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A model is presented for the electronic properties of graphite intercalation compounds in the dilute limit,

corresponding to intercalate concentrations more dilute than a stage-4 or -5 compound. In this limit, the
electronic effect of intercalation in donor and acceptor compounds is modeled, respectively, as a raising or
lowering of the Fermi level within the m bands of pure graphite, as represented by the Slonczewski-Weiss-

McClure dispersion relations for E(gk. Within this framework we calculate the dependence on Fermi level of
the following quantities: (i) the electron and hole carrier densities, (ii) the electron and hole density of states,

(iii) the de Haas —van Alphen extremal areas, (iv) the Hall constant in the low-magnetic-field limit, and (v)
the in-plane electrical conductivity cr„with several different assumptions for the energy dependence of the
relaxation time. Distinctive features in the energy dependence for each of these quantities are identified in

order to suggest experiments designed to determine the fractional number of carriers introduced per intercalate
atom or molecule.

I. INTRODUCTION

Graphite intercalation compounds have been
discussed as potentially practical high-conductivity
synthetic metals. ' ' These compounds' consist of
an alternating sequence of intercalate monolayers
separated by n contiguous graphite layers (n ~ 1),
where n denotes the stage of the compound. The
chemical reaction by which the compounds are
formed is facilitated by the highly anisotropic
bonding in graphite; the hexagonal array within
a single carbon layer contains very strong sp'
covalent bonds, whereas adjacent layers are
bonded mainly by the weak p, overlap between
nearest-neighbor layers. As a result, the in-
plane graphite structure is essentially unchanged
by intercalation, while the c-axis spacing can in-
crease by as much as a factor of 3 to accomodate
the intercalate. For higher- stage compounds
(n ~ 2) the ABAB graphite layer stacking is pre-
served between the intercalate monolayers.

Qne of the most striking property changes ac-
companying intercalation is the large increase in
a-axis (in-plane) conductivity tr, . This property
is illustrated by the experimental points in Fig. 1
showing tr, /trc versus concentration x for several
intercalate species taken from the work of Ubbe-
lohde and co-workers' '; o', denotes o, for pure
graphite (x = 0). Because of quantitative discrep-

ancies in the experimental results reported by the
same' or different' workers, the data of Fig. 1
should be considered qualitative. Thus the curves
are drawn in Fig. 1 to indicate the general trendS
of these data. From the signs of the Hall' and
Seebeck" coefficients, metallic intercalate spe-
cies act predominantly as electron donors, where-
as acids and halogens behave as acceptors. The
increase in o, is the net result of changes in free-
carrier density and in mobility upon intercalation.
The maximum conductivity plotted in Fig. 1, a
factor 13 greater than that of pure graphite, is
roughly equal to o of aluminum. Figure 1 implies
that the maximum value of o, depends primarily
on the initial rate of increase, since saturation is
observed for most intercalate species.

This initial slope is determined in part by the
parameter f, defined here as the fraction of a
free hole or electron introduced per intercalate
atom or molecule. ' one is tempted to assume
that f is simply related to the difference between
the first ionization potential of the intercalate and
the work function (or Fermi energy) of graphite. '
However, no general rules of this kind have
emerged, signaling the complex behavior of this
highly varied class of compounds. A major moti-
vation of the work reported here was to identify
experimentally observable features which may be
used to determine. j for various intercalate spe-
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FIG. 1. Dependence on intercalate concentration of the
room-temperature in-plane electrical conductivity a~
of various graphite intercalation compounds normalized
to that for pure graphite 0, . The points are the experi-
mental data of Ubbelohde and co-workers (Refs. 2-4)
and the curves indicate qualitative trends in these data
points. In obtaining the o, /g, points for CK from the
R/Ro data in Ref. 3, corrections were made for the
change in the c-axis sample dimensions with intercala-
tion. Mole fractions are computed according to the
following chemical formulas for the intercalation com-
pounds: CSK, Cfg(Br2), Cf2IC1, C(2(H2S04).

cies, and to provide a theoretical framework for
the analysis of such experiments.

Previous work on the transport properties of
graphite intercalation compaunds has focused an
measurement of cr, versus intercalate concentra-
tion and representative curves for such measure-
ments are shown in Fig. 1. For most of the inter-
calate species shown, cr, first increases very rap-
idly with concentration, then saturates or de-
creases slightly. While all heavy alkali-metal in-
tercalates show identical behavior, the initial
slopes shown for the acceptor molecular inter-
calates Br, and H, S04 are quite different from
each other and from the initial slope for the donor
alkali intercalates. The saturation behavior also
differs for the different intercalate species. For
the alkali metal and H, SQ, intercalate species,
saturation is achieved at about a stage 4 compound,
but a higher stage is required for the Br, inter-
calate. The observation of this saturation pheno-
menon for most intercalate species suggests the
existence of a dilute limit" for low intercalate
concentrations, wherein the electronic structure
of the compound might be deduced from a rigid-
band modification of the graphite electronic struc-
ture.

Although the saturation behavior of a, versus
concentration is typical, it is not universal, as
illustrated by the results for ICl where there is
no clear evidence for saturation in the published
data up to the highest concentration (stage I based
on the formula C»ICI}." It should be pointed out

that the relation between stage and intercalate con-
centration x depends on the choice of molecular
unit for the intercalate species. Although x-ray
data can in principle establish this relation, de-
finitive infor mation is not presently available for
the proper molecular units and chemical formulas
for many intercalate species (e.g. , IC1). Any
change in the specification of a, molecular unit or
chemical formula corresponds to a change in
scale in Fig. 1 along the abscissa.

