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It is current practice to determine the "strength" profile of an ideal crystal by calculating the domain of

homogeneous deformation in which the crystal is classically stable. This approach is here implemented in a less

restricted manner than previously: first, by admitting any generalized coordinates to specify the strain; second,

by assessing the stability in an arbitrary load environment. From this standpoint the intrinsic subjectivity of

the usual concept of strength appears clearly. In illustration divergent estimates of uniaxial strength in the

literature are compared within a common framework. With a view to rationalizing the whole approach, the

present analysis gives prominence to the objective notion of coordinate invariance. Special "failure" modes,

associated with path branchings at a domain perimeter, are also examined in this light. Finally, the stability of

purely volumetric deformation is examined in detail.

I. INTRODUCTION

In this paper we aim to clarify the concept of
ideal crystal strength, when regarded as an in-
stability phenomenon in the context of classical
mechanics. This is the approach initiated in 1940
by Born' and extensively developed more recently
with the aid of electronic computers (e.g. , Basin-
ski et a/. ,

' Macmillan and Kelly, ' Milstein, "
Huang et al.').

According to Born, any crystal capable of homo-
geneous deformation may be treated as a conser-
vative dynamical system with six degrees of free-
dom; stability, in the ordinary Lagrangian sense,
is then to be assessed along conventional lines.
However, it is in the detail of this theory that dif-
ferent writers have in practice diverged by virtue
of choosing different sets of generalized coordi-
nates. This is important because, in a crystal
under load, convexity of the internal-energy func-
tion is not coordinate invariant, as pointed out by
Hill. ' We present a simple version of his analysis
and extend its scope. Consequential divergences
in estimates of strength previously escaped notice
since atomic bonds were at the same time differ-
ently modeled by the respective writers.

Whether convexity of the energy has a strong or
a weak dependence on any reasonable choices of
the geometric variables remains to be investigated;
we intend in due course to make the appropriate
calculations for at least one crystal model. Mean-
while, we are able here to use the published data
themselves to show the qualitative divergences,
with the help of some general comparison theo-
rerns.

Branching of a primary path of deformation,

under a prescribed loading program, is well
known to be closely associated with loss or ex-
change of stability. It follows that branching is
likewise not coordinate invariant in general, when
the criterion for its inception is stationarity of the
conjugate forces during some virtual increment of
deformation. Qn some paths, however, there are
exceptional bifurcations that are substantially co-
ordinate invariant on this criterion; we examine
one such case in detail, in view of its possible
role in any objective concept of ideal strength.

Finally, we treat thoroughly the loading of a
cubic crystal by hydrostatic pressure or tension.
This is an example of a natural environment where
classical stability is not equivalent to convexity of
the internal energy relative to any particular co-

ordinatess.

II. RELATIVITY OF STABILITY CRITERIA

Homogeneous pure strain of a crystal is speci-
fiable by any six parameters that define the georn-
etry of the primitive or other convenient cell. A
natural set', chosen by Milstein, ' is the lengths of
the cell edges and their included angles. The
squares and scalar products of the edge vectors
form a set whose particular advantage resides in
being elements of the metric tensor m, &, relative
to a reference configuration in which the cell is a
unit cube. This specification, or the allied set of
components e,, of the Green's measure of strain,
was always adopted by the Born school. No less
convenient algebraically is the choice of Macmillan
and Kelly, ' namely, the elements of the stretch
tensor A;,. such that, if g, and x& are the reference
and current rectangular coordinates of any lattice
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vector, then

~$] 5J 7 ~Sf ~jf

(i, j = 1, 3, 3; summation convention). Expressed
in these variables,

~i( ~king f

1

elf

{2)

(3)

where 5„ is the Kronecker delta. In principle,
disregarding possible complexities of analysis,
one could use the components of any other mea-
sure of strain as generalized coordinates. HilV
considered any tensor coaxial with the principal
fibers and having principal values f(h.,),f(A ),f(A.,),
where x„x„x,are the principal stretches; f(a)
can be any smooth monotone function such that
f(1)= 0, f '(1) = 1 (normalizations that ensure coin-
cidence with the classical infinitesimal strain
when the deformation is first order). Simple ex-
amples of f(a) are A. —1, Inx, —

