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Asymptotic corrections to the potential of impurity ions in semiconductors
with spatially variable dielectric constants
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In a recent paper, the problem of the screening of a (point) donor ion in Si and Ge has been reexamined by
introducing into the theory the spatial dielectric functions of Azuma and Shindo and Okuro and Azuma,
respectively. Poisson's equation, with the neglect of a small term, has been solved approximately by making
use of a variational principle. The result was an impurity-ion potential that consists of a linear combination of
two exponentially screened Coulomb potentials (with two different screening lengths) which is scaled by the
static dielectric constant of the medium. The present paper shows that, at distances larger than Dingle's
screening length Q, the term neglected in Poisson's equation would add to this impurity-ion potential two
types of correction. One type consists of terms which are proportional to Dingle's potential, but with
proportionality constants so small that the correction terms are rendered utterly negligible. The other type
consists of terms each one of which is proportional to functions of the form (1/r )exp( —q, r), where m = 2,, 3,
4,..., and the parameters q; are related to the constants appearing in the spatial dielectric functions of Si and
Ge. The finding that the correction terms to the impurity-ion potential fall off faster than 1/r does, in the
author's opinion, establish the asymptotic validity of the previous variational theory.

Poisson's equation, for the potential Q(r) of a
(point) donor ion, in a medium characterized by a
spatial dielectric function K(r), has the form'

g" (r) -R, 'g(r) K, R, 'g-(r)[e '" —Ae '-Be «" ]
=-& [ae ' —Ape " Bye -«" ]

4v p(r) 1 d~ (r) dy (r)
g (r) x (r} dr dr

where p(r), the density of the screening charge,
is composed of mobile electrons.

The spatial dielectric function, for Si (Ref. 2)
and Ge (Ref. 3), has the form

1/x(r) =1/x, +e ""—Ae "-Be «", (2)

"[0'(r) -y(r)/r] . (6)

Let us digress now for a minute and consider the
inhomogeneous diff erential equation

X"(x) +&(x)y'(x) +Q(x)y(x) =S{x) .

Assuming that the solutions of the corresponding
homogeneous differential equation are known, and
are denoted by u, (x) and u, (x), a particular solu-
tion of Eq. (8} is obtained from'

where Ko is the static dielectric constant of the
respective medium, and the quantities n, P, y, A,
and B are constants which are given in Table I.

Making use of a previous investigation' of the
right-hand side of Eq. (1), and introducing the
function g(r) by

0(r) =r4 (r),
one can cast Eq. (1} into the simpler form

q" (r) -R, 'q{r) -x,R, 'g(r)[e "—Ae ' Be ""]-
—[»(1+x.f)] 0'(r} — {4)
d, 4(r)

where R, is a constant, and the quantity f is de-
fined by

f= e « —Ae e~ Be «~ . -

' u, (t)u, (x) -u, (t)u, (x)
u, (t)u,'(t) —u, (t)u,'{t) (8)

TABLE I. Parameters in the spatial dielectric func-
tion. (It appears that there are two misprints in Ref. 2.
The parameter p is given as 9.129a&', while the param-
eter y is given as 0.0302az'. Figure i of Ref. 2 can,
however, be reproduced only with the values of 8
=- 0.9129a& and p = 0.302a&, respectively. )

Semiconductor A (a ')

where A, is a constant, as yet not specified.
Considering the right-hand side of Eq. (6) as the

function S(t), Eq. (8) permits one to derive an ap-

Replacing ln(1+x,f) by z,f, the first term of its
expansion, ' one finds that Eq. (4) becomes

Ge
Si

0.0544 0.0080 0.9668 0.3757 0.7460
0.0726 0.0i07 0.663 0.9i29 0.302
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g, (r) =(e,/«, )[Ce" ~+(I —C)e "i 2] (9)

g, (r) = (eg«0) [Ce '"ie
& + (1 —C)e'"i"2] (10)

In Eqs. (9) and (10), e is the magnitude of the
electron charge, C is a constant, ' and the quanti-
ties R, and R, are screening lengths, defined' by

proximate value for P~(r) since the two approximate
solutions of the corresponding homogeneous equa-

tion, obtained' from a variational principle, are
known to be'

e, (r) =qp(r) +qp' (r), (18)

where g~(r) goes with the first term in the square
brackets, while g~ (r) goes with the second term
(including the minus sign).

Evaluating the integrals involved in g~, and drop-
ping terms multiplied by e'" "p times a constant
[since they are incompatible with the boundary con-
dition in Eq. (16)], one obtains, upon consideration
of Eq. (3),

where the notation A, =x„with r p as yet unspecified,
has been introduced.