In Sec. II we define and discuss the dilute limit.
Section ID describes the model used to represent
the electronic structure of graphite with Fermi
energy E~ as independent variable; results are
given for the dependence on Ez of: (a) the densities
of electrons and holes n(E~) and p(E~), (b) the
density of states for electrons and holes N, (E~}=

(dnldE)~ and N„(EJ,) = (dp/dE)s, (c) the de
Haas-van Alphen extremal areas, (d) the in-plane
Hall coefficient R„, and (e) the in-plane electrical
conductivity o,. In calculating o„several models
for carrier relation are considered. Plots of

N( ~E), N„(E~), E~, R„, and o, versus the change
in free-carrier density ~n-p~ are also presented
where

~

n -p
~

= 0 for pure graphite. The change in
the free-carrier density is useful because it is
directly related to the intercalate concentration.
Discussion and conclusion are given in Sec. IV.

II. DILUTE LIMIT

The central focus of this work is a discussion of
the electronic properties of graphite intercalation
compounds in the dilute limit, defined as that range
of intercalate concentrations within which the
properties can be described by rigid band modifi-
cations of graphite. There are several approaches
that can be taken to determine the upper bound of
the dilute limit and they all lead to essentially the
same result; namely, an intercalate concentration
corresponding to about a stage 4 or 5 compound,
and containing 25-60 carbons per intercalate atom
or molecule.

For the compounds showing saturation effects in
Fig. 1, the simple behavior of g, versus concen-
tration up to about 50 carbon atoms per intercalate
atom or molecule suggests that stage 4 or 5 rep-
resents the maximum concentration of the dilute
limit. This region of simple behavior for various
donor and acceptor species suggests a common
mechanism for the initial conductivity increase,
the magnitude of the initial slope of o, being the
only property which is specific to a given inter-
calate.

Another approach to the delineation of the dilute
limit is obtained from studies of resonant Landau-
level transitions observed in the magnetoref lection
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spectra of various intercalation compounds. Al-
though the intensity of the resonances is attenuated
with increasing intercalate concentration, it has
been possible with present experimental techniques
to obtain well-resolved magnetoref lection reso-
nances for concentrations more dilute than about
stage 15 for various graphite-halogen intercal-
ation compounds. " From analysis of plots of
photon energy versus resonant magnetic field (fan
charts) for each Landau-level transition, it is
found tljat the magnetic energy-level structure
within approximately + 0.1 eV of the graphite Fer-
mi level is well described by the Slonczewski-
Weiss-McClure (SWMcC) band model, using the
same order of perturbation theory and approxi-
mately the same values of the band parameters
as apply to pure graphite. "" These results thus
show that well into the dilute region, the energy
bands E(k) near the graphite Fermi level are
essentially unchanged by intercalation, thereby
suggesting a theoretical model for the discussion
of experimental phenomena in dilute graphite in-
tercalation compounds.

An estimate for the dilute limit also follows di-
rectly from the SWMcC model. ""Graphite cry-
stallizes in layers perpendicular to the e axis and
these layers exhibit an ABAB. . . stacking ar-
rangement. The electronic structure near the
graphite Fermi level is well represented by the
SWMcC band model which includes interactions
between carbon atoms separted by up to two layer
planes. In fact, the band overlap which produces
the semimetallic behavior of graphite is associated
with the SWMcC band parameter y„representing
interactions between atoms two layers apart. Thus,
starting from a given graphite layer plane (e.g. ,
an A layer), the smallest unit which would contain
the interactions described by y, would be the five
layers ABABA, corresponding to a stage 5 com-
pound. Thus for n& 5, larger percentage changes
would be expected for y„y„and d, (representing
interactions between carbon atoms two layer
planes apart) as compared with the adjacent layer-
plane interaction parameters Z„Z„and Z~. Fur-
thermore, the nearest-neighbor in-plane overlap
integral Z, would be expected to show little depen-
dence on intercalate concentration, because the
in-plane carbon-carbon bond length is insensitive
to intercalation. '6

An important issue is the extent to which f var-
ies with concentration. For example, one possible
explanation for the saturation effect in Fig. 1 is
that f decreases as the concentration increases
beyond stage 4 or 5, owing perhaps to interac-
tions between intercalate layers separated by
fewer than four or five graphite monolayers. The
experimental situation is unclear; some authors

assume f independent of concentration, "while
others interpret data in terms of a concentration-
dependent f.'" Intuitively one might expect f to
be constant within the dilute limit since the inter-
calate environment is independent of concentra-

0
tion within a sphere of radius & 14 A encompassing
&80 atoms. This intuitive statement can be ex-
perimentally tested for each graphite intercalation
compound using the analysis presented here.

Since our dilute limit analysis is based entirely
on the electronic properties of pure graphite, we
are tacitly assuming that the properties of dilute
compounds are dominated by the graphite portion
of the crystal. This seems reasonable for most
properties, with an obvious exception of c-axis
transport. For example, even if intercalate and
carbon atoms contribute equally to N(E~), a cal-
culation which accounts only for the graphite
bands will err by 5'P& at most (e.g. , in the stage
4 compound C,~H, SO,). Moreover, the electronic
interaction between graphite and intercalate layers
is localized close to the intercalate monolayer
positions so that in the dilute limit most of the
graphite layers are essentially unaffected by the
presence of the intercalate. Because of the un-
usually large basal plane mobility in graphite com-
pared to that of the intercalate species in their
crystalline phases, the major contribution to a, in
dilute compounds is expected to come from the
graphite layers.