2(A,
' —1), the last of

which generates the components of Eq. (3}.
In conformity with the standard notation in La-

grangian mechanics, we denote an arbitrary set
of generalized coordinates by q„,r =1, . . . , 6.
When, in particular, the geometric parameters
are components of a tensor, say Green's strain,
we put

P, =, , r=1, . . . , 6.
8$»

The set of p„can be related to the Cauchy tractions
on the crystal (go being taken as the work of defor-
mation per unit reference volume}, but the con-
nection is rarely simple. Analogously, in the con-
tinuum context, Hill' has introduced work-conju-

q, =2e», q, =2e», 0, =2e».

The internal energy, ur per unit reference vol-
ume (i.e., w is the energy of the mass contained
in the reference volume of the undeformed crys-
tal}, is supposed to be a determinate function of
the set of q„. The most widely used approximation
has been to compute 2' by summing, over some
10' volume units of deformed crystal, the pairwise
interaction energies associated with bonds on the
representative atoms in one cell (the Lennard-
Jones, or Born and Mayer, or Morse potentials
are variously adopted). Metals whose electronic
structures are not too complex have been modeled
by adding a volume-dependent contribution to the
interionic energies. ' For our present concern,
however, nothing need be assumed about the form
or derivation of the function ge.

As in classical mechanics, generalized conjugate
variables are defined by

(r, s = 1, . . . , 6; summation convention). The c„,
are of course dependent both on the level of strain
and on the choice of generalized coordinates. How-
ever, when these are the elements of some strain
measure, all such matrices coincide in the refer-
ence configuration itself, if it happens to be un-
stressed. In that case the c„, are just conventional
elastic moduli and the notation conforms with
standard usage. In any deformed state we can now
write the leading terms in a Taylor expansion of
the internal energy in the alternative ways

Pr~~r + ~~rs~~r~~s +

= (Pr+ 2&P~)66+ (6)

The latter can be viewed as an application of the
trapezoid rule of quadrature.

To see how the moduli transform under a dif-
ferent choice of coordinates, let all new variables
be distinguished by an asterisk and suppose each
q„ is given as a function of the set of q,*. If the
reference configuration also is changed, we have
identically

by invariance of the energy per unit mass of crys-
tal, where p* and p are the respective reference
densities (i.e., the masses contained in the refer-
ence volumes). It follows that the conjugate vari
ables transform according to

gate measures of stress, typically t,
&

= Bur/Be; &,

where e;, stands for a strain tensor generated by
any scale function f(w); w is, of course, symme-
trized in the off-diagonal components and so pg

P, = t„, P, = t„, P, = t„, P, = t„, P, = t„. Edifying
interpretations of the conjugate stress tensors are
available when (i) f(A) = 2()P —I}and (ii) f(h) = X —1.
For this purpose we fix attention on a cell that is
a unit cube in the reference state and is subse-
quently subjected to a pure strain; the jth edge of
the deformed cell is the vector with components

A» (0 = 1, 2, 3). Let L„be the jth component of the
load vector applied to the ith face of the cell; ro-
tational balance of all loads requires that tensor
X„f» be symmetric. Then in (i) the conjugate is
such that I,

&
=f„x» (which can be read as the de-

composition of the ith load vector in terms of the
triad of cell edges), while in (ii) the conjugate is
simply —,(I;, + I„)

Elastic moduli are central in theories of branch-
ing and instability. We define a matrix of general-
ized moduli as the array of coefficients in the re-
lations between differential increments of the con-
jugate sets of variables;

~ $0
CfP„= CrqCAg~, Cr~ =
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p Bq„
p+PQ Bq +P& '

