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Exact time-independent solutions of the elliptic sine equations'Q/3x'+Q'Q/By' = sing are derived with the

help of a new Backlund transformation and the associated Bianco diagrams. A formula is developed which

enables us to generate without additional quadratures an infinite number of real two-space dimensional

solutions a. We apply these solutions to the propagation of magnetic flux through a large two-dimensional

Josephson tunneling junction and discuss briefly the experimental implications. We call the a solutions soliton-

like solutions, since they can be shown to carry through the josephson junction an integral number n of
positive flux quanta: 4„+'= n40, where 40 denotes a single quantum of superconducting magnetic flux. The

multiple soliton-like solutions possess infinite total energy and can be labeled by a topological quantum

number. The analysis is strictly classical.

I. INTRODUCTION

Among the nonlinear dispersive wave equations
that have gained prominence in recent years is
the so-called sine-Gordon equation is one space
and one time dimension. The properties of this
famous equation —with applications in solid state
physics, nonlinear optics, and differential geo-
metry —and its intimate connection with the charge-
zero sector of the massive Thirring model, ' have
by now been well documented. ' ' The most im-
portant property of the sine-Gordon system, no
doubt, is its complete separability in the Hamil-
tonian sense' with the existence of an infinite
number of exact classical solutions.

The question logically arises whether the re-
markable features of the sine-Gordon equation
also survive in higher dimensions. To obtain at
least a partial answer to this question, we examine
here the "sine-Gordon" system in Aoo space di-
mensions. We derive, in particular, an infinite
number of exact time-independent classical solu-
tions of the nonlinear dispersive equation

B'g/Bx'+ B'g/By' = sing,

henceforth called the elliptic sine equation, in
which g is a massless scalar field and where x, y
are space variables.

The structure of our paper is as follows. In
the first part of Sec. II we obtain, with the help
of a new Backlund transformation and its asso-
ciated Bianchi diagrams, exact solutions of Eq.
(1.1). In the second half we develop, among
other things, a formula which allows us to
generate without additional quadratures an in-
finite number of real solutions. The latter are
called soliton-like solutions, instead of soliton
solutions, since they carry through a two-di-

mensional Josephson junction an integral number
n of positive flux quanta: 4„'=n4„where 4, is
a single quantum of superconducting magnetic
flux (cf. Sec. IV).

A detailed analysis of the double soliton-like
solution is then given in Sec. III, where we also
construct, in analogy with the one-space dimen-
sional sine-Gordon system, the important topo-
logical invariants.

In Sec. IV, we apply our exact solutions to super-
conductivity, specifically to the propagation of
magnetic flux through a large two-dimensional
Josephson tunneling junction. The Josephson effect
has been under constant investigation for many
years by both theorists' and experimentalists, ' and
it is therefore somewhat surprising to find that
exact solutions of the appropriate "sine-Gordon"
system are, to the best of our knowledge, still
only available in one space dimension. We hope
that the two-space dimensional solutions presented
here will not only lead to a richer understanding of the
behavior of the Josephson tunneling current and its
many ramifications, but will also yiejd new qualita-
tive characteristics of junction barriers. The Joseph
son effect is studied here strictly from the point of
view of the macroscopic theory of superconductiv-
ity, rather than in the context of the Bardeen-
Cooper-Schrieffer theory. We conclude the paper
with a brief summary and discussion in Sec. V.

II. BACKLUND TRANSFORMATION AND GENERATING
FORMULAS

A. Backlund transformation for the elliptic sine equation

The purpose of this section is to derive in two
space dimensions exact multiple soliton-like solu-
tions of the time-independent elliptic sine equation

V'q = sing, V'= B'/Bx'+ B'/By',
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where x, y are space variables and g is a mass-
less scalar field. To obtain these solutions we
employ the powerful method of Backlund trans-
formations which were studied in the 1SSO's in
connection with pseudospherical surfaces, i.e. ,
surfaces of constant negative curvature. ' A Back-
lund transformation, which is more general than
a contact transformation, may be regarded geo-
metrically as a transformation of a surface S
into a new surface S', where S represents a
solution of a given partial differential equation
and where the transformed surface S' may either
be a solution of the original partial differential
equation or of some other differential equation.

