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Elementary excitations in disordered systems with short-range orders
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A general theory for elementary excitations in disordered systems with short-range order has been developed.

The theory is based on an averaging formalism which is a generalization of an averaging technique introduced

by Mookerjee. The theory is valid for excitations in all mean-free-path regions and can be used to generate

analytic Green's functions which have the proper translational symmetry. The mathematical formalism is

discussed for random alloys and amorphous solids. Illustrative calculations for Markov chains are shown to

compare well with essentially exact numerical calculations.

I. INTRODUCTION

In earlier works, '" we have described a theory
for elementary excitations in randomly disordered
solids which correctly treats off-diagonal as well
as diagonal disorder. The theory is based on a
technique for averaging functions of independent
random variables which was introduced by
Mookerjee. " Using this theory, we are able to
generate translationally invariant Green's functions
which can describe both the long- and short-mean-
free-path regions of the disordered system and
which are always analytic.

Since this averaging formalism is restricted to
considering only functions of independent random
variables it cannot be applied to disordered sys-
tems with short-range order, which includes many
alloys, amorphous solids and liquids. In order
to include short-range order, we must be able to
average functions of dependent random variables.

In this paper, we show how the averaging formal-
ism ean be generalized so as to include functions
of dependent random variables. We call this aver-
aging technique the augmented space formalism
(ASF). Using the ASF we can construct a general
theory for elementary excitations in disordered
systems which can include short-range order as
well as off-diagonal and diagonal disorder.

Despite the general nature of this new theory,
it is conceptually similar to the theory described
in Ref. 2 (hereafter referred to as 1). As before,
rather than averaging the real-space Green's func-
tions directly, we construct a nonrandom Hamil-
tonian defined on a new Hilbert space which we
have called the augmented space. This new space
can be described as the direct product of the Hil-
bert space spanned by the original Hamiltonian
with a "disorder" space which describes the var-
ious allowed configurations of the disordered sys-

tern. The new nonrandom Hamiltonian is defined
such that configurational averages in real space
are equal to inner products in the augmented space.

Once the augmented space is constructed we can
evaluate the configurationally averaged Green's
function by applying the recursion method of Hay-
dock, Heine and Kelley' or any of a number of
other techniques. ' ' The essential step in the the-
ory is the transformation to augmented space.

The paper is divided into six sections. In Sec. II,
the formalism for averaging functions of dependent
random variables is described. The application
of the ASF to elementary excitations in disordered
alloys with short-range order is described in Sec.
III. As an illustrative example, we present re-
sults of calculations for a Markov chain in Sec. IV.
The application of the ASF to elementary excita-
tions in amorphous solids is discussed in Sec. V,
and Sec. VI contains concluding remarks.

Il. AUGMENTED SPACE FORMALISM

Let (s,}be a, collection of (not necessarily in-
dependent) discrete random variables, and

f(s„s„.. . ) some function. We wish to consider
the problem of computing E(f), the expected or
average value of f,

(2.1)

where P(s„s„.. . ) is the joint-probability density
function of the variables Ls,.}. When considering
elementary excitations in a disordered system,
we generally choose f to be a matrix element of
the Green's function (zI —H) ' where H is the Ham-
iltonian and (s&}are the site-occupation variables.
The formalism is completely general and for the
purpose of discussion it is simpler to consider an
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S,=Sf, I2 N)I3 (3. (2.4)

where I, denotes the identity operator on Q, To
define 8» select v,' in Q, and self-adjoint operators
M', , it=1, 2, . . . , II, such that (2.3) holds for
P, (s,/s, =a, ), and set

N

6, = g e(a,I„M,)a M,'ef, el, t8)

4=1

where 6(a,I„Mt) is the Kronecker 6 function. A

detailed discussion of the construction of the ma-
trix representation of the D function is given in
Paper I. Similarly

(2 6)

g 6(a,I„M,)e 6(a, I„M,') (8M', 'aI, . . . ,
l=1 0=1

(2.6)

where M, ' is determined by the choice of v,' in Q3
and the densities p, (s,/s, =a„s,=a, ). In general,
we define 8& as

N N N N

Q 6(M„a„It)(3.. .
0= 1 t = 1 fft= 1 n= 1

(3 6(Mt "t'' '",a„It t)

(8)Mt ' ""' '" (g)It„.. . . (2.7)

arbitrary function.
We assume that each random variable s~ takes

on the values a„.. . , uN and we decompose I' into

a product of conditional probability densities

I'(s s, )=p, (s,)p, (s,/s, )p, (s,/s„s, ). . . .