Turning next to the moduli we take the differential
of ('l),

r B q

p q„ q„ q„g "pu =
B ~ &pr+

B
~B"~pr ~v~

and substitute (5) and its asterisked analog. Com-
parison of the coefficients of the independent dq~

then gives

Qv Bqg Bqg s Bq+Bq+ f' (8}

which is the transformation rule for the moduli.
An equivalent calculation, starting from (6) and its
asterisked analog, goes as follows:

1 1 1 1 1
5p+5qg 5p 5q — p 5q p45q4 + o ~ e

2 py u I
p

& ~
p

& & pg u

1 Bqr
p 5q 5q4 + ~ ~ ~

r r Bqy s

from ('f}. Whence

1 1 1 B'q„—5p*5q* ——5p,5q, = —pr
" 5q*5qv*+' ' '

~Q tf p p Bq+Bq4

from which we can recover (8} immediately. Also,
the quadratic identity (9) will later be found useful
in its own right. Moreover, its derivation makes
evident a cardinal point: in transforming (6) the

linear terms in the 5q„must for consistency be
evaluated to second order in the new variables;
indeed, it is precisely in these linear terms that
the second partial derivatives in (8) originate.

We remark that these derivatives vanish auto-
matically, however, when the transformation be-
tween two sets of generalized coordinates is
strictly linear. This happens, for example, when

the two are simply equivalent representations of
some tensor measure of strain on different bases
in a fixed reference state; in that case (8) becomes
an expression of the transformation rule for a
fourth-rank tensor. The second derivatives also
vanish when the generalized coordinates are the
molar parameters and the reference state itself
is changed; for, if A,',

&
is the fixed stretch from

state p to state p*, we have A. ,~ =A~&A~~ via Eq. (1),
and so m„= X„',X»mf', . By Eq. (3}the corresponding
transformation between the respective sets of
Green's variables is likewise linear (though not
homogeneous).

Coming, now, to stability, we fake this to sig-
nify that the combined incremental potential ener-
gy of the crystal and its external loading is posi-
tive for small arbitrary variations of the chosen
set of q„. This accords with the classical defini-

tion; it is tacitly assumed not only that the loads
are conservative but that their virtual work is a
function of the q„alone. Plainly, this entails the
notion of ideal strength as an intrinsic property of

the material. By contrast, the loading in labora-
tory experiments is usually frame dependent and

the work is affected also by rotation of the speci-
men (cf. Hill's' analysis of dead loading, in par-
ticular). On the intrinsic view, the loads "follow"
the material during any disturbance; they may, in
addition, be deformation sensitive and so become
different in kind from those in the state of equilib-
rium whose stability is under test. In any event,
the increment 5u of external work must be speci-
fied objectively to second order, like the incre-
ment Qe of internal energy, and is expressible as

5u =p„5q, + —,k„,5q„5q, + ~ ~ ~

per unit reference volume, where the coefficients
k„, depend on the test configuration and the choice
of variables. The linear terms are necessarily
the same as in Eq. (6) since the combined potential
energy is stationary when all 5q„=0. In a dis-
turbed configuration the virtuaL state of stress that
would be in statical balance with the follower loads
is represented by values p„+k„,5q, of the conjugate
forces. The actual state of stress is, of course,
represented by values p, + c„,5q, .

Under change of variables the invariance of 5u/p
requires that the symmetrized k„, transform ac-
cording to

p*'"-Bq~ Bq„. - Bq„*Bq„*P

in analogy with (8). The algebraic expression of
the stability criterion, namely,

(c„,—k„,)5q„5q, &0, when not all 5q„=0, (12)

is of course coordinate invariant. In verification,

from (8}and (11), and so

(1/p~)(c„*„—k„'„)5q„*5q„*= (1/p)(c„, —k„)5q,5q, .

