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A heuristic picture, due to de Gennes and to Skal and Shklovskii, of a diluted lattice is used to introduce a
one-dimensional path length I which diverges more rapidly than the percolation correlation length $p at the
percolation threshold. It is argued that thermodynamic functions should be scaling functions of (](T)/l where
g&(T) is the correlation length of a one-dimensional spin system. The implications of this scaling ansatz are
discussed.

Consider a magnetic system (e.g. , Itb2MnF4)
randomly diluted with nonmagnetic impurities
(e.g. , Mg). I.et P be the probability that a given
site is occupied with a magnetic ion and 1 -P be
the probability that it is occupied with a nonmag-
netic ion. In a quenched system, the transition
temperature T, (P) decreases as P is decreased
below l as shown in Fig. l. Eventually, T, (P)
decreases to zero at a critical value p, of P. P, is
the percolation probability (or concentration).
For P &P„ there is no infinite cluster and no phase
transition. For P &P„ there is an infinite cluster
and T, (P) rises from zero as depicted in Fig. l.
The magnetic phase transition for T, (P) &0 has
recently received considerable theoretical atten-
tion' and is understood at least qualitatively.
Similarly the purely statistical percolation transi-
tion' can be described in the language of phase
transitions" and studied by the usual techniques
used to study phase transitions. " The magnetic
phase transition in vicinity of p =p, and T = 0 is,
however, less-well understood and is the subject
of this paper.

Stauffer has argued' that the point P =P„T=0
should be viewed as a type of multicritical point
and that the scaling fields for the Ising model
should be p., =p -P, and p, , =e '~/~, where J is the
magnetic exchange energy. He then proposes that
the free energy should be a function of the scaled
variable (p, ,/p, ' ), where p, , and p, are linear
combinations of p, , and p, , and where q-1. This
scaling form is in agreement with exact calculations

. of the susceptibility on a random Cayley tree. ~ In
this paper, we will present a heuristic picture of
the phase transition near P =p„T=0 that will en-
able us to introduce a scaling function valid for
n-component (not just Ising) spin systems.

We begin by considering a picture of the random-
ly diluted lattice proposed by de Gennes' and by
Skal and Shklovskii~ following earlier work on
elasticity of gels. " This picture emphasizes the

existence of two divergent correlation lengths.
For p just above p„ the lattice can be viewed as a
collection of nodes (sites with three or more in-
dependent paths leading to infinity) connected by
links that can be thought of as random zig-zag
paths as shown in Fig. 2. (For details see Ref. 8.)
The distance between nodes is the percolation cor-
relation length (~- (P -P,) "&. The zig-zag path
length / between the nodes is proportional to the
number of steps in the segment connecting the two
nodes. For p &P„ / is a measure of the number of
steps in an average path traversing an average
cluster. We introduce a new exponent g to de-
scribe the divergence of / near p, :

From Fig. 2, one can immediately deduce rea-
sonable bounds for /. One would certainly expect
/ to be at least as large as $~. In addition, a rea-
sonable guess for / in general is that it be pro-
portional to /„ the number of steps in a self-avoid-
ing walk between nodes. This, however, ignores
the existence of paths between other nodes which
have to be avoided. Thus, in general, / should be
no larger than /, . In other words,

"s (2)
where v, is the correlation length exponent for the
self-avoiding walk. This yields the following re-
lation for g:

vp c r ~ vp/v~ (3)
Above d =d, =6, the critical dimensionality for the
percolation problem, we expect f =2v~ =1. Below
six dimensions, the value of g 's uncertain.

The crucial argument that produces scaling
functions for the phase transition at P =p„T=0 is
that on a length scale small compared to /, the
lattice appears to be a collection of noninteracting
contorted one-dimensional chains. On a scale
large compare to /, however, the true d-dimen-
sional nature of the lattice becomes apparent. It
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FIG. 1. Phase diagram for a quenched, diluted mag-

netic Ising lattice. p is the probability that a bond is
present. T, goes to zero at the percolation probability p~.

In addition, for n ~ 2, transverse susceptibility
X~ diverges for small wave number p as p

' for
p &p, and satisfies

(6a)

(6b)

This last equation is valid for all n & 2 (n is the
number of spin components). To obtain behavior
in other regimes, we assume that the Gibbs free
energy G and spin correlation function I' can be
expressed in scaling forms

1

T G(p -p. , T,ff) =lp-p. l'-"

is, therefore, relevant to compare the correlation
length $,(T) of a one-dimensional system to l.
$,(T) can of course be calculated exactly. For a
classical n-component spin system, it is a function
of Bessel functions of imaginary a,rgument" which
reduce at low temperature to

&2 J/r ( 1)

N~ (P-P.) T)=~ ""p

(
H

&in -p. l" ' (,ir)) '

(7)

x T- s(p) -
I p -p, I

"'

m-I'(P)- (P -P,)'P .