(2.2)

For any joint-probability distribution such a de-
composition is always possible. For each density

P, , we construct a Hilbert space Q& of dimension

N, and we define the "disorder" space
Q, Q3. . . , where denotes direct or

tensor product. To each random variable s,. we

assign a self-adjoint operator 8& acting on 4 such
that S,. S~ = S, S~ for all k and j. To define S„we
proceed as follows: select a vector v,'. in P~ and

self-adjoint operators M&""' '" on Q, such that

pt(st/st at» s2 —Q t& ~ ~ ~, st g
—am, st t —an)

1
lim 1m&v,'l(sI, -M", '.'" ") 'lv,'&,

S~Sy + to

(2.3)
where k, l, . . . , m, n=1, 2, . . . , ¹ Such a relation
can always be found for any probability density P, .
Note that this says that the eigenvalue distribu-
tion of M~""" "with respect to v~ is precisely
p, The construction of these operators M&"""
is discussed by Mookerjee. "

We define S, by selecting v', in Q, and M, such
that (2.3) holds for P,(s,) and then set

We note that if the s; are independent this reduces
to the form originally presented by Mookerjee. '

Having chosen a vector v~ in p~ for all j we de-
fine the vector y, in 4 by yp v1852(3 v, |Ej. . . .
The operator f(8„8„.. . ) acts on 4, and we have

E(f)=&r.lf(&„2„.. ) lr. &. (2.8)

This equation is the reason for the previous defini-
tions; it expresses the expected value of f in terms
of fixed nonrandom quantities. The calculation of
E(f) is now a problem of suitably approximating
the inner product.

We have described how the augmented space
formalism can handle dependent random variables
without providing mathematical proof. In Mooker-
jee's original papers, "he gave a heuristic argu-
ment which makes it appear that the independence
of the random variables is the crucial element in
transforming to augmented space. However, by
considering the random variables {s,.}as defining
a distribution on a Hilbert space, ' it can be shown
that the independence is not essential. The math-
ematical details are discussed in a forthcoming
paper.

G, ({s„})=&0',. I {zI—II({s})) (3.1)

The Hamiltonian is defined on the Hilbert space 0,
and {(Jt}are a set of basis vectors defined in Q.
The configurationally averaged Green's function
is defined by the relation

III. ALLOY

In this section, we use the augmented space
formalism to describe the electronic properties
of a disordered alloy with short-range order. 'The

formalism is quite general and can be applied
equally well to any elementary excitations. We

have chosen here to investigate the electronic
properties in order to be specific. We describe
the configuration of the alloy in terms of the site
occupation variables {s;}.The site occupation
variables describe the type of atom at each site
i in the alloy. For example, in a binary alloy
composed of A and B atoms, s; = s„(ss) if an A

atom (B atom) is present at site i For a.lloys
with short-range order the {s;}are dependent ran-
dom variables.

In a disordered system, it is the configuration-
ally averaged quantities that are of physical in-
terest. While the augmented space formalism
can be used to evaluate any configurationally aver-
aged quantity, we choose to examine the single-
particle Green's function since it is the function
most often calculated. For a Hamiltonian II the
Green's function is defined by the relation
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where I' is the joint probability distribution for
the alloy. From (2.1) we see that G;&=E(G;&) and

therefore using Eq. {2.2)-{2.8) we have

G;, = &r. I G; (s„s„}lr. &. (3.3)

The only difference is now we are treating ele-
ments of a matrix instead of a simple function f.
By expanding the space such that a new space
Z =Q(34 which we call the augmented space is
created, we can write the configurationally aver-
aged Green's function as

(3.4)

where I& is the identity operator in Z. In this form
we see that we have created a new nonrandom
Hamiltonian H(S„S„.. . }=X which is defined on
the augmented space Z. X contains all the physical
and statistical information about the alloy. In
order to evaluate G„. we must invert zI~ -X. In
general this cannot be done exactly so a suitable
approximation must be made. As we have dis-
cussed in I there are a number of possible approx-
imate methods; the recursion method' and the
graphical method' have been shown to yield Green's
functions which are always analytic. " The failure
to produce analytic Green's functions is a major
problem of many other theories of disorded sys-
tems. " "

