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Interaction of a magnetic monopole with a ferromagnetic domains

C. Kittcl and A. Manoliu
Department of Physics, University of California, Berkeley, California 94720

{Received 9 August 1976)

We calculate the interaction energy of a magnetic monopole with-. a single ferromagnetic domain, taking into
account the ferromagnetic exchange interaction in a linear approximation. In vacuum at 400 A from the
surface a monopole of strength 137e/2 is bound by 35 eV in magnetite, and for iron at 300 A from the
surface the binding energy is 50 eV. We expect the binding energy to increase at smaller distances. The
attractive force on a slow monopole approaching the surface of a ferromagnet from the vacuum difFers, at
these large distances, only slightly from that computed by simple classical image methods treating the magnet

as a medium with an isotropic and wavelength-independent permeability equal to the long-wavelength

transverse permeability of the ferromagnetic material. We consider the apparent contradictions with energy
and momentum conservation in the problem of a monopole in the field of an electron. The exclusion of s-
wave scattering largely resolves the contradictions. The effective field on a monopole in a ferromagnet is I
and not I.

Goto' pointed out the existence of an attractive
interaction between ferromagnetic substances and
magnetic monopoles, and he made an estimate of
the trapping energy that is a consequence of the
interaction. He also estimated. the value of the ex-
ternal magnetic field intensity that mould be nec-
essary in order to extract monopoles that have
been trapped by magnetic materials. Eberhard
and Hoss~ showed that ferromagnetic materials
mill tx ap monopoles regardless of the details of
the interactions within the material. Our object is
to calculate the interaction energy of a monopole
with a single ferromagnetic domain, as in iron or
in magnetite. The interest of the calculation lies
in its bearing on the numerous experimental mono-
pole searches' that depend on both tr apping and ex-
traction of monopoles from magnetic materials.

ANISOTROPK IMAGE PROBLEM KITH EXCHANGE

%e solve for the interaction of a magnetic mono-
pole in vacuum ate &0 with a magnetic domain that
fills the half-space z &0. %e suppose that in the
absence of the pole the domain magnetization is di-
rected along the +x axis, an easy axis of the mag-
netocrystalline anisotropy energy. The single-
domain diagonal permeability tensor for long-
wavelength pertnrbations is p, = (1, tie, pc), where
at room temperature p, o

= 46 for iron and 16.1 for
magnetite.

%e write the energy density in the ferromagnet
as

&exch +@"anig+@"dern~+ &p y

where the exchange energy density is

W, 2 =-'C [(Vo.)'+(Vp)'+(Vy)'],

arith n, P, y as the direction cosines of the mag-

netization. The anisotropy energy density is

(+spa+pays+ y2 ~2)

The demagnetization energy density is

~d m~ = - z M Hj. , (4)

where H, is the field caused by the magnetization
itself; and the interaction energy density of the
pole arith the magnetization is

(5)

that is, the interaction energy of the magnetization
vrith the bare monopole field

8'p~=-M Ho,

r zorE
Hc=g

( 0

Let m be a unit vector in the direction of the
local magnetization; then the following equation
expresses the condition that the total energy be
an extremum:

(6)

mx CV'm- - 8,„,, +M, H, +H, =0.
Bm

This is the condition that the torque be zero. %e
linearize the equation by neglecting P' and y .
This approximation limits the region of validity
of the results to distances of the pole from the
surface that are greater than the Bloch-wall thick-
ness parameter A, as discussed below&. The
linearized form of (7) is

CV'm, -2K,m, +M,II, = 0,
Cv'm, -2K,m, +M,II, = 0,

where H=HO+H, . Here C is the Landau-Lifshitz
exchange constant, g, is the first anisotropy con-
stant, and M, is the saturation magnetization.

%e viant to find a diagonal-permeability tensor
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P(k„,k ) =(1,p(k„, k ), i). (k„,k )) (8)

consistent with (8) and having the property that in
the medium divB=O, or, in a mixed representa-
tion,

dzv x +yp k„,k, ' +zp k„,je,
' =0

(10)

for z &0. This will be satisfied if p,. has the spatial
dependence

exp[(p 'k„'+k,')'~'z] exp[i(k„x+k, y)],
with p, being p(k„, k, ) here and hereafter. Then
(8) and (11) give

where k,'=2K, /C and p, ,= 1+ 4wM,'/2Z„ the single-
domain permeability. This definition of p, p follows
from (8), written for a uniaxial crystal or for a
cubic crystal, both with K, positive. For a cubic
crystal with K, negative, one should replace K,
by —,

~ Z, ~. The length A is associated with the
thickness of a Bloch wall and is defined by A = 2/k, .