In our treatment, the dilute region spans the
range of stages ~ & n & 4-5, corresponding to at
least 48 60 (carbon atoms)/(intercalate atom) for
the heavy alkali intercalate species or to 24-30
(carbon atoms)/(intercalate molecule) for HNO,
or H.SO,. Differences in mole fraction for dif-
ferent species result from the variety of interca-
late molecular units and molecular arrangements
that are found in the intercalate monolayers.

III. MODEL AND RESULTS

Transport and Fermi- surface measurements
provide information on both the magnitude of f
and its dependence on intercalate concentration.
Because transport properties depend on both car-
rier mobility, it is useful to examine various
transport and Fermi-surface measurement tech-
niques to determine how they might be interpreted
to provide information on f. To this end, we use
a modification of the SWMcC band model to calcu-
late the dependence on Fermi level E~ of the car-
rier density, the density of states, the de Haas-
van Alphen extremal areas, the electrical conduc-
tivity, and the Hall effect for graphite intercalation
compounds in the dilute limit. We assume that the
introduction of acceptors corresponds to a lower-
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ing of E while don ro intercalation corresponds to
a raising of E~.
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3Q p (1+ V)

(2)

Here a0 and c, are the lattice constants a0=2.46 A
and c0=6.74 A,

v=2(y, /y, ) cos-,' c,k, ,

E2=b —y, F+ g y5F

E ——'y I'

in which

1 =2cosg COk

(2)

(4)

(6)

(6)

and r„y„y„z„p„and ~ are band parameters
of the SWMcC band model. "" The volume en-
closed by the hole Fermi surface is found in a
similar way by a k, integration of the cross-sec-
tional area for the hole pockets A„(k„E~) where

c Jr 3~ y2 (] p)2 1 E 3 Ji

in which

E, =~+y, r+-,' y, r2 (8)

and the other quantities are defined above. The k,
integration of A(k„E~) can be carried out analyti-
cally resulting in volumes for electrons and holes
V,(E~) and V„(E~). Thus analytic expressions can
be obtained for the electron and hole concentra-
tions n(Ez) and p(Ez) at energy Ez. In turn, dif-
ferentiation with respect to E provides analytic
expressions for the density of states N, (E)

dn(E)/dE and N„(E) =-dp(E)/dE -It should b. e noted
that this calculation is appropriate for low tem-
peratures where the thermal carrier excitation is
negligible compared with the intrinsic carrier
concentration enclosed by the Fermi surfaces.

The values of the SWMcC band parameters in
the present calculation (see Table I) are chosen
to provide a good fit to the K- point and H-point
magnetoref lection spectra, as well as to the ma-
jority and minority de Haas-van Alphen peri-
ods. ' ' Using these values for the SWMcC para-

sured relative to the zero of energy taken as the
energy of the E, levels at the H point. (See Fig. 3.)
A factor of 2 has been inserted to account for the
two full electron ellipsoids which are contained
within the Brillouin zone shown in Fig. 2. For the
case of both electrons and holes, the volume V(E~)
is found by integrating the cross-sectional Fermi-
surface area A(k„Ez) over the variable k,. If y,
is neglected, this cross-sectional area is circular
and the expression for A,(k„Ez)for electrons is
given by the SWMcC model as"'

TABLE I. Parameters of the SWMcC band model used
in the calculations reported here. Except for y3, these
values are the best available from experiments (Refs.
12, 15, 2i). The approximation y3

—-0 gives closed-form
solutions for the quantities of interest (see text).

SWMcC band parameters Values (eV)

Yo

+1
'Y2

'y3

p4

Y5

b,

3.12
0.377

-0.0206
0
0.120
0.025

-0.009

IP + IO

8
CP

Holes
4l'D

4P

O 4-0

1
Electrons

-0.040 -0.030 -0.020 -O.OIO 0
Fermi energy (eV)

FIG. 4. Fermi-level dependence of the electron- and
hole- carrier densities for values of the SWMcC band
parameters given in Table I. Solid curves are for y4
= 0.120 eV while the dashed curves are for y4= 0.

meters we have plotted in Fig. 4 the carrier den-
sities for the cases y, = 0 (dashed curve), corre-
sponding to equal effective masses for the valence
and conduction E, bands and y, =0.12 eV (solid
curve), corresponding to the experimentally deter-
mined values for these masses. Most calculations
of transport properties in graphite are for sim-
plicity made with y4=0. Since y4 is related to the
difference between valence- and conduction-band
masses, "the best available value for y4 was used
in the present work because of our interest in
establishing differences between electron and hole
states which arise from the band structure. Note
that the curves for y4=0 are quite symmetrical
under interchange of electrons and holes. This
symmetry is reduced by the introduction of non-
vanishing values of y4. Magnetoref lection data"
show that, within experimental error, y4 does not
depend on intercalate concentration x for x less
than about a stage 15 compound.

Note that the electron density is zero for hole
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densities greater than 8.8 x 10"/cm', this occurs
when E„decreases to lie below the E, band ex-
tremum at the If point (see Fig. 3), producing a
one-carrier hole system. Similarly when n& 1.2
x 10"/cm' in Fig. 4, a one-carrier electron sur-
face results from the increase of EF to lie above
the H point extremum of E, (Fig. 3}. All numeri-
cal results presented in this paper include con-
tributions from both majority and minority elec-
trons and holes.