(5a)

(5b)

(n&1) .2n J
n —1 T

If (,»L, the spins a,re essentially ordered and
we expect the magnetic susceptibility X and the
magnetization m to be related to the mean-square
cluster size S(p) and the probability of being in

the infinite cluster P(P) via

(8b)

where H is the external magnetic field, the + (-)
superscripts refer to p &p, (p &p,), and $ is the
spin-correlation length (8(a) implies 8(b)j. ap,
p~, and ~~ are percolation exponents satisfying
'yp = (2i —'tip) vp~ pp =2 Qp —Ap) and yp

= —2 + +p
—2dp. Note that the If jT rather than H is the ap-
propriate scaling field to use near a T=O transi-
tion. Equation(7) implies Eq. (5) when (,»I and

Eqs. (8) insure that the spin-correlation function
is determined by the probability that two sites are
in the same cluster If /». $„Eqs. (7) and (8)
imply

(»)
(8b)

and that the transition temperature satisfies

(10)

or

2J
c l»(p -p, ) I

'

"IZ(p-p, )', n&I.

FIG. 2. Schen. atic drawing of a diluted lattice for
p =p~, showing nodes connected by zig-zag paths.

Eciuation (11) for n =1 is in agreement with
Stauf fer. '

Equation (7) can also be used to obtain the scal-
ing contribution to the specific heat Q = -T(e'Q/
BT'). For $,» /, we obtain
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2 z/r~ p p [dv&-g
2 J' 2

T C

(12)

and for t » $, and T small enough so that Eq. (4)
is satisfied:

n&1

In two dimensions, numerical calculations"
yield p, = 1.1, which would give Tr = 1.3/1. 1- 1.2 in
clear contradiction with experiment. This raises
the intriguing possibility that there are three (or

where x =dv~/$. The scaling relation dv~ =2 —o'~

was used in deriving Eqs. (12) and (13).
Recently, Birgeneau et aL."performed neutron

scattering experiments from Bb,Mn, ,Mgp Fy.
This is an effective two-dimensional system which
is Heisenberg-like down to very low temperature. "
The percolation concentration' for two-dimensional
site dilution is 59%. Birgeneau et al. find v =0.75
and y = 1.25. These numbers satisfy approximately
the scaling relation implied by Eq. (9): y/v =1.67-

y~/v~ =2.3/1.3 =1.77. (y~ and v~ are the "best
values" from Ref. 5.) Thus, experiment seems to
document at least some of the scaling idea. s pre-
sented here. Furthermore, v = v, =0.75."'" This
would correspond to setting g = v~/v, —which in
turn corresponds to self-avoiding-walk zig-zag
paths between nodes. This observation has been
exploited theoretically with a slightly different ap-
proach than presented here by Stanley et aL."

The heuristic scaling picture presented here is
far from complete and leads to some unanswered
question. For example, why does v= v, experi-
mentally? Is this a general, dimensionally in-
dependent result or is it only approximately satis-
fied in two dimensions? Is there a better way to
define the length l? Computer location of nodes is
very difficult, and a more local definition of l
would be desirable. de Gennes argued that & should
be related to the exponent p. describing the growth
of the conductivity or spin-stiffness coefficient
[Eq. (6)] above P, via

(14)

more? ) divergent lengths in percolation statistics.
One length would be the correlation length $p,
another the geometrical length L introduced here
and defined slightly differently in Ref. 15, and a
third length would be a length L' defined as the
ratio of the resistance between nodes to the funda-
mental bond resistance. Clearly parallel paths
play a greater role in determining L' than in de-
termining L. The existence of several divergent
correlation lengths, of course, runs contrary to
physical intuition developed in the study of thermo-
dynamic phase transitions. This is particularly
true since percolation statistics can be described
by the thermodynamics of a one state Ashkin-
Teller-Potts (ATP) model. '' One would think,
therefore, that any exponents appearing in perco-
lation statistics should have their analog in the ATP
model. This raises the question of whether cross-
over exponents in the ATP might correspond to ex-
ponents for l and l'. This question is currently being
investigated. It is, of course, possible that some
aspects of percolation statistics are not easily
described by the AT P model. If so, it remains
to understand why.

Note added in Proof. Recently Stauffer"' and
Shender and Scklovskii" have studied the multi-
critical point discussed here using spin wave the-
ory. They argue that the spin wave stiffness [de-
fined as the coefficient of (VH)' in the free-energy
density where 8 is the angular deviation of the
magnetization from perfect order] goes to zero
at P, in the same way that the conductivity goes
to zero [as (d-2)v+ g] and that this causes T, (p)
to go to zero at p, . If & is assumed to be deter-
mined by p, [Eq. (14) of this paper], the result
they obtain for T, (P) is identical to that obtained
here [Eq. (11)].

In a recent preprint, J. K. Bergstresser has de-
rived rigorous upper and lower bounds on T,(p) in
a two-dimensional diluted Ising model which be-
comes identical when P-P, . He predicts T, (P)
= 2J/ln (P -P, ~. Thus either f= 1 in two dimen-
sions [cf. Eq. (11)]or the natural scaling axes
are linear combinations of ~P —P, ~

and $,(T).

The author has benefited greatly from conver-
sation with P. G. de Gennes, A. B. Harris, R. J.
Birgeneau, and R. A. Cowley, and is grateful to
R. J. Birgeneau, R. A. Cowley, G. Shirane, and
H. G. Guggenheim for communicating experi-
mental results prior to publication.
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