Writers on crystal strength have customarily re-
tained only the linear terms in the incremental
work [Eq. (10)]. Thus, the criterion has been
routinely expressed as

B w
c„,5q„5q, = 5q„5q, & 0,

&q„Bq,

regardless of the choice of variables. The inequal-
ity can be described as requiring that w be locally
strictly convex in its arguments, or that the Hes-
sian matrix of w be positive definite. That the
criterion (13) is generally not coordinate invariant
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is already evident from the previous analysis. We
can make it explicit by means of the exact connec-
tion (8) or by reproducing the second-degree terms
in series (9):

(14)

Cases have already been instanced when the right-
hand side vanishes here; otherwise its sign is un-
certain a priori and at this stage the local convex-
ity of w* remains in doubt. We proceed to exam-
ine the matter in more detail. for the sets of co-
ordinates principally favored in the literature.

III. COMPARISON THEOREMS

Without losing generality we can suppose that in
some reference configuration the representative
cell is a cube and that its edge is adopted as the
unit of length. We examine the divergent predic-
tions of the convexity criterion relative to three
sets of generalized coordinates referred to this
basis: the edges and angles of the deformed cell
(Milstein); the components of the Green's tensor
(Born); and the components of the stretch tensor
(Macmillan and Kelly ).

Denote the coordinates corresponding to the
basis components of the Green's tensor [Eq. (3)]
by q„.. . , q, and those corresponding to the
stretch tensor [Eq. (1)] by q~, . . . , qg. The con-
nections [Eq. (2)) give

2q, =q+'+-,'q+'+-,'q+' —1, 2q, = (qf +qf)q,*+&q,*q,*,
etc Calcul. ation of the right-hand side in (14)
leads quickly to

S -G =f»[(5A»)'+(5A»)' +(6~X )']+ ~ ~ ~ + ~ ~ ~

+ 2t23[(5L„+58~3)5+~+ 51„51,3]+ +

where S and G are mnemonic symbols for the Hes-
sian forms in the stretch and Green's variables,
respectively, and tensor t&~ is the work conjugate
of the Green's measure (its physical interpreta-
tion was given earlier).

Next, with q„.. . , q, retaining their meanings
but q,*,q,*,q,* denoting the edges of the deformed
cell and q,*,q5~, q6~ their included angles, we have

2q, =q,*' -1, q, =q,*q,*cosq,*,
etc. For simplicity suppose that the path of de-
formation is such that the cell. becomes rectangu-
lar with edges A» A» A, After an arbitrary incre-
mental deformation the cell becomes a paral-
lelepiped and its edges are no longer the principal
fibers of the total deformation. One may show by

elementary geometry that

M —G = —'(5A.,)' + —(5A2)'+ ~ (5X3)', (18)

which together yield

S —M = (L,/A. ,)[(5X„)'+(5a„)']+ ~ + ~ ~ ~ . (19)

These simple connections enable the predictions
of stability via the respective convexity criteria to
be directly compared. We instance some typical
applications in the specific contexts of the pub-
lished data.

We begin with a general observation. When the
principal loads are all non-negative, so are the
forms S —G, M —G, and S —M, allowing the one-
way implications:

G stable-M stable-S stable, when L„L„L,~ 0;
similarly,

S stable-M stable-G stable, when L„L„L,~O.

In these the prefix indicates, on the present view,
that the particular Hessian is positive definite.
On a path of deformation leading from a stable,
unstressed, reference configuration (where every
Hessian is positive definite) the estimated onsets
of failure may be correspondingly ordered:

Q strength & M strength + S strength,

when L„L„L ~ 0; (20)
$ strength & M strength & G strength,

when L„L„L,& 0. (21)

5q,' = 5~, = 5&„, 5q,* = -[(g+~,)/gg]5g„
etc. , to first order, where the stretches of the
new principal fibers are denoted by A., +5k.„etc.
After carrying out the differentiations in (14) we
set q4*=q,*=q,*=-,'n, and recast the result in the
stretch var iables:

M —G = t„(5w, )'+ ~ ~ ~ + ~ ~ ~

+2t»(A, +X,)5 ln(h A, )5A„+ + ~ ~

(18)
where 34 stands for the Hessian form in the Mil-
stein variables.