Many tran@port properties depend on the density
of states. The density of states curves corre-
sponding to n(E~) and P(Ez} of Fig. 4 are plotted in

Fig. 5. Of significance is the difference in magni-
tude between N, (Ez) and N„(Ez), and the discon-
tinuities in N„(E~) and N, (Ez} as Ez crosses the
K- and H-point extrema of the E, bands, respec-
tively (see Figs. 3 and 4). Therefore a transport
or specific-heat measurement which is sensitive
to the density of states can be used to determine
these critical energies E~.

To facilitate contact with the intercalation prob-
lem, we consider the excess carrier density of
either holes or electrons which can be expressed
as

I
II - p . In the dilute limit, the excess carrier

density n- p I
is expected to vary monotonically

with intercalate concentration x, noting that in the
two carrier regime the addition of acceptor (donor)
intercalate species both increases the hole (elec-
tron} concentration and decreases the electron
(hole) concentration. From Figs. 4 and 5, we can
relate Ez to n (or p) and to N(Ez). Subtracting
n —p, we plot in Fig. 6, N„(Es) vs p —n, appro-
priate to acceptor intercalation and N, (E~}vs n- p
corresponding to the donor case. The singularities
in N(Er) occur at the transition from two- to one-

9x IQ

20x 10~

Carbon atoms / Intercalate ( f =I)
10' 104 Io' 102

16—

carrier behavior; this transition occurs when E~
crosses the E, band K- and H-point extrema. As-
suming that f is independent of intercalate con-
centration, a measurement of N(Ez) versus con-
centration can be scaled directly along the abscissa
of Fig. 6, the scale factor being f. Independent of

any concentration dependence that f might exhibit,
the discontinuities in N(Ez) provide an attractive
possibility for interpreting specific-heat data to
yield a value for f at Ez, although it may be dif-
ficult to extract experimentally an accurate linear
specific-heat term with so small a density of
states, N(Er) -5 x 10"/cm'. eV. It is of interest
to observe that in the region of E~ the density of
states for holes is considerably greater than that
for electrons. Thus for the same excess carrier
density, a dilute acceptor compound would tend to
result in a higher conductivity than a dilute donor
compound.

Also plotted in Fig. 6 as a function of In-p I
is

the shift in Fermi level EEL =
I
Ez —E~zI relative to

that in pure graphite. The range of abscissa val-
ues in Fig. 6 corresponds to Fermi level shifts
4E~ comparable with the graphite m-bandwidth at
the K point; for large 4E~ values there is signifi-
cant population of the E, and E, bands (e.g. , for
IAErI=0. 3 eV, 10/c of the carriers are associated
with the E, and E, bands).

The upper abscissa in Fig. 6 specifies the inter-
calate concentration corresponding to the carrier
density on the lower scale assuming that f = 1. The

7
fLI

E
O

5
fII

If' 4
0

O

I

)~ l2—

E
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0 I I

-0.I2 -0.08 -0.04 0 0.04 0.08
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FIG. 5. Fermi-level dependence of the density of
states N, (EJ;) and NI, (Ez) for electrons and holes. Sin-
gularities of these curves, labeled Ez, correspond to
the passage of the Fermi level through the It' and H
point E3-band extrema.

FIG. 6. Hole and electron density of states vs the
change in carrier density Is-p I for pure graphite. Also
plotted is the corresponding change in Fermi level
AE& = IEz E~z

I where E~z is th-e Fermi level for pure
graphite. On the upper scale the number of carbon
atoms per intercalate atom or molecule corresponding
to Is —p I is given, assuming unit charge transfer (f=1).
The locations of Ez for acceptors and donors are also
indicated (see text).
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highest concentration on Fig. 6, 10"/cm', corre-
sponds to 113 carbon atoms per intercalate atom
or molecule which in turn corresponds to stage 9
for the heavy alkalis or to stage 18 for certain ac-
ceptors, well within the dilute limit. If f & 1 a
larger intercalate concentration would be required
to achieve a given ~n —p ~; thus the upper scale
would correspond to fewer carbon atoms per in-
tercalate atom or molecule and hence to a lower
stage. If f « I, the highest concentrations in Fig.
6 may exceed the theoretically defined dilute lim-
it.

On the basis of Eqs. (2} and (I}of the SWMcC
model, the dependence of the Fermi-surface ex-
tremal cross-sectional areas on Fermi energy
can be calculated. Results for the electron and
hole extremal cross-sectional areas are given in
Fig. 7. For EF —E~&—0.015 eV, EF lies above
the E, band extremum at the K point, giving rise
to an electron pocket with an extremal in-plane
cross-sectional area passing through the K point
($ =0}. For this carrier pocket the extremal area
always passes through the K point, independent of
the position of E„. When EF falls below the K-point
E, band extremum, a hole surface forms; in this
case also, the hole extremal cross-sectional area
passes through the K point. Results for the elec-

~max
0.10 0.15 0,20 0.25 0.30 0.35 0.40 0.50

0.075 0.050 0.025 0 0.025 0.050 0.075
EF-EF (eV)

FIG. 7. Extremal Fermi- surface cross- sectional
areas for the majority and minority electron and hole
pockets (see Fig. 2) vs the change in Fermi energy
EF- EF as produced by acceptor and donor intercala-0

tion. By symmetry, the planes through the H and K
points and perpendicular to the k axis always yield ex-
tremal cross-sectional areas. There is an additional
extremal area associated with the holes (labeled pm~
point) occurring at $ = $~~ and the values for $m~ cor-
responding to these extremal areas are given by the
upper abscissa scale. Particular choice of band para-
meters (Table I) results in no H point periods in the
region 0.016&EF —EF & 0.025 eV.

tron (E~ —
Eor )0.015 eV) and hole (Ez —E~@& 0.015

eV} extremal cross-sectional areas about the K
point are shown in Fig. 7.