The real power of the augmented space formal-
ism lies in the fact that it produces an exact form
of the configurationally averaged Green's function
which can then be expanded by any of a number of
methods to provide an approximation to the Green's
function. Since the ASF has transformed the prob-
lem into a nonrandom problem, we can use con-
ventional techniques to approximate this new
Green's function. For example, using the recur-
sion method on the ASF Green's function we not
only produce an averaged Green's function which
is analytic but one which has the correct trans-
lational symmetry and which provides a good de-
scription of the excitations throughout the energy
spectrum.

While the theory can be applied to systems of any
number of dimensions, as an illustrative example
we have chosen to consider in Sec. IV a one-di-
mensional alloy whose configurations are deter-
mined by a Markov process, We first construct
the augmented space and then use the recursion
method to approximate the electronic density of
states.

IV. MARKOV CHAIN

In this section, we investigate the electronic
properties of the simplest example of a solid with
short-range order —a one-dimensional binary A-B
alloy whose configurations are determined by a
first order Markov process. "'" As previously
described, the configurations of the alloy are given
in terms of the site occupation variables (s,j which
take on the values s„or sa depending on whether
an A or B atom is present at site j. The lattice
sites are labeled relative to some arbitrary site
zero. Those to the right are labeled consecutively
by the positive integers while those to the left are
labeled by the negative integers. We use a near-
est-neighbor tight-binding Hamiltonian II to de-
scribe the electronic properties of the alloy

H;, = e{s(}5;;+W;, ,

e(s, ) = e„5(s„s„)+es 5(s, , ss),
w,

0, otherwise,

(4.1)

xPO(so)P, (s,/so)P, (s,/s, ). . . . (4.3)

where H, ~
= &4, lHl4, &. Note that, since the em-

phasis of this section is on the treatment of short-
range order, we have chosen to consider a Hamil-
tonian with only diagonal disorder in order to
avoid unnecessary complexity. A complete treat-
ment of off-diagonal disorder for a random alloy
has already been given in Paper I.

The first-order Markov process is characterized
by the transition matrix

t=

~

~

AA AB

(4.2}
ts „ tss/

where t s =P(s„=ss/s~, = s ). We construct the
Markov chain by starting at the zero site and fil-
ling it with an A atom with probability c„or a B
atom with probability c~ =1 —c„. c„ is equal to
the fraction of A atoms in the chain. We fill the
sites to right one by one by using the transition
matrix t repetitively as follows: once we have
determined the type of atom at site 0 we use t to
determine the occupation of site 1. From the atom
in site I we use t to determine the occupation of
site 2 and so on. The sites to the left of zero are
filled in exactly the same manner except with t
redefined for lefthand neighbors, t s =P(s, =ss/s„,= s ). Once the construction is completed
the initial site cannot be identified. For a chain
defined in this manner the joint probability distri-
bution can be written

P('''ss-2)S l&so~siss». . . )

=P,(s ./s, )P,(s,/s. )
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We can now construct the augmented space as
described in Secs. II and III. We define the "dis-
order" space 4 =. . .Sf 2f ySfp(3fy .where
tLI)& is a two-dimensional Hilbert space, and the
vector y, =. . .Sv',Sv', Sv,'Sv', S. . . , where v',. =(,')
for all j. On Q& we find a self-adjoint operator
M~ such that

ps(s, /s, , = s„)

lim Im(v,'l(sI, -MP) 'l v,'. ), (4.4)
S ~By+ 40+

a =s„t „+sBt
5 = (sA —ss)(faAt„s)

A ac =sA+sB —a )

(4.5)

where a=A or S. We can now define the operators
(8,j which correspond to the random variables
(',~:

B

8, = ~ ~ ~ I,SM, (35 s I„M, I, ~ ~ ~,
A

0' 'I-2 I-i (3MO(3 Ii 8

R, =g I,S5(s I„M,)SM, SI,S . , (4.6)
a=A

R2=+ Q ' 'I, $5(s~lo, Mo)
n=A 8=A

S5(ssI „M, ) SM, SI;

S, = . .I,C O(s.r„M,)
T=A q=A

where j)0. (j&0 is treated similarly. )
Since we have described a stationary Markov pro-
cess, P& =P. Using the definition of the transition
matrix t we have

(un 5a
!M

g cf cct

1
n(e) = —— lim ImG«(z) .

