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Electronic surface states on the relaxed (111)surface of Ge

James R. Chelikowsky
Bell Laboratories, Murray Hill, New Jersey 07974
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Self-consistent pseudopotentials are used to investigate the (111) surface of Ge. Using a relaxed surface,

geometry comparisons are made with other calculational results for the Ge surface. In addition, the results for

Ge are compared to recent calculations performed on the Si surface. Striking differences are found between Si

and Ge for the dangling-bond energy dispersion curves and charge-density distributions. A generalized

susceptibility calculation is performed for the Ge and Si surfaces. The results suggest a different reconstruction

pattern for the two surfaces in only qualitative agreement with experiment.

I. INTRODUCTION

The (111)Ge surface is investigated by means
of a self-consistent pseudopotential calculation.
At present there exist several pseudopotential' '
and tight-binding techniques'~ for determining
the electronic structure of the surface region.
These methods have been developed in large part
because of the increasing experimental activity
taking place on the field of semiconductor sur-
faces.

The first self- consistent pseudopotential calcu-
lation for a semiconductor surface was performed
by Appelbaum and Hams. nn' (AH) in which they em-
ployed a mixed representation for the surface po-
tential and solved Schrodinger's equation by direct
numerical integration. The present method, on
the other hand, involves imposing artificial period-
icity on a slab geometry. By repeating slabs of
the material of interest in a superlattice configu-
ration, periodicity is retained and standard bulk
pseudopotential techniques may be applied.

While these pseudopotential techniques have be-
come fairly routine for a wide variety of surfaces
and materials, a detailed comparison between
them, and other techniques such as the tight-bind-
ing methods, has yet to be performed. In particu-
lar, the present Bloch-wave method has been
criticized on the grounds that a large number of
plane waves are required to describe the localized
nature of surface-state wave functions. Thus, er-
rors may be introduced into the method by an ex-
pansion in plane waves which is truncated too soon
to yield accurate wave functions. To examine this
problem in detail a comparison with another pseu-
dopotential method, such as the AH method, which
does not suffer from this problem, would be very
useful.

However, it should be noted that while the AH
method does not require a large number of plane
waves to describe surface states, the present

technique does have certain advantages over this
method. The present method, for example, is
more flexible and simpler to use as compared to
the AH technique. It does not require any
new computational skills as it employs bulk

pseudopotential ideas directly to the problem of
the surface. In addition, it is capable of handling
nonsurface problems, such as the electronic
structure of vacancies or impurities in solids, in
a straightforward fashion. Finally, unlike the AH

technique, nonlocal pseudopotentials may be easily
incorporated into the method. This latter point
allows the method to be applied to systems out-
side of the AH method such as transition-metal
surfaces.

The Ge (111) surface was chosen as a means of
comparison because it exhibits some striking dif-
ferences from the Si (111)surface. For example,
while both surfaces exhibit a 2 x 1 reconstruction
upon cleaving, the Qe equilibrium reconstruction
pattern corresponds to a 2 x 8,' as contrasted to
the Si 7 x 7 pattern. ' Furthermore, preliminary
pseudopotential calculations' and some recent
tight-binding results ' have indicated radical dif-
ferences existing in the energy dispersion curves
for the dangling-bond surface states. These re-
sults produced a "double" pocket of occupied elec-
tron states for Ge as contrasted with the Si re-
sults indicating a single pocket. ' Therefore, if
Fermi-level instabilities play a role in forming the
reconstruction patterns, the difference in the band
dispersion should reflect the reconstruction dif-
ferences, 10

II. METHOD OF CALCULATION

As mentioned above, the method involved in the
calculation used the introduction of artificial
periodicity into the system. As in the case of the
(111)Si surface, ' a 12-layer Ge slab was separated
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by two bond lengths from its neighboring slabs in a
superlattice configuration. The (ill) surface is
exposed on both sides of the slab. The slab thick-
ness and separation between slabs is chosen to
prevent any significant interactions between ad-
joining surfaces. With this crystal geometry, the
wave functions may be written in Bloch form and
solved by standard techniques.