In the literature, most stability computations
under load are for initially cubic crystals which
are deformed so that the symmetry becomes
orthorhombic with respect to the principal fibers.
We choose a representative cell with edges paral-
lel to these symmetry axes. Its faces are then
subject to purely normal loads, say l„ l„ l„and
the shearing stresses vanish in (15) and (16).
These accordingly reduce to

S —G = (l, /Z, )[(5x,)'+ (5x„)'+(5a„)']+~ ~ ~ + ~
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In this context "failure" means that a specific
Hessian becomes semidefinite, while "strength"
denotes the associated stage of deformation (rather
than the load magnitude). To extract more infor-
mation, we must attend to the critical variation
5A.,~

that causes a semidefinite Hessian to vanish
(and which i/so facto renders it stationary in the

class of arbitrary variations). Suppose, for ex-
ample, in (20) that the G critical 5k&~ simultane-
ously makes M —G vanish; then the G and M
strengths coincide. If, on the other hand, M&G
for that 5A. &, , the first inequality in (20) is strict.
An analogous statement can be made for every
like-ordered pair in (20) and (21).

In the pioneering investigation by Born and
Fourth' an initially face-centered-cubic lattice was
loaded uniaxially in a cubic direction (l, o 0, l, = f,
=0). A Lennard-Jones model was adopted and the
G strengths were computed for both tension and
compression. In neither case was the critical
variation described explicitly; we infer with hind-
sight that in tension it would be 5A., =0, 5A., = -5A.,
c 0, coaxial with the basis, while in compression
it would be the actual 5A, ,~

at the algebraic mini-
mum of the Green's conjugate stress f, /A,

" The
critical variation in tension is such that S = M =G
=0, while in compression it is such that S=M&G
=0. For Born and FQrth's crystal, therefore, it
may be concluded that in tension the three
strengths are equal, but that in compression the
G strength is the greatest.

We turn, next, to the computations of Macmillan
and Kelly for the S strengths of sodium chloride
(Born-Mayer model} and argon (Lennard-Jones
model). The reference basis and configuration
are the cubic axes of the experimentally observed
(and theoretically stable) structures at zero stress
and temperature. Three paths of deformation are
followed: (i) uniaxial extension with g, & 1,
=1; (ii) uniaxial tension with f, 0,&l, = l, =0; (iii)
plane dilatation with X, = 1, A = A.,& 1. All three
loads remain tensile along the path segments (i)
and (iii), and consequently (20) applies in every
case. For sodium chloride Macmillan and Kelly
found the critical variation to be (i), such as would

actually occur under a uniaxial load increment 5l,
e0, 5l, =5f, =0 (the stage in question being prior
to the path maximum of /, ); (ii} the actual 5X„at
maximum 1„(iii) 5A, =0, 5L, =-5Aso0, coaxial
with the basis. For argon Macmillan and Kelly
did not report (i), while the critical variation in
(ii) was 5A., =0, 5k, =-5gg0, coaxial with the

basis, and in (iii) was 5X,j5L, = —~7, 5A, = 5h.„co-
axial with the basis. Thus the critical variations
in (i), (ii), and (iii) for sodium chloride and in
(iii) for argon are such that G & M =S =0; we con-
clude that in all these cases the G str ngth is cer-

tainly less than the S strength, but we cannot
otherwise sharpen (20). The critical variation in

(ii) for argon is such that G =M =S =0 and so again

(20} cannot be sharpened.
As our final illustration we cite some work by

Milstein on uniaxial loading of iron~ (Morse model)
and nickel' (generalized Morse model). For iron,
the stable unstressed reference configuration was
body-centered cubic. Under tension the critical
variation was the actual gA. ;& at maximum load,
making G&S=-M=O; under compression it was
6A., =0, 5A, = -5L, 10, coaxial with the basis, mak-
ing G =S =18 =0. We conclude that in tension the

S strength is equal to the M strength, which ex-
ceeds the G strength, while in compression the
G and h1 strengths are equal. For nickel, the
stable unstressed reference configuration was
face-centered cubic. Under tension the critical
variation was 5Ay 0 582 5A300, coaxial with
the basis, making G =S=M=O; under compres-
sion it was the actual 5A.;& at the algebraically
minimum load, making G &S =M=0. We conclude
that in tension the S strength is equal to the M
strength, while in compression the G strength ex-
ceeds the M strength.