Z ~6+$0+
(4.8)

This is accomplished by applying the recursion
method of Haydock, Heine and Kelly' to the aug-
mented space construction given above. The re-
cursion method which is based on the Lanczos
procedure for inverting matrices" generates a
continued fraction approximation to the Green's
function. The accuracy of the approximation is
determined by the number of levels of the con-
tinued fraction which are evaluated exactly. For
n levels the contributions from the first 2n mo-
ments are included exactly while the effects of
higher moments are approximated in terms of the
first 2n moments. This method is particularly
attractive since it always generates an analytic
Green's function. A more detailed discussion of
the application of the recursion method to aug-
mented space operators is given in Sec. III of
Paper I.

We have performed calculations for Markov
chains with e„=3.0, eB = —3.0, 5'=1.0, and
c„=cB=0.5. In Figs. 1-5, the densities of states
for these chains calculated using the augmented
space formalism and a recursion level of 8 are
compared with essentially exact results obtained
using the Schmidt method" on chains of 100 000
atoms for t» =0.1, 0.3, 0.5, 0.7, and 0.9, respec-

'aa o'

V)
QJ 4

V)

oiz

V)

td
CI

averaged Green's function

G„=(&,Sy, l(zI -II% 8'. )1 'l&~Sy. & (4 7)

We wish to calculate the electronic density of
states n(e) of the Markov chain which is given by

S ~ ~ S5(s„I, „M?,)
8 M,"3Ig~ ~ ~ ~ 2

ENERGY

4 5

where I, is the identity operator on Q, . Using the
above definitions of the (R, I and y, along with Eq.
(4.1), we can now use (3.4) to write the augmented
space representation for the configurationally

FIG. 1. Comparison of the density of states calculated
in the augmented space formalism with a recursion level
of 8 (smooth curve) with the corresponding exact calcu-
lation (histogram) for a 100000 atom chain. The param-
eters of the one-dimensional electronic alloy are eA
= —eB —-3.0, W=1.0, cA ——0.5, and tBB——O.l. In Figs. 1-5,
only the transition probability tBB is varied.
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FIG. 2. Density of states as in Fig. 1 with t~~=0.3.

tively. Since the distributions are symmetric
about zero for c„=0.5, we have plotted the results
for positive energies only. The theory agrees
reasonably well with the exact results throughout
the entire spectrum. The theory correctly pre-
dicts the band width and the major peaks in the
density of states. For t» small like atoms tend not to
be near one another and the resulting structure in the
density of states is very sharp. At t» =0.5 the short-
range order is destroyed and we have a completely
random chain. As t» increases above 0.5 the like
atoms begin to cluster. In the limit as t»-1, the
density of states reduces to the sum of two inde-
pendent bands, one for the A atoms and one for
the B atoms.

FIG. 4. Density of states as in Fig. 1 with t&z ——0.7.

sentation of an amorphous solid is conceptually
very similar to that of an alloy with short-range
order. The difference lies in the fact that we must
treat dependent random variables which have a,

continuous distribution instead of a discrete one.
For the purpose of illustration let us consider the
electronic properties of a monatomic amorphous
solid. We describe the configuration of the amor-
phous solid in terms of the components of the
atomic position vectors (r, }where i is the site
index and @=1, 2, or 3 is the cartesian coordinate
index.

We wish to determine the configurationally av-
eraged Green's function. For a Hamiltonian 8
defined on the Hilbert space 0,

V. AMORPHOUS SOLID

In this section, we outline how the ASF can be
applied to an amorphous solid. While formally
this application is straightforward, certain comp-
utational complexities result which makes the use
of the ASF for these problems more difficult.