It has been known for some time' that certain
classes of partial differential equations do not
admit a Backlund transformation, while for other
classes the associated Backlund transformation—
though known to exist on theoretical grounds-
has simply not been discovered so far. The ad-
vantages of possessing such a transformation are
tremendous, especially in the case of higher
nonlinear partial differential equations, since
(i) a 8'acklund transformation reduces, under fa-
vorable circumstances, the task of solving a
higher-order partial differential equation to the
problem of solving instead a system of first-
order ordinary differential equations; and (ii}
given one solution of a partial differential equation
one can readily obtain a second solution by inte-
grating the system of first-order ordinary differ-
ential equations in (i). Other advantages and
properties of B'acklund transformations will be-
come apparent during the course of the discussion.

The Backlund transformation associated with the
elliptic sine Eq. (2.1) reads"

FIG. 1. The Backlund
transformation from 0. to
i P is characterized by Q .

it follows from Fig. 2 and

a=(Bg) 'iP (2.5)

that the inverse Backlund transformation operator
(Bz) ' is given by

(Be)

=(-1) Bg, N=1, 3, 5, . . . . (2.5)

To derive nontrivial solutions for u and p we first
replace Eq. (2.2) by the system

—,(8 a+8 P) = —stuccos —sinh—1 a . p
X 2 2

e p+ cosf sin —cosh—
2 2' (2.7a)

1
—,(8, n —s„p)= cosp cos

2
sinh-n . p

+ sing sin —cosh —.+ p
2 2' (2.7b)

Settingip=0—=ip, in Eq. (2.7a), we obtain the n
solution (for a geometrical representation, see
Fig. 7)

= 4arctan[c exp(x cosp+y sing)], c constant,
(2.8}

which satisfies V a, = sino, . Similarly, setting
a = 0=—a, (vacuum solution) in Eq. (2.7a), we get
the P solutions

ip =Bga, (2.3)

where iP is called the Backlund transform, while
B& is the Backlund transformation operator char-
acterized by g. Since (2.2) may also be written
as

(2.2)

where P is a real Backlund transformation param-
eter, n andiP, with P real, are solutions of Eq.
(2.1) and 8, = 8/8x, 8„=8/8y. It is convenient to
represent the transformation from a to iP by the
Bianchi diagram shown in Fig. 1 and to write ac-
cordingly

= 4 arctanh[c exp(x cos Q, + y sing, )], c constant,

or

if (xcosP, + y sing, } ~ 0; (2.9a)

V'tanh(-,'p, ) = tanh(-,'p, }, /tanh(-, 'p, ) /& 1 (2.9c)

p, (», y, p, )

= 4 arccoth [c' exp(x cosp, + y sing, )],
c' constant, if (xcosg, +y sing}&0, (2.9b)

where V'i p, = sin(ip, ). We observe that tanh(p, /4)
satisfies a linear equation,

=sin e'~~'"', N=1 3 5, . . . , 24
FlG. 2. The inverse

Backlund transformation
=(&Q '&P.
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whereas the general equation for either u =

=tanh(-,'P,„,) or for u= coth(-,'P,„,}, u=1, 2, 3, .. .
reads

u(1+ u') —2u[(s~)'+ (8„u)']V'u = 1-u
(2.9d)

Equations (2.9c) and (2.9d) are useful in discussing
the analytic structure of the P solutions.

B. Generating formula

We next derive a generating formula for multiple
soliton-like solutions of the elliptic sine equation
(2.1).

Theorem: Suppose we are given three different
solutions of Eq. (2.1), namely ao, iP,'~, and i P'(~,

which are related through iP,'~=Be,a, and iP(P
=8& a,. A new 0. solution, labeled Q.