In the medium the potential is

(e(-.) = fIeee'e(, ,. (e„, e„)

x exp [(t). 'k„'+k,')'~'z]

tj, (&k,'+2k„'+ [@.()k, + 4(po —1)k,'k, ]' ' x exp [i(k„x+k,y)], (13)

(12) and outside the medium the potential is

I

((e)= Oe)e„ee(,„,(e)ep(-(e,*~ e„*)' 'e) ~
e e. e, e. e )e(-(e,' e„')'~'(I* -*,I) e"p('(e e ee)l.

e+ y

(14)

The usual boundary conditions on B and H at the
interface z =0 determine P, (k„,k ) and P(k„,k„) in
terms of zp andg.

The magnetic field at the pole due to the mag-
netization of the domain is

H~ = — — A. Ke-2KzpdK

where

(t(, cos'p+ 1(,
' sinzp)'~' —1

dd)
(p cos'p+ t), 'sin'p)'~'+ 1

and the potential energy of the pole, referred to
zero at infinity, is

~-2 KzpdK (16)

We have carried out numerical integration of this
integral as a function of zp with results given in
Table I for iron and in Table II for magnetite. We
tabulate also values of the direction cosine y (or
m, ) at the point z =0. These values are useful a,s
a measure of the distortion of the magnetization
within a domain. The larger is y, the greater the
distortion from the initial parallel configuration of
the domain. We cannot expect the linearized equa-
tions (8) to be very good for y&0. 3, say.

The calculations were carried out with g =—,'e
using the following values of the physical con-
stants: for iron, M, =1714 6, K, =4.1x10'
ergcm ', a =2.87 A; and, for magnetite, I,

=485 G, K, =-1.1x10' ergcm ', a =8.39 A. These
values are at room temperature. The exchange
parameter Q is obtained from the experimental
constant D in the magnon dispersion relation k~
=Dq' in the quadratic region: D =281 meVA for
iron and 615 meVA2 for magnetite, both being
room-temperature values. ' Derived from these
data are the values p, p

=46 and 16.1; k, = 3.29&&10'

cm ' and 3.83&&10' cm '; A =610 A and 520 A;
C =47.5 meVA ' and 8.33 meVA ', for iron and
magnetite, respectively.

The successive columns of the tables give,
reading from the left-hand side, the distance zp
of the pole from the surface in dimensionless
units k, zo and in A; the component y =M, /M, of
the induced magnetization normal to the surface,
as evaluated at the origin; the induced magnetic
fieldH, at the pole; the binding energy of the pole
at rest, as calculated from (16); and the binding
energies calculated by the method of images with
neglect of exchange for an isotropic permeability
tj. o and for an anisotropic permeability (1, t(,„t(, o).

We see from the tables that the monopole is
strongly bound to a ferromagnetic domain, at least
at ranges of the order of 300 A from the surface;
here the binding energy is of the order of 50 eV.
The calculation becomes highly nonlinear at smal-
ler distances, and we may expect the response of
the domain to saturate, giving smaller values of
the interaction field H„but always of the same
sign. We see no reason to expect the binding en-
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TABLE I. For iron: values of the y component of the magnetization at the origin; magnetic
field that acts on the pole; and the energy of the pole. For reference the image energies with-
out exchange for the isotropic and purely anisotropic permeabilities are given.

Zp

(A)
H)
(G)

Calculated
fwf
(ev)

Isotropic model

(ev)

Anisotropic model

(ev)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4 ' 0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

152
304
456
609
761
913

1065
1217
1369
1521
1826
2130
2434
2739
3043

1.12
0.298
0.135
0.076
0.049
0.034
0.025
0.019
0.015
0.012
0.008
0.006
0.005
0.004
0.003