The construction of the augmented space repre-

4.0

8=I
(5.1)

2.0

where (P,}are a set of basis vectors defined in
0, and P is the joint probability density. As in

3.5
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FIG. 3. Density of states as in Fig. 1 with t&~=0.5. FIG. 5. Density of states as in Fig. 1 with t&z-—0.9.
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(2.2), we decompose P into a product of condi-
tional probability densities

P(r», r», r», r», . . . )

=p, (r»)p, (r»/r„) p3(r»/r», r»)

&& p4(r»/r», r», r»). . . . (5.2)

1
lim

~ r~r. +io+ia
lm(v,'

~
[rI, -M, (u, v, . . . )] '

~ v,'),

(5.3)

where -~&u, v, . . . &+~. Such a relation can al-
ways be found for any probability P, and the con-
struction of the M, (u, v, . . . ) is discussed by Moo-
kerjee." Following the procedure discussed in
Sec. II we construct the operators S; as follows:

A„=AI, 8I2I3(3. . .

6l„= du 5(uI„M, ) 8M2(u) 8I3. . . ,
(5.4)

Under appropriate assumptions these conditional
probabilities can be defined." In order to con-
struct the augmented space operators which cor-
respond to the continuous random variables we

proceed as in Sec. II except now we replace the N

dimensional space Q, by infinite dimensional
spaces. For each P, , we construct a Hilbert
space Q, of infinite dimension and define the "dis-
order" space 4 = Q, (3$,(3 Q3 . . . . To each ran-
dom variable r,- we assign a self-adjoint operator
6t; acting on 4. 0; is defined by selecting a vec-
tor v,

' in Q, and a self-adjoint operator
M, (u, v, . . . , w) on Q, such that

p, (r, /r„=u, r. „=v, . . . )

problem can be used for the amorphous solid as
well and the discussion at the end of Sec. III is
applicable here.

While it is a relatively straightforward procedure
to formally construct the augmented space for an
amorphous solid, it is considerably more difficult
to use the formalism for computational purposes
than it is for the alloy. Computational problems
arise because in Eq. (5.4) we must treat integrals
instead of sums and because we must find spec-
tral representations of infinite dimensional I
matrices instead of finite ones. As a result, it
will be necessary to use some approximate me-
thods such as approximating the integral as a
finite sum in constructing the augmented space.
The exact nature of these approximations will be
strongly dependent on the particular form of the
joint probability distribution under consideration.

In the special case of independent random varia-
bles, these computational difficulties can be
avoided. Viooker jee4 has calculated the electronic
density of states for a three-dimensional system
which has a diagonally disordered Hamiltonian
which is a function of independent continuous ran-
dom variables using the special form of the aug-
mented space formalism for independent var-
iables. While an amorphous solid must be des-
cribed by dependent rather than independent ran-
dom variables, this example serves as a good
illustration of the use of infinite dimensional ma-
trices to represent continuous random variables.

Finally, we note that following a similar pro-
cedure we can construct an augmented space
representation for a liquid. Of course for the liq-
uid the interactions between particles are time
dependent so the operators in augmented space
will be functions of time as well.

13 dudv5(uI„M, )

85[vI„M,(u)] 8M, (u, v)8I, VI. CONCLUSION

etc.
The only difference between these definitions for
6t; and those for 6; given in Eqs. (2.4)-(2.6) is
that we must integrate over continuous variables
instead of summing over discrete ones. If we de-
fine the augmented space Z as we have done for the
alloy, we have Z=Q(34, y, =v', Sv,'(3v3(3 ~ ~ ~ and
the configurationally averaged Green's function can
be written

Gfi=&68&OI~~IZ-H+]1, 6t12 . )] 'I4'$8ro& (55)

Once again the problem is reduced to finding suit-
able approximations for inverting zIz —Hf(R; j).
The methods which are described for the alloy

In this paper we have presented a general theory
for elementary excitations in disordered systems.
This theory is able to treat short-range order as
well as off-diagonal and diagonal disorder and
yet has none of the short comings which have
plagued many earlier theories such as nonanalytic
Green's functions or loss of translational invari-
ance. The theory is based on a new mathematical
technique for averaging functions of dependent ran-
dom variables which we call the augmented space
formalism. We have included example calcula-
tions for first-order 1VIarkov chains to illustrate
the use of this formalism. Calculations for real
three-dimensional problems will be presented in
a subsequent paper.
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