„

is then
2

given by

~ (2)
Ip)

FIG. 3. Bianchi diagram used in the proof of the
generating formula (2.12).

Adding Eqs. (2.11) according to the combination
[(2.11a) —(2.11b) + (2.11c) —(2.11d)] and then per-
forming some elementary manipulations, "we get

(

&0

x tanh

Q, &gsj((, j=0, 1, 2, . . .

4

provided a, + a, +ip,'~+ip 4(2((m, m=+1, +3,
+5, . . . . The last equation reduces to

[exp(ip, )- exp(ip, )]sin[-,'(a, —a,)] cos[-,'(i p",
~ -ip", )]

p(a(z)

i' =B,,a„
a, =B~,(iP,'~),

a, =B (i(P,
' ),

(2.10a)

(2.10b)

(2.10c)

(2.10d)

which correspond, in turn, to the following sys-
tern of first-order differential equations:

where V'a, =etna, and f„Q,are Backlund trans-
formation parameters. The superscript on P,
indicates its dependence on ft)„i = 1, 2.

Proof: The Bianchi diagram depicted in Fig. 3
represents the transformations

so that

= [exp(i/, ) + exp(iP, )]
x sin[-,'(ipse —ip,'~)] cos[-,'(a, —a,}],

= cot ' ' tanh

g, SP, ~j((, j=0, 1, 2, . . . (2.12)

which is the desired result.

(s„+is„) ' ' = sin '2 ' exp(ip, ),

(2.11a)

a —ip(2~ a +i(s,+ is„) ' ' = sin ' ' exp(ip, ),

(2.11b)

(s,+ia„) ' ' = sin ' ' exp(ip, ),

(2.11c)

(8,+ iS„) ' ' = sin ' ' exp(ig, ) .

(2.11d)

FIG. 4. Extended Bianchi diagram showing the genera-
tion of real e solutions [cf. Eqs. (2.i2) and (2.14)j and
purely imaginary P solutions [cf. Eq. (2.i3)j.
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The analogous expression for a new P solution
is

g & Q, a jw, j= 0, 1, 2, . . . . (2.13)

C. Multiple soliton-like solutions

Repeated application either of formula (2.12) or
of (2.13) enables us to generate tsifhout additional
qnadratures other solutions of Eq. (2.1), as sym-
bolized by the extended Bianchi diagram Fig. 4.
The generalization of (2.12) to a,„,for example,
yields

P~,'~(x, y, p,}= 4 arctanh[c, exp(» cos P, + y sing, )]

(3.1a}

P',"(x,y, Q,) = 4 arctanh[c, exp(x cosf, + y sing„)].

(3.1b)

Substituting the right-hand side of Eqs. (3.1) into

a2(zl yt Ali 42)

4» 4»
=4 arctan cot ' ' tanh

(3.2)

and calculating 8'a, /8 x' and 8'a, /ey', we find,
upon rewriting sina, as

tan '" '" ' =cot
4 2

4» 4»xt~
4

n=1, 2, 3, . . . , Q»&Q», sjw, j=0, 1,2, . . . ,

4tan(-,'a, )[1 —tan'(-,'a, )]
[1+tan'(-,' a,)]'

that a~ does indeed satisfy Eq. (2.1}.

B. Asymptotic behavior

(3.3)

(2.14)

where the two superscripts on P,„,refer to two
different P's (see Fig. 4 again). There exists a
similar formula for P, „„

in terms of P,„,and

e,„»which will not be stated explicitly.
The technique of employing a Backlund trans-

formation to generate other solutions is, of course,
familiar from the treatment of the one-space di-
mensional sine-Gordon equation. The fundamental
difference between the Backlund system for that
equation and the Backlund transformation for the
elliptic sine equation is that Eq. (2.2) connects two
different sets of solutions: one set, a, being real,
the other one, P, purely imaginary.