A second crucial procedure employed in the
method is the achievement of a self-consistent
pseudopotential. A self-consistent response of
the valence electrons is calculated for a fixed geo-
metric arrangement of Ge" ionic potentials. The
geometry assumed for the surface atoms has been
discussed elsewhere, "' and corresponds to a
simple inward relaxation of the surface atoms.
While this permits comparison between other
methods, and allows us to assess differences be-
tween Ge and Si, it does prohibit a detailed com-
parison with experimental data on the observed
reconstructed surfaces.

The ionic potentials are screened by using the
valence charge density to compute Hartree and
exchange potentials. The self- consistent process
is initiated from an empirical potential

TABLE I. Starting and ionic potential parameters as
defined in Eqs. (2) and {4). If q is entered in atomic
units, the resulting potential is in Ry.

Potential parameters
Star ting potential Ionic potential

a~
g2
Q3

a4

9.7625
2.3889
0.610 98

-5.4917
Vg

V2

4.0
0.61
2.64

—1.237

formed back into a Fourier series V„(G). To ac-
curately compute the screening potentials, a
special point sample scheme was used to calculate
the required charge-density Fourier coefficients.
A three-point special point scheme was used for
this purpose. "*"

The sum of V„(G) and V„(G) was then added to the
bare ion pseudopotential V„,(q). The Fourier co-
efficients for V„„(q) may be obtained from the fol-
lowing:

V(r) =g V,(G)S(G)exp(iG ~ r),

V (G) =(4we'/Q, )[p(G)/G ],
where 0, is the cell volume of the superlattice.
The exchange potential used is of the form

V„(r) =-a(3/2w)(3w')' 'e [p(r))' '

(3)

with n =0.8. The calculation of V„requires an
evaluation of p(r) throughout the unit cell. For this
purpose, p(r) was evaluated on a grid of points
(approximately 10' per unit cell), the cube root
computed at each grid point, and the result trans-

with

V,(q) =a, (q' —a2)/(exp[a, (q' —a,)]+1.0), (2)

where G corresponds to the reciprocal-lattice
vectors of the superlattice, S(G) is the structure
factor, and V,(q) is an empirical atomic pseudo-
potential. ' The values of the parameters a, were
chosen to replicate the energy spectrum for bulk
Ge, and are listed in Table I.

With this initiating potential and fixed-surface
atom geometry, the wave functions are expanded
in terms of the reciprocal-lattice vectors G. The
eigenvectors and eigenfunctions are determined
through a diagonalization of the secular equation. "
Using the resulting wave functions, the total charge
density ean be calculated in terms of its Fourier
coefficients p(G). A Hartree potential can then be
formed via Poisson's equation

x ——
4

-2 p~ exp

This form was constructed from an ionic pseudo-
potential which accurately reproduces the atomic
spectroscopic term values and, when self-con-
sistently screened, the bulk energy spectrum for
Ge." Therefore, by continuity the ionic pot, ential
should adequately represent the surface ion po-
tential. This ionic potential corresponds identi-
cally to those used in previous calculations. ' The
values of Z, a, v„and v, are given in Table I.
The total potential

Vr(G) = V$..(G)S(G)+ Vw(G)+ V„(G)

formed by the ionic potential plus the Hatree and
exchange contributions, is then used to calculate
new wave functions and screening potentials. By
a systematic alteration of the input and output po-
tentials, it is possible to obtain accurate agree-
ment between the input and output potentials, and
then achieve a self-consistent result. The self-
consistent procedure therefore allows the valence
charge to respond to fixed ion cores in a manner
which involves no adjustable surface parame-
ters."