IV. BIFURCATIONS

5p„—k„,5q, =0 (22 }

necessarily have at least one eigensolution which
causes the quadratic to vanish. This set of equa-
tions is, of course, form invariant under trans-
formation, as can be verified readily from Eqs.
('I) and (11), or from the formula following (12).

Changing the viewpoint, at each stage of the path
we could propose the following question: If the
values of the Pfaffians dP„—k„,dq„r =1, . . . , 6,
are prescribed in a further active loading of the
crystal, are the increments dq„ in the generalized
coordinates uniquely determined? Obviously, the
answer is affirmative when (22} has only a null so-
lution. At the critical stage, on the other hand,
the coordinate increments are nonunique to the ex-
tent of arbitrary additive multiples of each eigen-
deformation under passive loading (the same could
be said at any subsequent stage where the quad-
ratic (12) is again stationary, even though not

We return to the stability criterion for the gen-
eral case where the external work involves k„,
terms as in Eq. (10), when expressed in the chosen
variables. Qn a path issuing from a stable state
the criterion [Eq. (12}]is either perpetually satis-
fied, or a stage is reached when the quadratic
form is momentarily semidefinite (and thereafter
indefinite along some further segment). At this
critical stage the homogeneous equations
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5p„=c„,5q, =0, (23)

in parallel with (13), and the passive loading in-
duced by any such 5q, renders all conjugate vari-
ables stationary. We can express this in another
way by noting that d p, associated with any dq„at
the critical stage has the property

d p, bq, =(c„dq,)5q, =(c„5q,)dq, =0 (24)

since c„,=c,„. The interpretation is that the modu-
lus which, in a generalized sense, governs incre-
mental deformation of type 5q, vanishes when
det(c„}=0

With premise (23) we search for bifurcations on
a path of deformation through an unstressed cubic
configuration of the crystal lattice. With the cubic
cell as reference basis we suppose coordinates as-
signed so that q4, q„q, remain fixed and equal when
the cell stays rectangular, while generally each
of the groups q„q„q, and q„q„q, accord equal
weightings to the three cubic directions. Among
such choices are the stretch variables, the Mil-
stein parameters, and any of the Hill measures
of strain. For the primary path we take axisym-
metric deformation, L„=A,„under uniaxial loading
l, ' 0, L, = l, =0; correspondingly, only the conju-
gate variable p, is nonzero. Along this path the
crystal symmetry remains at least tetragonal.
The differential relations [Eq. (5)], governing an
arbitrary disturbance, consequently reduce to

d p' =c»dq'+cg2(dq2+ "3),
dp2 =Cj2CL'q +C2 Ck(2+C2~

(25)

p3=C, 2 g, +C23 g2+C22

dp~=c«g~, dp, =c»dq~, dp8=c»4g, . (26)

We have here incorporated the lattice symmetries

c» -~», c» —c», cs, —c

semidefinite). In this sense the loss of stability on

the primary path is associated with a possible bi-
furcation, wherein more than one mode of deforma-
tion corresponds to given Pfaffians. By analogy
with standard branching theory for discrete mech-
anical systems, the starting direction of a second-
ary path is decided by a higher-order specification
of the post-critical loading program; we do not
pursue that aspect here, while recognizing its
likely relevance to a satisfactory account of "ideal
strength. "

Instead, we go a little more deeply into the first-
order theory. Suppose that crystal stability is
tested in an environment where the external work
5u is such that the k„, terms in (10) can be re-
moved by appropriately choosing the coordinates.
Then the corresponding eigenequations are

as well as the conjugacy symmetries c„,=c,„.
Then

det(c„, ) = (c„—c»)[c»(c»+c„— »]c44c,', ,

(27)

showing that the leading 3&&3 minor factorizes.
Necessary and sufficient conditions for stability,
as judged by the requirement (13) for positive
definite c„„are

czz 0, c22+c» 2cu/c»~ c22 c2s 0

together with

c4, )0, c») 0

(28)