D. Commutativity

It is known' that successive Backlund transforma-
tions associated with the sine-Gordon equation in
one space and one time dimension, commute.
This commutative property is also shared
by the BKcklund transformations of the el-
liptic sine Eq. (2.1). [According to Eqs.
(2.10c) and (2.10a), a, =Be B~,ao Similarly, i.t
follows from Eqs. (2.10d) and (2.10b), as well as
from a, -iP,'i-a„that a, =B&,Be,a,.]

III. DOUBLE SOLITON-LIKE SOLUTION

A. The solution n2

We first show that a„asgiven in (2.12), is in-
deed a solution of V'e, =sina, . Let a, be the
"vacuum" solution ao -=0 for which the Backlund-
generated solutions P", ~ and PP are known to read
[we use (2.9a)]

We begin with a, in Eq. (2.8) which, in polar
coordinates x=r cos8 and y=r sin8, reads

a,(r, 8, p) = 4 arctan/c exp[r eos(8 —p)]}, c & 0,
(3.4a}

so that

if~ a, (r, e)=2w, if --,'w& 8 —y&-,'w, (3.4b)

hm a, (r, e) = 0, if —,'w & 8 —y & -', w . (3.4c)

In Fig. 7 we have attempted to draw a two-dimen-
sional picture of a, . A similar, though some-
what lengthier, analysis of the double soliton-like
solution

= 4arctan cot ~'
2

~ Z~«3 (e-41) — rcos (e-$2)

(x
1. -V c e~«'' ~~'+""''e ~2

1 2

Q2 + Q, +jw, j= 0, 1, 2, . . . , (3.5)

leads for Q, = w/3 and $,=0, say, to the following
asymptotic behavior (c,=c,=1):

(i) for w+ Q, & 8 & —'w+ Q, and Q, & 8 & —w+ Q, ,

lim a,(r, e)=0; ee —', w+nw, n=0, 1, . . .
y ~OO

(ii) for —,'w + Q, & 8 & 2w + Q, and —,w + f, & 8 & w+ Q, ,

(3 6)

lim a,(r, 8)=-4w; eo —, w+nw, n=0, 1, . . . . (3.7)

From (3.6) and (3.7} it is possible now to construct
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2=0
Z&0

X

FIG. 5. Two-dimensional Josephson junction consist-
ing of metals A, 8, and a barrier of thickness b.

topological invaxiants, such as

lim [a,(r, 8,) —a,(r, 80)]=+4m,

with

(3 8)

+ ~[(a, a2„)2+(aya2„)2]j. (3.9)

So far we have verified E(a,„)-~ only for
n=1 and 2, but it appears certain that E(a,„)-~
also for n & 2. There exists a remote possibility
that one of the higher n solutions, say a„pos-
sesses a total energy which, for a judicious choice
of the parameters Qy Q6 is finite. But we
have not been able to find such a magic combina-
tion of Q's. We are therefore inclined to believe
that the a solutions generated from (2.14) possess
infinite total energy, in agreement with Derrick's
theorem. " A similar statement holds for the P
solutions.

g g-', g+ ng, n = 0, 1, 2, . . .
v+ q&, & 8, & 2m+ Q» and zv+ Q, & 8O& 2v+ Q, ,

which are reminiscent of the 4m pulse in nonlinear
optics" and of the two-soliton solution of the sine-
Gordon equation in one space dimension. 4 There
is of course an essential difference between solu-
tions in one and two space dimensions. Where
as the N-soliton solutions, N = 1, 2, 3, . . . , in one
space dimension have a total energy which is
finite, the total energy of our static solutions,
such as (2.14), is infinite For a. ,„

the total energy
is given by

Eta,„)= f f dxdy(1 —cos(a,„)

where y„,y~ are the phases of metalsA, B,
while p„,p~ are proportional to their electronic
charge densities; p„,p~ and tIt)„,y~ are both
purely real and p» p~ are in addition positive
definite.