III. RESULTS

In Fig. 1, the total self-consistent potential is
displayed as a function of distance from deep with-
in the slab to the center of the vacuum region.
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1(b} the present results exhibit differences from
AH's calculation near the ion sites; the present
potential does not become as repulsive nor as at-
tractive as their potential. Again, this result is
dependent on the number of waves used rather
than differences between exchange potentials. "

In Fig. 2, the energy dispersion relations for
surface states occurring in the optical gap, i.e.,
the dangling band states, ' ' are displayed. A com-
parison is made with the results of the AH poten-
tial and the tight-binding results of Pandey and
Phillips' (PP). The same type of dispersion for
the energy band occurs in all three calculations.
However, differences occur for the precise place-
ment of this band. %'ith respect to the present
calculation, the AH result places the band approx-
imately 0.2 eV lower in energy, whereas the PP
result places it approximately 0.3 eV higher in en-
ergy. The 0.2-eV difference between our result
and the AH result can probably be reduced by in-
creasing the number of plane waves used in the
basis.

Experimentally, there is some support for the
position of the Fermi level as calculated by the
pseudopotential techniques. Measurements on the

DI STANCE ( A)

FIG. i. Selfconsistent pseudopotential for the Ge(i ii)
surface. In (a) the potential is averaged parallel to the
(iii) surface and plotted as a function of distance per-
pendicular to the surface. In (b) the potential is plotted
as a ray plot through the outermost Ge ion. Also dis-
played are the results of Appelbaum and Hamann (Ref. 9).
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Two cases are considered. In Fig. 1(a) the paten-
tial is averaged parallel to the surface, and in
Fig. 1(b) it is plotted along a ray perpendicular to
the surface, and through the surface atom. This
slab potential is also compared to the result of
AH's calculation. ' The AH calculation is based on
a semi-infinite geometry; however, in both calcu-
lations an identical core potential was used.

Because of the rather slow convergence for large
q vectors in (4), a large number of plane waves
were used to expand the potential in the form in-
dicated in (1}. In obtaining the potential displayed
in Fig. 1, approximately 1600 plane waves were
used. Most of the differences in the present cal-
culation and the AH result can be attributed to
this fact. For example, the small deviations from
AH's calculation occurring in the vacuum region
are capable of being reduced by increasing the
number of plane waves in the expansion. In Fig.
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FIG. 2. Energy dispersion curves of the dangling-bond
surface states for relaxed Ge and Si(iii) surfaces. Also
displayed for Ge are the results of Ref. 4 and Ref. 9.
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FIG. 3. Pseudocharge densities of the dangling-bond
surface states for the relaxed Gei, f 1 1) surface. In (a)
the charge density of K is displayed and in (b) the charge
density at I is displayed. The contours are in units of
electrons per unit cell volume.

annealed surfaces of Ge place the Fermi level in
the lower portion of the optical gap near the val-
ence band maximum. "" The AH results place the
Fermi level in this region as the dangling-bond
band minimum actually occurs below the valence
band edge. The present calculation also places
the Fermi level in the lower half of the band gap,
but the tight-binding results place the Fermi level
at the mid-gap region or higher. "

In addition to obtaining a reasonable positioning

of the Fermi level, the present calculation also
yields an accurate ionization potential. The cal-
culated ionization potential is approximately 5.0
eV. This value is in accord with the experimental
value of 4.9 eV for cleaved Ge." The result is
also compatible with recent work-function mea-
surements of 4.8 and 4.6 eV obtained for the work
function on cleaved and annealed surfaces, re-
spectively. "

Compared to the dispersion of the dangling bond

band of Ge, a Si relaxed surface" exhibits some
strong differences. The dispersion curve for Si
is displayed in Fig. 2. In the case of Si, the dang-

ling bond band has a maximum at the zone center
with local minima occurring at M and K. How-

ever, the Ge band has a minimum at the zone
center, and the band maxima occur displaced
away from the I' point. This unusual result can
be traced directly to the altered conduction band

ordering in Ge as opposed to Si." In Ge the anti-
bonding conduction band 1",, occurs nearly 3 eV
lower with respect to the valence band maximum
as compared to Si. The charge-density character
of this band is found to strongly mix with the dang-
ling bond states at I', altering the charge-density
character and dispersion near the zone center.
This effect is quite pronounced with respect to
the charge density of states at the zone center.

