of t, Q(P, t) must be of this order, since
Q(P, t) has structure only on energy scales of order
ksT. From Eq. (D10) for components other than n
=1, l =m =0 one sees immediately that a„, must be
of order unity, since a, (-1,+1)=n(n+1) only for
n = 1 and l =m = 0. On the other hand Q must be of
order ksT/4, and therefore since all the eigen-
functions (t)„Y, are of the order of magnitude of
unity, this implies that a,~ must be of order ksT/
4, and consequently is the only term in the expan-
sion that need be considered near T,. We may
therefore write Q(P, f) =y/2 cosh( —,

' t) where the co-
efficient y is independent of t. Substituting this into
(D10) and using the fact that Q,(t) cc [cosh(~ f,)] ',
one finds

double counting of final states.
For Q =0 the scattering amplitude is given in

terms of the Landau parameters F', and I'; by

v(0)T, (8, Q = 0) = g (A; —3A;)P, (cos8) (E6)

and

v(0)T, (8, Q = 0) = g (A;+A. ;)P,(cos8),

~s, a
As, a l

1+F "/(2l+ 1)
(ES)

In the s- and p-wave approximation one assumes
that the Q dependence is the simplest possible con
sistent with Fermi statistics, namely, that the
singlet amplitude is only s wave, and hence inde-
pendent of Q, and that the triplet amplitude is only

p wave, and hence proportional to cosQ. If one
further neglects Landau parameters with l ~ 2,
about which there is rather little experimental in-
formation, one finds the following approximation
for the scattering amplitude:

and

v(0)T, A; —3A;+ (A; —3A;) cos8 (E9)

v(0)T, = [(A', +A;) + (A;+A;) cos8] cosQ. (E10)

If one inserts these expressions into the various
averages required in calculating transport coeffi-
cients one finds

v(0}'W„= (2v/fl)D/4,

where

(Ell)

D = Cl + yg C2+ 2 C3+ yP C4 3 CyC2 —C3C4,

with
(E12)

where v(0) is the density of quasiparticle states for
both spin directions at the Fermi surface and

«Z ITI&t&=&itlT lt»=l(- T.+T ) (E3)

All other matrix elements vanish as a conse-
quence of spin conservation.

The spin averaged collision probability is given

C, =A;+A, , C4=A;+A
(E13}

The characteristic relaxation time r, [Eq. (B5)]
[=—,'v'r(0), Eq. (4.10)] is

2r 11g (8 y)= x —x—
N g 4

Z l&o o. ITIo.o &I' (E4)
~V ~2' ~3' ~4

v (ksT)'
0 32 g(p2/2m~)

and, from (B10), (E5), (E9), and (E10),

(E14)

=
g —,(IT.I'+3IT I'}. (E5) 4

-2 1- 5 Cl+ losc2+ 5 C3+35C4-7clC2-7C3C4

In (E4} the factor of —,
' comes from averaging over

initial spin states, and the factor of & is to avoid (E15)
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Finally, for completeness we give expressions
for n„and n~, the n parameters that enter the

thermal conductivity and the spin diffusion coeffi-
cient:

~.= ~,(+1,-1)= (4/D)(-5C', ——,', C', +-.' C',

3
23 C4+ 5 C1C2+ 10 C3C4),

(E16)

a~=a, (-1,+1)=2[1 —(1/D)(-', C', +—,",, C', +3 C',

+,0, C4 ——,C,C2 3 C/C3

—1~05 C2 4
—

5 C3C4)].

(E17)
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