The most important quantity in the macroscopic
description of the Josephson effect is the phase
difference rp = y„—&ps between metals A, B which
causes a supercurrent, the Josephson tunneling
current, to flow across the barrier. For a
satisfactory description of the Josephson effect
one requires, in addition to rp, the magnetic in-
duction B or rather, the corresponding magnetic
field strength H, and the potential difference
V(x, y, t) across the barrier. We assume that
H is constant in time and lies entirely in the xy
plane:

H(x, y) = i H, (x, y) +j H„(x,y) .

The three basic equations of the Josephson effect
then read'6

aq/at= 2eV/a,

which describes the variation of the relative
phase q with time t;

~B 2ed ~B 2ed
Bx kc ~ By Pic

or, equivalently,

(4.1)

(4.2a)

those features of the Josephson effect which are
particularly pertinent to the present investiga-
tion. '4

A Josephson tunneling junction consists of two
superconducting metals A and B which are separ-
ated by a very thin nonsuperconducting barrier of
thickness 5 (Fig. 5). The barrier lies strictly in
the xy plane, metalA goes from z =-,'5 toz =+~
and metal B from z = —

& 5 to z = -~." The super-
conductors A, B may be described by wave func-
tions (order parameters) of the form'

g„(x,y, t) = (p„)"'exp[i' „(x,y, t)],
ys(x, y, t) = (pa)"' exp[i&pa(x, y, t)],

IV. PROPAGATION OF MAGNETIC FLUX THROUGH

A TWO-DIMENSIONAL JOSEPHSON JUNCTION
2ed

Vy= g Hxn, n=(0, 0,n,),kc (4.2b)

A. Phenomenological description of junction barriers

In Sec. II we obtained exact time-independent
solutions of the elliptic sine equation in two space
dimensions. The purpose of this section is to
apply these static solutions, such as (2.8) and
(3.5), to the propagation of magnetic flux through
a large two-dimensional Josephson tunneling
junction. For the convenience of those readers
who are not too familiar with Josephson's theory,
we have taken the liberty of summarizing briefly

which describes the space variation of y; and
finally,

j~(x, y, t) =j o(x, y) sing(x, y, t), (4.3)

which gives the Josephson current per unit area
across the barrier. ' Here e is the electron charge,
c the speed of light in vacuo, and d = &„+~~+ 5,
where ~„,~~ denote, respectively, the London
penetration depths for metals A, B; jo depends
only on position and on the properties of the
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B B 4' By 4w .—H„——H„—
Bx " By

" c Bt c (4 4)

barrier. Equations (4.1), (4.2), and (4.3) give a
satisfactory phenomenological description of junc-
tion barriers.

Substitution of Eqs. (4.1)-(4.3) into Maxwell's
equation 0 X

~a

Z=O
(

Xg

Y+

yields the barrier equation

2

V y — » =~~ sing,
co Bt

(4 5)

FIG. 6. Diagram shows area S encircled by curve

y =y+ + y through which flux 4 passes.

ing Eq. (4.2b), we can write the flux through y as
where c, and ~~, the two fundamental parameters
of the theory, are given by d =(2lr) 'd j dT Vrp, dl='dd Td3,

'y

(4.13)

c,=c(4vCd) '~',

X~ =(8/2edj )"' .
(4.6)

(4.7)

where

4, =bc/2e=2x10 'Gcm' (4.14)

c, is the speed of electromagnetic waves along
the surface of the barrier if the Josephson cur-
rent is absent, while ~~ is the Josephson pene-
tration depth which, in general, is not a constant.
C is the capacitance of the barrier per unit area. "

Equation (4.5) may be simplified by measuring
distance in units of ~~,

is a single quantum of superconducting magnetic
flux. The line integral in Eq. (4.13) is readily
evaluated, since the value of the integral depends
merely on its endpoints (we drop the subscript
on 4):

P1
4'=(2v) '4'o dfy=(») 'C'o[y(&, ) —y(&,)].