In contrast with the Fermi surface evolving from
the majority electron surface described above, the
Fermi surface which evolves from the majority
hole surface has the location of its extremal cross-
sectional area (denoted by f ) dependent on the
position of E„. Results for this extremal area
versus EF —EF are presented in Fig. 7 on the
curve labeled ( ~ point. The dependence of E

itself on EF is shown on the upper abscissa scale
of Fig. 7, and we note that for E„=E» $ = 0.35.
As EF is lowered, ( increases until $ -0.5

(about the H point) where the majority hole surface
disappears; here EF crosses the H-point E,-band
extremum.

In addition, minority electron and minority hole
Fermi surfaces are found with extremal cross-
sectional areas around the H point. For pure gra-
phite the minority pocket is a hole pocket. This
pocket grows in size as EF is lowered, but de-
creases in size as EF is raised. The minority
hole surface disappears when EF crosses the H
point degenerate E„E,-band extremum. On the
other hand, the minority electron surface about
the H point emerges when the Fermi level is
raised above the H-point E,-band extremum as
shown in Fig. 7.

The results for the dependence of the extremal
cross-sectional Fermi-surface areas on Fermi
level can be applied to the interpretation of the
concentration dependence of quantum oscillation
periods. Such an analysis could provide an esti-
mate for f and p'ossibly some information on the
dependence of f on intercalate concentration. Ben-
der and Young" measured the Shubnikov-de Haas
periods for various dilute graphite-Br, compounds.
These authors interpreted their data using a model
in which the intercalated planes are Br ions (i.e. ,
f = 1) and for this rea.son did not measure the inter
calate concentration corresponding to the observed
Shubnikov-de Haas periods. According to their in-
terpretation, they identified the observed periods
in the intercalation compounds with slightly shifted
pure graphite periods and additional short periods
(large cross-sectional areas) associated with those
graphite planes adjacent to the intercalate layer.
Thus their experiments on intercalated single-
crystal graphite are consistent with their model
of a multiphase compound with complete dissocia-
tion and ionization of the Br,. Other experiments"
suggest that a single-phase material should exist
under the sample preparation conditions used by
Bender and Young. If their samples are indeed
well-ordered and single-phase, then the observed
holeperiodis only slightly shifted from that of pure
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graphite so that their Shubnikov-de Haas data could
also be interpreted in terms of a model of mole-
cular intercalation with a very small value for f."
Recent de Haas-van Alphen experiments on dilute
graphite-Br, compounds" are also consistent with
either multiphase graphite-Br, samples or a very
small value of f. The observed new short periods"
could possibly be identified with large break-
through orbits introduced by the change of perio-
dicity resulting from intercalation.

The SWMcC model can also be used as the basis
for a calculation of the magnetoconductivity ten-
sor, ' "thereby yielding the dependence of the in-
plane electrical conductivity o, and Hall constant
RH on Fermi level. The following simplifying as-
sumptions are made: (a) the low-temperature limit
is taken so that the Fermi distribution is a step
function; (b) the relaxation time for a given E~
value is assumed to be independent of wave vector
on the Fermi surface. (Several models for the
energy dependence of & have been considered and
are discussed below. ) (c) The low magnetic field
limit is taken (&o,r «1) so that only the linear term
in magnetic field need be considered in calculating
the Hall constant R„; (d) as above, trigonal warp-
ing of the Fermi surface is neglected (y, =0),
greatly simplifying the analytic expressions for
the cross-sectional Fermi-surface areas. A
generalization could be made to include the effect
of y, and of finite temperature in the distribution
function. Such refinements would be motivated by
the availability of more accurate experimental da-
ta. The present calculation is intended merely
to serve as a guide for the interpretation of cur-
rently available data and as a stimulation for new
measurements.

The following geometrical arrangement was used
in the calculation. A constant magnetic field was
taken along the c axis (s direction), constant cur-
rent in the x direction, and Hall probes in the y
direction, so that the x and y directions lie in the
layer planes. The conductivity tensor has an in-
plane diagonal component (o,„=o,) given by

stant energy surfaces. The c-axis conductivity
cr„ is obtained from EIl. (9) upon substitution of
z for x, and v, for v, .

The off-diagonal conductivity tensor o„, is given
by

xy 4 3 c P

where the cyclotron frequency &u, = eH/m, *c is a
function of energy and of A„but has no angular
dependence when y, is neglected.

The Hall coefficient R„ is related to the conduc-
tivity tensor components by

and for the assumptions made here R„ is indepen-
dent of relaxation time T in the low magnetic field
limit. A plot of the Hall coefficient versus Fermi
energy is shown in Fig. 8. Here the curves for RH
labeled "electrons" and "holes" correspond, re-
spectively to the raising and lowering of the Fermi
level. Both curves exhibit two-carrier behavior
when E~ is between the H- and E-point E,-band
extrema. A nonvanishing Hall constant is found
at the Fermi level for pure graphite E~= —0.025
eV because the holes have a higher mobility than
the electrons, in agreement with low-temperature
experimental results. " Furthermore, within the
two-carrier region a sign reversal in RH occurs
when a transition is made from dominance from
one carrier type to the other. In both the one-

[p-n] (cm &)

0 0.5 I.O l.5 2.0 2.5 3.0 4,0x lO~~
I I I I I I I l I l I I I
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Z~ 0.25

~ex 4 3 P
[ V„EI (9) -0.25

in which w, the relaxation time, is assumed inde-
pendent of carrier type. The in-plane velocity
component v, in Eq. (9) is obtained from the energy
dispersion relations by v, = sE/hsk„