3105
804
360
204
130
91
67
51
40
33
23
17
13
10

8

97.1
50.3
33.8
25.5
20.4
17.0
14.6
12.8
11.4
10.2
8.5
7.3
6.4
5.7
5.1

106.3
53.2
35.4
26.6
21.3
17.7
15.2
13.3
11.8
10.6
8.9
7.7
6.6
5.9
5.3

102.4
51.2
34.1

25.6
20.5
17.1
14.6
12.8
11.4
10.2
8.5
7.3
6.4
5.7
5.1

For k~p ——0.5, we see that p=1.12, which is not a physical solution. It is listed here as
reference for the cutoff of the validity of the linearized equations.

ergy to become smaller than its maximum value
in the linear region. At atomic distances the mag-
netic pole is liable to capture by nuclear magnetic
moments' and, if the pole bears an electric dipole
moment, it may be captured by the inhomogeneous
electric field of a nucleus. It would appear con-
servative to set 50 eV as a lower limit on the bind-
ing energy of a Dirac monopole to a ferromagnetic
domalll.

At the distances that we have treated it would
have been an adequate approximation to apply the

classical method of images, with the neglect of
exchange interactions. The anisotropic image
method that we also tested is not a part of the
standard literature as far as we know, but it
follows from our method on setting k, =~ in (12).

EFFECTIVE MAGNETIC FIELD ON A MONOPOLE

The effective magnetic field on an electron in a
ferromagnet is B =H+4mM and not H. This is
established by experiments' on the de Haas-van
Alphen effect, and the theoretical limits have

TABLE II. For magnetite: values of the y component of the magnetization at the origin;
magnetic field that acts on the pole; and the energy of the pole. For reference the image
energies without exchange for the isotropic and purely anisotropic permeabilities are given.

Calculated

(ev)

Isotropic model
fwi
(ev)

Anisotropie model
Iwl
(ev)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

261
391
522
652
782
913

1043
1174
1304
1565
1826
2087
2347
2608

1.254 ~ 947
0.574 428
0.328 242
0.212 155
0.1 48 108
0.109 80
0.083 61
0.066 48
0.054 39
0.037 27
0.027 20
0.021 15
0.017 12
0.013 10

50.8
34.4
26.0
20.8
17.4
14.9
13.1
11.6
10.5
8.7
7.5
6.6
5.8
5.2

57.2
38.1
28.6
22.9
19.1
16.3
14.3
12.7
11.4
9.5
8.2
7.1

6.4
5.7

52.4
35.0
26.2

21.0
17.5
15.o
13.1
11.7
10.5
8.7
7.5
6.6
5.8
5.2

Not physical.
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been discussed. ' Earlier it was shown by Wan-
nier' that the field on a charged cosmic ray par-
ticle in a ferromagnet is close to 8, but may de-
part slightly from B by virtue of the recoil of the
ferromagnetic atoms. The situation of a magnetic
pole in a ferromagnet is drastically different, for
the work done on a pole on carrying it around a
closed path that passes in part through a ferro-
magnet must vanish if energy conservation is
maintained. By a Maxwell equation the line in-
tegral of H around a closed path in a static prob-
lem is zero; the line integral of B or of H+ o.M,
where ~ is nonzero, does not in general vanish.
Energy can be conserved only if n=-0. If follows
that the effective field on a pole must be exactly
H.

How can this happen for a magnetic pole, if it is
known not to happen for an electron? The field
that acts on an electron is B and not H because of
the Fermi contact or s-wave part of the electron-
electron interaction, the part that comes about
when a charged particle passes through the "Zit-
terbewegung" portion of the electron orbit. What
is so different about the motion of a pole in the
field of an electron is that precisely the s-wave
part of the relative motion is forbidden by quantum

mechanics. Lipkin, Weisberger, and Peshkin'
have, in fact, shown explicitly that for finite en-
ergy all radial wave functions vanish at the origin
at least as fast as r~, where L & j. for nonvanishing
allowed values of the pole strength. This result
is a consequence of a 1/r term in the effective
potential. With the s wave rigorously forbidden,
the effective magnetic field can only be H, and
energy is conserved. With energy conserved,
there is no cause to believe that a monopole will
not be stopped by a ferromagnet. The theoretical
arguments suggest that a monopole can be trapped
within a ferromagnet. A parallel argument can be
constructed to show that the angular momentum
is conserved if there are no s-wave collisions,
thereby avoiding the grave difficulty with classical
orbits having zero impact parameter. The s-wave
exclusion argument we have given does not resolve
the question of the effective field from orbital mag-
netization.
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