Po

x=-x/x„y-=y/&, ,

and time in units of

7~ = (kC/2ej, )"',t = t/&~, -

so that Eq. (4.5) reduces to

B' B' B'
+

B 2
— ~ j( =sing,

B7 By Bt

(4 8)

(4.9)

(4.10)

(4.15)

If the y's in Eq. (4.15) are static solutions, as
they are in our case, the corresponding flux 4
should, strictly speaking, be referred to as static
magnetic flux.

C. Flux quantization and topological quantum numbers

The condition of flux quantization in supercon-
ductivity reads

or, in the static case, to 4 =N40, (4.16)
B B

2+ 2 /=Sin+ .
Bx By

(4.11)

Since Eq. (4.11) is just the elliptic Eq. (2.1),
we know that it admits exact solutions of the
form (2.8), (2.9), (2.14), etc. Before discussing
some of these solutions in greater detail, we
address ourselves to the question of magnetic
flux.

B. Magnetic flux through a Josephson junction

4= Bd
S

(4.12)

where S corresponds, in our case, to the area
encircled by the curve z= z, + z as shown in
Fig. 6." Employing Stokes' theorem and utiliz-

The total magnetic flux through an area S is de-
fined by

1 ~B

2r Bx
' (4.17)

If, for example, y(x, t) is a finite-energy solution
of the (1+ 1)-dimensional sine-Gordon equation,
then

y(~, t) —cp(-~, t) = 2', m integer, (4.18)

and condition (4.16) is satisfied.
We show in the remainder of this section that

condition (4.16) also holds for the static two-space
dimensional solutions of Secs. II and III. To de-

where N, an integer, is sometimes called the
winding number and where 4 is the total flux
through the junction. Whether or not condition
(4.16) can also be satisfied in "other situations"
depends decisively on the existence of a topological
quantum number" Q defined, in one space dimen-
sion, as
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rive this result it is essential to verify —for the
expression [q(P, ) —y(P, )] in Eq. (4.15)—the
asymptotic relation

lim [rp(r, 8,) —y(r, 8,)]= 2@Ã, N integer,

(4.19)

where P, = (r, 8-,) and P, -=(r, 8,}.

or

=2 r
C, = —40 arctan exp —cos(8, -Q)

J'

r—arctan exp ——cos(8, —P)
J'

(4.23}

D. Total positive flux of y solutions

The symbol y shall henceforth denote an 0. solu-
tion as given, for example, in Eqs. (2.8), (2.12),
or (2.14). Thus the single soliton-like solution of
Eg. (4.11), which is depicted in Fig. 7 and which
reads

cp, (r, 8, Q) = 4 arctan(exp[(r/&~)cos(8 —Q)]],
(4.20)

satisfies the asymptotic conditions [cf. (3.4)]

As r -~, the total amount of Positive static flux
through the junction is seen to be exactly one
flux quantum:

4P=+ 4 „cos(8,—Q) &0. (4.24)

To complete the picture we should point out that
the total negative flux is

4~, = —C„cos(8,—Q)&0. (4.25)

We have also examined, with the help of Eqs.
(3.5)-(3.8}, the flux carried by the double soliton-
like solution of (4.11),

llm y~(x, 8}= 2', if -2x & 8 —Q & 2s, (4.21) v2(& 8}

lim y, (r, 8) =0, if —,'x&8 —y&-', v, (4.22) =4arctan cot
2

where P still denotes the Backlund parameter. It
is convenient" to consider only the amount of

positive flux that is being carried by y, (r, 8)
through the Josephson junction. Accordingly we
choose —for the single soliton-like solution-
the angles of P,(r, 8,) and P,(r, 8,) in such a way
that 8, = 8, —v and -&«8, -Q& &&, so that formu-
la (4.15) becomes

C =(2x) 'e,[q(r, 8,) -q(r, 8, -v)]=-4„
4',+~ = 24, , tan 84- [(1+cosQ, }/sing, ]. (4.27)

The other solutions of (4.11) such as q„y„etc
may be analyzed in much the same way.