In Fig. 3, the charge density for Ge is presented
for the symmetry points K and I', for the dangling
bond state. In Fig. 3(b), the charge at the zone
center is displayed. The p-like lobes of this
charge density are localized behind the first-layer
surface atom and in front of the second-layer
atom. This corresponds to localizing charge at
the antibonding sites; however, the charge den-
sity at the zone edge has not been radically altered
as is indicated in Fig. 3(a). This is in contrast to
Si, where the charge density remains dangling-
bond-like at both the zone center and zone edge
and is similar to the Ge charge density illustrated
in Fig. 3(a).

If we half occupy the dangling-bond band, as re-
quired bycharge conservation, the effect of the
charge character at the zone center upon the total
charge density of the dangling-bond states is not
appreciable. This result is a consequence of the
small phase space of the electron pocket at the
zone center. However, the additional charge lo-
calized on the second surface layer atoms by states
occurring in the zone center could play a role
in any adsorption process and might account
for some differences observed between Si and

19

With respect to the lower surface states, similar
results as in the case of Si are obtained. ' In par-
ticular the creation of surface states at the bottom
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TABLE II. Fourier coefficients, E(k)=~&e& exptik I),
for the expansion of the dangling-bond energy spectrum.
1 is expressed in lattice coordinates, 1=n~b&+n2b2,
where b& and b2 are the primitive reciprocal-lattice
vectors. The energies are given in eV.

Fourier coefficients

~oo

io

620

0.637
0.211

—0.027

~oo

~so
E'

2o
E'

2g

0.33
0.075

—0.075
—0.050

of the valence band occurs with relaxation as in
the case of Si." The calculated states are in ap-
proximate accord with tight-binding results, "and
the energy loss experiments of Ludeke and Koma."
For example, at K, the tight-binding results of PP
yield surface states at 8.9 and 5.6 eV below the
valence band maximum (which correspond to the
structure observed in the energy-loss measure-
ments). This is compatible with the values calcu-
lated by the present pseudopotential method, which
yields energies of 8.6 and 4.5 eV. The latter value
is not in good accord with the PP results, but does
agree with other tight-binding calculations. '

Finally, we calculate a generalized suscepti-
bility" in order to assess the possibility of Fermi-
level instabilities playing a role in the different
reconstruction patterns observed for Si and Ge.
The role of such instabilities has been discussed
extensively in the literaturee" '20~6, and remains
a controversial subject. It is, however, natural
to assume that the differences occurring for the
dangling bond spectrum between Si and Ge could
play an important role. This speculation is rein-
forced by the close resemblance of the lower sur-
face states and valence-band configuration of Ge
and Si.

In an attempt to understand the relative differ-
ences between any Fermi-level reconstruction
mechanisms between Si and Ge, we have evaluated
the surface susceptibility X,(q),

O
CA

0
Ol P

Ge

nesting of hole and electron pockets occurs as
discussed elsewhere. " To evaluate the suscepti-
bility, Eg must be known throughout the zone.
This was accomplished by expanding E~ in a
Fourier series. The coefficients are listed in
Table II. The susceptibility was evaluated along
high-symmetry lines by summing over a grid of
approximately 2500 k„points in the surface
Brillouin zone. For both Ge and Si values of q
were found which significantly" exceeded )t,(q = 0).
The results for both Ge and Si are presented in
Fig. 4. In Fig. 5, the Fermi lines for the sur-
faces are indicated.