(29)

+ p(c22+c2' —2c'2/c„)(5q2+5q3)

+-,'(c„-c„)(~q, —5q, )'

+ C,4&q4 + C55(&q5 + ~q6) . (30)

The determinant can vanish when, and only when,
at least one factor does. Each vanishing factor is
associated with a particular type of eigensolution;
apart from arbitrary multipliers, the types are

(2c„,-c„,-c„,0, 0, 0), when c„+c„=2c'„/c„,
(0, 1, -1,0, 0, 0), when c» —c»=0,
(0, 0, 0, 1, 0, 0), when c«=0, (31)

(0, 0, 0, 0, 1,0} and (0, 0, 0, 0, 0, 1), whenc»=0,

as may be verified by substitution in (25) and (26),
or as is self-evident from (30). We have thereby
proved that these are the only possible eigensolu-
tions; the first two types were encountered, as
we have already mentioned, in numerical compu-
tations by Macmillan and Kelly' and by Milstein
with particular sets of coordinates.

In each case in (31) the eigenstate terminates a
stable range of deformation when the four remain-
ing inequalities in (28) and (29) stand, so that (30)
is positive semidefinite. Otherwise an eigenstate
is embedded in an unstable range where (30) is in-
definite or negative definite.

On the presently considered primary path the
coordinate increments at any stage are

(c„+c„,-c„,-c„,0, 0, 0)[c»(c„+c„)—2ci, ] 'd pi

(32)

from (25). We see, therefore, that the first kind
of eigenstate in (31) occurs where the conjugate

This set of inequalities is preferred to other equiv-
alents because it involves the determinantal fac-
tors directly. The corresponding reduction of

c„,5q, 5q, to a sum of independent squares (not the
canonical normal form, however) is

[cii5qi+ci2(5q2+5q')] /c
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237 44 2 44 & 55 1 2 55
2 4 2 2 (33)

on the primary path. Evidently the condition for
the first type of eigenstate in (31) is not attained
simultaneously by both sets of variables. Similar
formulae also relate the stretch moduli to the
Green's moduli, except that the final two entries
are replaced by A'c««and «(X, +A )'c»+ «p„re-
spectively, on the primary path.

By contrast, the condition (31) for the second
type of eigenstate is invariant, together with the
eigensolution. To show this, we observe first
from (11}that the premise k„=0 implies

82
Qv wl 8qg8q+

for any other variables and the same reference
basis. Furthermore, in the presumed eigenstate
where c» =c», the solution 5q„~(0, 1, -1,0, 0, 0)
is represented by

8 8

Bq 8q 8q

in any asterisked coordinates. But the primary
path is endowed with the symmetries

8 8
(qi ~ q« ~ q« i q«) =0

~

2 3

within the assigned class of coordinate choices,
and consequently 5q«' ~(0, 1, -1,0, 0, 0). There-
fore,

k„*„5q„*~k*, -k* =P
8 8 8q 1 042 g3 1 8qg 8qg 8qg2 3 g

on the primary path, by like symmetries. Hence
6P„*=O by (22) since that equation is form invari-
ant. Equivalently, c„*„5q„*=0 which implies that
c22 c23 this condition can als o be ver ified dir ect-
ly from (8), in conjunction with the symmetries

variable P, passes through a stationary value, so
that the associated Young's modulus vanishes;
moreover, the eigensolution is just the path incre-
ment itself. Stationarity of P, is, of course, not
coordinate invariant. For example, p, for either
the stretch or Milstein variables is the applied
load l„while p, for the Green's variables is
l, /x, (an edge of the reference cell being taken,
as usual, to be the unit of length). We can view
this relativity also from the standpoint of the gen-
eralized moduli. Thus, if for the moment c„, de-
notes the Green's moduli and c„*, the Milstein mod-
uli, it can be shown from (8) that