e(r/X~) «s (8 - 4 j.) e(r/ X&) cos ( e -42)

+(r/Xg) [cos (e —Ql) +cos (8 -p2) J

(4.25)

The total positive flux for the regions specified
by r ~, -', v+ y, & 8& v+ y, and 3w/2+ p, & 8& 2m+ y„
is again of the form (4.16), namely"

-X

}[Q,(x,y, P)
E. Experimental considerations

Although the solutions cp,„(x,y) of Eg. (4.11)
possess infinite total energy, they may provide
additional information about the qualitative fea-
tures of two-dimensional junction barriers. The
reason is that several quantities in Josephson's
tunneling theory depend through y2„in a nontrivial
way on both x and y. Among these quantities are:

(i) the Josephson current [cf. Eq. (4.3}]

j,(x, y) =j,(x, y) sing, „(x,y),

jo depending only on the properties of the barrier;

(ii) the total current I through the junction,
FIG. 7. The single solition-like solution n&(x,y, P) in

two space dimensions. The continuous Backlund trans-
formation parameter tt) gives the orientation in space.
Notice the asymptotic behavior of n& as described by
Eqs. (3.4).

I = dy2ngo X, P Sl.n@2n+&~

where the integration is taken over the area of
the junction";
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(iii} the component H, of the magnetic field strength
which, according to Eq. (4.2a), is given by

H„(x,y) = (-Kc/2ed) ay, „/sy,
with a similar expression for JI;, and

(iv) the Josephson penetration depth

X~ (x, y) = [5/2edj, (x, y) ]'~'

which, as we know, is not a constant in general.
There are no doubt other features of junction
barriers, such as the current-voltage character-
istics of the Josephson current j, which could
also be studied with the q,„'s.

V. CONCLUDING REMARKS

We have studied the elliptic sine equation in two-
space dimensions and derived for it an infinite
number of exact time-independent classical solu-
tions. The principal tools in the derivation were
(i}a new Backlund transformation, (ii) its sym-
bolic representation in terms of Bianchi diagrams,
and (iii) two formulas, one generating an infinite
number of real solutions a [Eq. (2.14)], the other
and infinite number of purely imaginary solutions
P [cf. Eq. (2.13)].

It was found, in analogy with the one-space di.-
mensional sine-Gordon equation, that both types
of solutions n, P can be labeled by topological
quantum numbers. This was demonstrated in the
text for the single and double soliton-like solutions

RIKl Q2, respectively. Although both u and P
are mandatory for a self-consistent treatment of
Eq. (2.1), only the real o. solutions, labeled y, „

in Sec. IV, are likely to be of any physical signifi-
cance.

The two-dimensional static solutions derived
here possess infinite total energy, "a somewhat
discouraging result, but one which is nevertheless
in agreement with Derrick's theorem. " A possible
way out of this "energy dilemma" would be to
solve, instead of (2.1), the three-dimensional
equation

(5.1)

Since Derrick's theorem says nothing about time-
dePendent solutions, "it is at least within the realm
of possibility that the total energy of the time-de-
pendent solutions is finite. This problem is cur-
rently under investigation. In Sec. IV we applied
the real cp,„solutions to superconductivity and
showed that the total positive static magnetic flux
through a Josephson barrier is precisely

4 ] + 4 p for the single soliton- like solution,

4,' =+ 24 p for the double soliton-like solution.

Although the cp,„'swere seen to possess infinite
total energy, they can be expected to provide
further information about certain quantities which
are essential for a phenomenological description
of junction barriers, such as the total current I
through the junction, the Josephson penetration
depth Az(x, y}, or the current-voltage character-
istics of the Josephson current j,.

Finally, it is reassuring to know that the ellip-
tic sine equation (2.1)possesses not only an infinite
number of conserved Local currents, "as does
the sine-Gordon equation in one space dimension,
but in addition an infinite number of nonlocal
conserved currents which will be reported else-
where.
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