Experimentally both Ge and Si reconstruct upon
annealing to higher order patterns than the ob-
served 2 x 1 low-energy-electron-diffraction
(LEED) patterns obtained by cleaving. " The
2 x 1 pattern changes to a 2 x 8 for Ge, and a 7 && 7

pattern for Si. The 2 && 8 pattern of Ge is actually

The fgg are Fermi factors evaluated at T =0, and
the Eg„correspond to the dangling-bond energies.
Large values of )t,(q) at certain values of q suggest
the possibility of a surface reconstruction occurr-
ing with this wave vector. For example, a large
value of )t,(q) for —,'q» would suggest a surface-
unit cell reconstruction with twice the periodicity
of an ideal surface. )I,(q) can be large when the

0r

FIG. 4. Generalized susceptibility as defined in Eq,
{5)for Ge and Si relaxed {iii) surfaces. A, B, C label
maximums which correspond to the vectors displayed in
Fig. 5.
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assumed to be composed of 2 x 8 surface structure
units which are randomly oriented about the three
equivalent (110) directions. Several models exist
for these reconstructions based either upon the
Haneman buckling model, "or the vacancy model
of Lander. ' In the Haneman model, the buckled
2 x 8 is composed of 2 x 2 units with appropriately
altered rows of raised and lowered atoms. ' In a
similar fashion, Lander's model for the 2 x 8 can
be composed of 2 x 2 cells with vacancies. '

In the case of Si, it has been argued that the
Haneman model is more in accord with the 2 X1
reconstruction'' However, this point remains
controversial, "and in the case of Ge, LEED data
and oxidation data have been interpreted soley in

terms of a Haneman model. "
In any event, the "nesting" q vectors as calcu-

lated from the generalized susceptibility are indi-
cated in Fig. 5. Qualitatively, the calculated re-
sults are in accord with experiment. In both Si
and Ge a rather short vector occurs for which

the value y, (q) exhibits a strong peak. The length

of the vector is, however, larger than what one
would expect for a 7 & 7 reconstruction, and would

approximate at best a 5 x 5 result. In the case of
Ge, because of the zone center pocket, an addi-
tional longer vector exists. This vector nests the
zone center pocket in the holelike lobe of the
Fermi line occurring along the I' —K direction,
and is indicated by the subsidiary maximum in
the susceptibility of Fig. 4. These results sug-
gest the possibility of Ge reconstructing with a
unit cell with one short dimension in contrast to
Si and in agreement with LEED data.

FIG. 5. Energy contour maps for the dangling-bond
surface states for Ge and Si relaxed (111)surfaces. The
contours are in steps of 0.05 eV. The vectors A, 8, and
C displayed correspond to maxima in the susceptibility.

IV. CONCLUSIONS

The relaxed (111) surface of Ge was investigated
by means of a self-consistent pseudopotential
scheme. A comparison with pseudopotential and
tight binding techniques indicates general agree-
ment between the results for the energy dispersion
of the surface states within the band gap (i.e., the
dangling-bond surface states). However, the en-
ergy placement of these states within the band gap
for the various methods is not in good agreement.
The pseudopotential results place these states
within the lower-half of the optical gap, whereas
the tight-binding results place these states within
the upper-half of the gap.

A comparison between Si and Ge relaxed sur-
faces was also performed. The dangling bond
states occurring for Si and Ge exhibit significant
differences. In particular, the states existing
near the zone center for Ge do not correspond to
the classic dangling-bond charge distribution,
but rather correspond to charge distributions
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which are localized along the antibonding direc-
tions. In addition, the Ge dangling-bond band ex-
hibits dispersion which differs considerably from
the equivalent Si surface. This result creates
Fermi lines for the two surfaces which are quite
different. Therefore, a generalized susceptibility
calculation was performed to determine if nesting
vectors exist which could account for the observed
differences between the equilibrium reconstruc-
tion patterns of Si and Ge. The reconstructed

vectors determined in this fashion yielded pat-
terns in only qualitative agreement with the LEED
patterns.
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