I V+I is the
gradient of the electronic dispersion relation, and
dS is the differential area on the constant energy
surface at energy E. By taking y, =0, there is no
angular dependence of the integrand and an
explicit integration need only be performed
as a function of k, . This integration is over
electron. , hole, and minority carrier con-

-0.50
0.5 I.O l.5 2.0 2.5x IO'

[n-p] ( cm ~)

FIG. 8. Calculated Hall coefficient relative to that
for pure graphite vs absolute value of the energy differ-
ence from the Fermi energy for pure graphite. Curve
marked "donors" corresponds to raising the Fermi
energy, whereas the curve marked "acceptors" corres-
ponds to lowering the Fermi energy. Both curves ex-
hibit two carrier effects in the band overlap region.
On the lower (upper) scale, the change in carrier den-
sity In p I correspo—nding to IEz EFO I is given. -Loca-
tions of EJ"; are also indicated (see text).
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carrier electron region and the one-carrier hole
region, R„ is inversely proportional to the elec-
tron and hole carrier densities, respectively. The
transition from the one- to two-carrier regimes
occurs when the Fermi level crosses the H- and
A'-point E,-band extrema at E~. An identification
of the extrema in RH with the Fermi-level cross-
ings is, however, approximate because R„not
only depends on carrier density but also to some
extent on the relative mobilities of holes and elec-
trons and on the model assumed for the relaxation
time. Nevertheless, inspection Of the experimen-
tal dependence on intercalate concentration of the
extrema in R„can be used to estimate f, particu-
larly for donor compounds. Furthermore, in the
one-carrier regime, measurement of R„ in the
low-field limit can be used to obtain f directly
for any intercalate concentration. To facilitate
comparison with experiment, the excess carrier
concentration (p —n) for the hole curve is given on
the upper abscissa scale, and (n-p) for the elec-
tron curve is given on the lower abscissa scale.
Note that the critical energy is acheived with -25'po
fewer acceptors than donors, another manifesta-
tion of the asymmetry between N, (E) and N„(E) dis-
cussed earlier.

If the carrier densities can be determined (at
least approximately) from Hall measurements,
then the electrical conductivity can be used to pro-
vide information on the carrier mobilities. The
carrier mobility depends both on the carrier ef-
fective mass and on T. For the ordered intercal-
ation compounds, there should be no contribution
to carrier scattering from a disorder or charged
impurity mechanism. However, an increased
scattering rate would result from the increase in
the density of states at the Fermi level or possibly
from new umklappprocesses due to zone folding.

To study the E~ dependence of the effective mass
contribution to 7', the dependence of a, on E~ was
calculated assuming ~ to be independent of E~ and
k, (r = constant model). The o, results for donor
and acceptor compounds (raising and lowering Es)
are shown in Fig. 9 (dashed curves) in which Ez is
expressed relative to E~ for pure graphite. For
the constant v approximation a, is a mono-
tonically increasing function of E+. For example,
lowering (or raising) Er by -0.15 eV increases o,
by an order of magnitude; however, for the same
nominal change in E~, the increase in 0, is some-
what greater for the case of acceptors than for
donors.

A physical mechanism that roughly corresponds
to an energy-independent 7' is small-angle grain-
boundary scattering within the graphite layer
planes. This mechanism would be more accu-
rately described by an energy-independent mean-
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free path A, and results for the dependence of 0,
on E~ for a constant A. are also shown in Fig. 9
(dotted curve} for comparison. In calculating o,
for II= constant, the integration in Eq. (9) is car-
ried out for X=7v„ independent of E~ and 0,. The
results for the A = constant approximation (see Fig.
9}again show o, to be a monotonically increasing
function of E~- E~ but having a smaller slope than
for the ~ = constant model, so that to produce an
order of magnitude change in cr, a. larger change in
Es (-0.4 eV) is required. Thus the interpretation
of experimental cr, data by the w= constant model
would yield a smaller value for f than by the X =
constant model.

The most probable scattering mechanism except
at very low temperature is by phonons, and would
involve scattering to an arbitrary point on the Fer-
mi surface. We model this scattering process by
assuming an energy-independent electron-phonon
scattering cross section and thus 1/r can be as-
sumed proportional to the density of states N(E)
at the Fermi surface. The phonon scattering
mechanism would be expected to be more impor-
tant at high temperatures because of the unavail-
ability of large wave-vector phonons at low tem-
peratures. Results for the energy dependence of
o, for the model rN(Es) = constant are shown in
Fig. 9 (solid curve). For both donor and acceptor
compounds, these curves show an initial rapid
rise in o, for changes in E„up to about 0.1 eV,
followed by saturation at about Vo'„where cr',

FIG. 9. Calculated in-plane electrical conductivity
o, relative to that for pure graphite o, vs lEs Ez l. —
The curves marked "acceptoxs" and "donors" corres-
pond, respectively, to the lowering and raising of the
Fermi level. Three scattering mechanisms are an
energy-independent relaxation time v = constant (dashed
curve), a constant electron mean free path A = constant
(dotted curve), and ~ inversely proportional to the den-
sity of states at the Fermi level fsolid curve labeled
vN(E) =constant]. Upper scales give the change in
carrier density ln —p l corresponding to lE —Es,
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corresponds to pure graphite. The rapid rise in

0, is associated with the region in Fig. 6 where

N(Er) has a weak dependence on carrier density
and therefore 7' is only weakly dependent on E~.
Far from Eor, the integral in Eq. (9) is essentially
proportional to the density of states, so the phonon
scattering mechanism eventually results in a satu-
ration in 0,. The detailed energy dependence of cr,

in the saturation region is different for electrons
and holes, with the electron curve showing a slow
decrease in 0, at high E~- Eo~ values, which is not
present in the hole curve. Since the conductivity
0, is normalized to v', for pure graphite, no ad-
justable parameters are used to calculate o,/a', .