In what follows, Eq. (17) will be written as

and

R, =R,/(I -n)
7 jRp

4'(r) =-~ e-(a-~p )7 pP 4 ~ ~ 2R-1

R, =RJ(1 +n) (12)

where n is a constant, ' and R, denotes a screening
length introduced by Dingle. '

A modest effort will suffice to convince one that
Eq. (8) cannot be evaluated in a closed form with
the functions displayed in Eqs. (9) and (10). For
this reason, as an approximation, the solutions'
of Eq. (1) with K(r) =K, will be used for the evalua-
tion of Eq. (8). These solutions are given by

e-(a++p )Y

e-(a -Rp )x

, —1
u+2R, '

Q

u —2R, '

+similar terms involving P and y.
(19)

Considering the definition of the exponential in-
tegral, '

and

4,(r) = z (e,/«, )e-"i'0 (13) "e'
-E;(-h) = (2o)

4„(r)=-'(e,/«, )e'" 0 . (14)

The boundary conditions, both in Dingle's theory'
and in its subsequent generalization, ' are

and using the symbolism f„' = f„-f„, one finds,
upon consideration of Eq. (3) and upon dropping
terms in e'" "o times a constant, that

g, (0) =e,/K, (15)
y~ (r) — ' ' = -oe "i of[ Ei( an' )] +-[-E-,. (-5„r)])

+ae "i '][ Ei( err, )] +-[-E-i(-5 r,]j

+ """'([-E(- )]+[-E (-5 )1'

00( ) =o, (16)

where g, (r), the general solution of Eq. (1) with
K (r) =«„ is the sum of the functions displayed in
Eqs. (13) and (14). A glance at these equations
shows that g, satisfies Eq. (15) but does not satisfy
Eq. (16). Use of Eqs. (13) and (14) for the evalua-
tion of Eq (8) does not, however, violate any
principle since it is the solution of the complete
equation (which includes g~) on which the boundary
conditions must be imposed.

With these considerations, Eq. (8) can be written
as

+similar terms involving P and y,
(21)

where

(22)5, =j —2Rp'

6, =j +2R

with j =&, P, y.

To proceed, use is made of the relation"(r) = — 0 o (e t eoe+r eo —e+ eoe r/Ro)-
2

x (ne-"' ape-" Rye &')- 0! 1! 2! 3!e [-Ei(-$)]= ———'
+ —' ——'

+ ~ ~ ~

~2 g3 (4 (24)

x [q,'(i) 0 (i)/i]

(17)

which permits one to rewrite Eq. (21). The re-
sult, involving only the first term on the right-
hand side of Eq. (24), is given by
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Pp(&) =-@, ~e e -Are o+ -(a -2R )re o

~ —2R ' ro

-1 -1e-(a-Bo )r+, , —1 Ro—, , —1 R, +similar terms in P and y. 25r' (y+2R, ' ' r' ~ -2R, '

4

-1e-(a+go )r
~ 1

~ +2Ro

e-(Ct -8o )r-1
4 z —2R, '

eoRo
4 ~+2R, '

(a +R
p )r

i—1 2r
eoRo n

4 z-2R, '
-1(a Rp )r

—1 2

+similar terms in P and y . (26)

For all physically significant cases Ro»1, so
that 2Rp is very small compared to &. For this

At this stage, a choice for r, has to be made. In

principle, the smallest value of r„permitted in

the present treatment, could be that value of r at
which the expansion of In(1+~,f), in Eq. (4), is
permissible. Knowing that this is the case when
-1&v,f&+1, one might say that r, could be de-
termined from Kof =1. This r value, with the con-
stants displayed in Table I, turns out to be r, = 6.0a&
for Si, andr, =3.8a~ for Ge, wherea~ stands for the
Bohr radius. The above choice forr„however,
wouldbe an extremely crude one since Eq. (6) is
based on the retention of only the first term of the in-
finite series for ln(l +It,f) which is a good ap-
proxima. tion only when «,f«1. Instead of pro-
ceeding along these lines, one might just as well
inquire about the contribution to the variationally
obtained impurity-ion potential' that results from
the right-hand side of Eq. (1) at r&R, . This ap-
pears to be a reasonable question since the
screening length Ro is a quantity that character-
izes the "range" of the exponentially screened
Coulomb potential. For this reason, the choice
ro =R, is made and then the sum 'of Eqs. (19) and
(25) is found to be

e-r/R p4»(&)=-~ e "
2 r

reason, a binomial expansion of the first term in
each of the square brackets can be carried out.
Retaining terms up to and including (2A, ')/o, , one
finds that Eq. (26) reduces to

exp p e e r/R o
0 (r)=-

2 r
('N +R p )r

+ 0

2nRo r

1 ee' ~o)r
2~Ro r

e-(Ot -R o ) r
+ 0

2Q

e e (a+~o &r
+ 0

2Q

+similar terms in P and y ~

Upon the further neglect of R, ' in the exponents,
Eq. (21) becomes

e-&R e e- r/R

4 (r) =—
2 r

[&,/(~, r)] [Ce "~"~ +(1 —C.)e 2]'

1 e,e+ — 0, +similar terms in P and y. (28)
Qf r

The first term on the right-hand side of Eq.
(28) is utterly negligible. The reason is, that the
parameter n is of the order unity, while the pa-
rameter R, is, even in a degenerate semiconduc-
tor, more than an order of magnitude larger than
Q ~

The factor e "/r' in the second term on the
right-hand side of Eq. (28) is also negligible when
compared to the factor e "~"o/r, appearing in the
Dingle potential.

In summary, it has been shown that, with a
specific analytical choice for the spatial dielectric
functions of Si and Ge, the contribution of a neg-
lected term (in Poisson's equation) to the donor-
ion potential (of Ref. 1) is of an asymptotic nature
when compared with
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