To facilitate the comparison of these curves to
experimental a, data, plots of o,/o', vs. P —n and
n- p are presented in Fig. 9, using the upper
abscissa scale. It is of interest that the scattering
mechanisms considered here yield both a mono-
tonic increase in o,/o', (IC1} and a saturation effect
(other intercalate species in Fig. 1). By consider-
ing the scattering rate to be due to one or more
scattering mechanisms, these calculated a,/at
curves can be fit to experimental data to determine
f. In combination with Hall effect measurements on
the same samples, an analysis of R~ and 0, data
could also provide information on the scattering
mechanism for various intercalate species. An
example of the fitting of Fig. 9 to experimental
data will be given in the next section.

IV. DISCUSSION

The central focus of this discussion is the appli-
cation of the calculations of Sec. III to experimen-
tal data in an attempt to infer the free carrier
concentrations introduced by a given intercalate
concentration. In comparing the results in Sec.
III with experimental data, caution should be ex-
ercised for the following reasons: (a} the present
calculation is only applicable in the dilute limit
whereas most experimental data emphasize the
higher concentration range; (b) the calculation is
appropriate to low temperatures while most pub-
lished experimental data are for room tempera-
ture; (c) the calculation neglects possible contri-
butions to the transport properties from the inter-
calate monolayers.

The distinctive features in the E~ dependence of
the electron and hole carrier concentrations shown
in Fig. 4 and of the electron and hole density of
states shown in Fig. 5 are associated with the
passage of E~ through the K- and H-point E,-band
extrema. Since no singularities in the electron
and hole carrier concentrations appear at the elec-
tron and hole cutoff energies, measurements which
focus primarily on n(E) and p(E) are not promising

for identifying the passage of the Fermi level
through the K- and H-point E,- band extrema. On
the other hand, singularities are found in the den-
sity of states curves N, (E) and N„(E) at these cri
tical Fermi-level positions (see Fig. 5). There-
fore measurements such as the determination of
the electronic specific heat could be used to iden-
tify these critical energies, thereby yielding a di-
rect determination of f.

A comparison between the observed de Haas-
van Alphen extremal cross-sectional areas versus
intercalate concentration with the calculated curves
in Fig. 7 versus ~n-P

~

could be interpreted to
yield both the magnitude of f and any possible
variation with intercalate concentration for the
very dilute range where the de Haas-van Alphen
effect can be observed. In this very dilute range,
the de Haas-van Alphen effect provides a very
sensitive method for the determination of f. On
the other hand, the Shubnikov-de Haas data re-
ported by Bender and Young" cannot be used to
yield an explicit value for f because the intercalate
concentration for the various samples was not
measured directly. Furthermore, the observed
change in the majority hole period was so small
that a,ll that can be concluded from these data is
that f for graphite-Br, is very small, consistent
with the interpretation of other measurements. "

The interpretation of Hall data also provide a
sensitive measure for f. The passage of Er
through the E,-band extrema corresponds to the
transition from two- to single-carrier conduction,
and gives rise to the extrema in the E~ dependence
of R~, as shown in Fig. 8. These distinctive ex-
trema do not exactly coincide with transitions
from two- to single-carrier conduction regimes
because R„ for a two-carrier system depends on
both carrier density and mobility and because R„
is somewhat sensitive to the approximation used
for the E~ dependence of &. To identify these dis-
tinctive features, low-temperature R~ data should
be used so that carrier generation by the intercal-
ate species dominates the thermal generation. At
higher intercalate concentrations corresponding
to the one-carrier regime, measurement of R„
directly determines the carrier density, thereby
yielding both f and its dependence on intercalate
concentration. However, if the intercalate species
should contribute to conduction, such contributions
could introduce errors in the use of Hall data to
determine the carrier density in the graphite lay-
ers. It should be emphasized that low-temperature
(VV K) Hall measurements in the transition region
to one-carrier behavior and in the one-carrier re-
gimes provide a powerful tool for the study of f.

The distinctive features of the energy dependence
of the in-plane electrical conductivity curves (Fig.
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9} are the slope of the monotonically increasing
region and the transition from the monotonically
increasing region to the saturation region. These
features also appear in the experimental (o,/c', )
data for most of the intercalate species that are
shown in Fig. 1, although the experimental and

theoretical saturation phenomena should not be
compared directly since the former is outside the
scope of the dilute limit. Because of the sensi-
tivity of the initial slope to the scattering model,
use of the initial slope data is not attractive for
the determination of f at present, since the scat-
tering processes in graphite intercalation com-
pounds have not been studied extensively to date;
thus one has little guidance as to the correct scat-
tering mechanism. On the other hand, the satura-
tion behavior predicted for cr, /o', vs E~ —E~+ with

donor intercalation is suggestive of the observed
a,/co vs x, the intercalate concentration depen-
dence for alkali metals. In Fig. 9, the maximum

o,/co for electrons occurs at

ATE+-0.

2 eV, which,
according to Fig. 6, corresponds to approximately
the formula C8O+1 (where C denotes a carbon atom
and M denotes an intercalate atom or molecule),
which in turn corresponds approximately to a
stage 60 compound assuming f = 1. Experimen-
tally the maximum is found at -

C5OM or stage
5 (Fig. 1). This would imply f«1 for the alkali
metals, in contrast to the value28 f = 0.'l5 obtained
from analysis of Hall data for the stage 3 com-
pound C„Cs. Therefore the similarities between
the tN(E) = constant curves in Fig. 9 and the data
of Fig. 1 may be more accidental than real; as
stated earlier, other observables such as N(Er),
R„, and the de Haas-van Alphen periods which
either are independent of or relatively insensitive
to assumptions for &, are preferable to o, for the
determination of f by comparison between calcu-
lation and experiment.

Normalization of e, for an intercalation com-
pound to 0', for pure graphite reduces the sensi-
tivity of the in-plane conductivity to the relaxation
time. It is for this reason that the results in Fig.
9 are presented in terms of a,/c', . For each scat-
tering mechanism considered in Fig. 9, there are
no adjustable parameters required to match ordi-
nates. For a real material, the scattering may
in fact include more than one mechanism, so that
by considering multiple scattering mechanisms,
an adjustable parameter corresponding to their
relative importance is introduced. This parame-
ter can be adjusted to give the experimentally ob-
served magnitude of the initial slope and the mag-
nitude of o,/o', at saturation. To give an example
of how the calculation for a,/o', could be used to
estimate f, we consider the lamellar compounds
of graphite bromine. To fit the experimental data

of Sasa' two scattering mechanisms were included;

1/v, for the v= constant mechanism and 1/r, for
the N(E~)r= constant mechanism, so that (1/7') „„,
= 1/r, +1/r, .As shown in Fig. 10, a qualitative
fit to the experimental data was obtained for
f -0.025 using v, ' = 2r, '(Eo~) at the Fermi level. Of
interest is this low value for f and its consistency
with another estimate of f =0.018+0.004 obtained
from the analysis of the far-infrared magnetore-
flection spectrum in graphite-bromine residue com-
pounds. " This agreement should, however, be con-
sidered with caution since: (i) the data are for room
temperature while the calculation is appropriate to
low temperatures, (ii) most of the data are for inter-
calation concentrations greater than the dilute limit,
and (iii) the data for c,/o', in graphite-bromine pub-
lished by different workers" are quite different.

The application of the calculated o,/co curves
to the alkali-metal intercalation compounds is not
as satisfactory as for graphite bromine. Using
the results of Fig. 9 (upper abscissa scale), a fit
between the calculated and experimental curves
is obtained using only the N(E~)7' = constant scat
tering mechanism. The very low value obtained
for f (f —= 0.05} is inconsistent with Knight shift, "
specific heat, "and R„(Ref. 26) measurements which
yield f -1 for these donor intercalation com-
pounds. Some of this discrepancy may arise be-
cause the calculation is appropriate to low tem-
peratures and the experimental data are for room
temperature. Furthermore, the applicability of
the SWMcC model to dilute alkali-metal intercala-
tion compounds has not been established, as it has
been for the graphite-halogen compounds using
magnetoref lection techniques"; thus, the basic
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FIG. 10. Light curve gives results for the calculated
in-plane electrical conductivity for graphite bromine
and the dark curve gives the experimental data of Sasa
{Ref. 5). Calculated curve considers a superposition
of scattering processes as described in the text. Data
are plotted as 0.~/a~ vs the mole fraction x of Br2
molecule s.
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assumptions of the model may not apply to the
alkali intercalation compounds. On the basis of
these results it would therefore be premature to
conclude that carriers in the alkali-metal inter-
calate monolayers contribute significantly to the
in-plane electrical conductivity. Nevertheless, it
would be of interest to carry out low temperature
0, and B„measurements as a function of interca-
late concentration to look for contributions to the
electrical conductivity by the intercalate mono-
layers.

It is of interest to compare the predicted depen-
dence of o, on concentration in Fig. 10, which in-
cludes the complexity of the 3-dimensional band
structure of graphite, with a much simpler ver-
sion assuming a 2-dimensional effective mass
approximation. ""The latter predicts a simple
square root dependence, which deviates from the
model curve in Fig. 10 by no more than 10/g over
the concentration range shown. However, the
simpler model does not predict the distinctive fea-
tures in N(E~) and A„or the de Haas van Alphen
extremal areas versus concentration which we
suggest will be more sensitive observables for
the determination of f.

Finally, we discuss the problem of sample char-
acterization in the dilute limit. There is no direct
evidence for the existence of well-ordered com-
pounds more dilute than stage 5.' For these dilute
compounds, the (00l) x-ray reflections are too
weak to be observed, so one cannot even confirm
the existence of a superlattice along the c axis.
Chemical analysis as well as gravimetry simply in-

dicates the absorption of intercalate somewhere
within the graphite, which could occupy random
sites (for example at defects, as in residue com-
pounds"), lamellar interstitial sites, or some
combination thereof. Indirect discrimination be-
tween the two can be obtained from property mea-
surements sensitive to charged particle scattering
(such as o, at low temperature) or from the obser-
vation of quantum oscillations which require v, v

&1. Indeed the best evidence for ordered dilute
stages comes from the observation of Shubnikov-
de Haas periods, " resonant Landau level transi-
tions in the magnetoref lection spectra, "and in-
sensitivity of the relative intensity of Raman spec-
tra to different preparation techniques in dilute
lamellar halogen compounds. " In any case, the
spirit of the dilute limit model is compatible with
either ordered or disordered intercalation since in
both cases the graphite portion of the lattice deter-
mines the band structure. One would, however,
expect differences in f due to the different atomic
environments in the residue and lamellar com-
pounds.
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