C11 —41C11 + a1/ A1 & C22 — 2C22 & C12 —A1+C121 / 2

just listed. In summary, the routine omission of
the second-order terms in the external work (10),
irrespective of the choice of coordinates, does not
in this case lead to divergent predictions of either
the eigensolution or the eigenstate. (We remark,
however, that it is another matter whether stabil-
ity is always judged to be first lost there or not. )
The actual eigendeforrnation represented invari-
antly by (0, 1, -1,0, 0, 0) can be identified readily
from any convenient choice of coordinates: it is
an incremental pure shear at 45' to the reference
axes in the 2-3 plane [i.e. , in the plane of Miller
indices (0, 1, 1)]. As to the load environment in a
test of stability, we might, for instance, envisage
that this is such that every k„, =0 when the external
work is expressed in the Green's variables. Then,
during any disturbance, the load vector on each
face of the deformed cell varies passively as if it
were a fiber embedded in the material. ' In partic-
ular, the uniaxial load would remain dead during
the incremental shear. Therefore, this eigende-
forrnation for the envisaged criterion of stability
is similar in type to the branching strain incre-
ment on an intersecting secondgyy path along
which q, w q, under uniaxial load. That an incipient
bifurcation dq, ~(0, 1, -1,0, 0, 0) is initiated under
stationary load when C22=c23 is, of course, also
directly apparent from (25) and (26) written in the
Milstein variables.

We come, finally, to the third and fourth types
of eigenstate in (31). With any reasonable choice
of coordinates, the (0, 0, 0, 1, 0, 0) eigensolution
represents a shear parallel to the reference axes
in the 2-3 plane. It is seen in calculations for
iron, ' relative to the Milstein variables and a cubic
reference cell in the unstressed body-centered
configuration, where it terminates the associated
stable range on the tension side [as judged by (28)
and (29) in these variables]. The (0, 0, 0, 1, 0, 0)
eigensolution is seen also in calculations for
nickel, ' relative to the Milstein variables and a
cubic reference cell in the unstressed face-cen-
tered configuration. However, in that case, the
eigenstate is embedded in an unstable range on
the compression side, beyond the algebraic mini-
mum in the load.

With these Morse models, or whenever the
strain energy comes solely from pairwise inter-
actions, it is known' that the Green's rnoduli pos-
sess the Cauchy symmetries

C44 = C23 7 C55 = C12 '

Correspondingly, from (33}, the Milstein moduli
on the considered primary path are such that

C44 Q 23 7 C55 )E1AQC 12

as can be recognized also from explicit lattice
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summations for the moduli. ' Thus c2*, or c,*, van-

ish with c4*4 or c,*„respectively. The latter char-
acterizes the fourth type of eigenstate in (31),
which is observed for both iron and nickel when

loaded in tension from their unstressed face-cen-
tered configurations. However, these eigenstates
are embedded in unstable ranges, namely where

c,*4&0 for iron and where c2~2 —c2*,&0 for nickel.

S
11 ~ 12 P ~ ~44 ZP~ . (36)

These values can be derived from the transforma-
tion equations (11) in conjunction with (35); or
more simply from (15) and (16) specialized to
pressure loading, with M, G, and S there standing
now for the respective forms k„5q„bq, (instead of
c„,&q„5q,).

On the primary path the Hessian form in any
variables can be arranged as

c„,bq„bq, = -', (c„+2c„)(6q, + 6q, + 6q, )'

+ ) (c)i cia}[(6qi 6q)) + + ]

+ c..[(6q,)'+ (6q, )'+ (6q.)'] . (3&)

V. STABILITY OF PURE VOLUMETRIC DEFORMATION

A well-defined loading environment, which is
also technically uncomplicated, is provided by a
uniformly pressurized fluid. We suppose the ap-
paratus designed so that the pressure on the crys-
tal does not vary during any departure from a pri-
mary configuration of equilibrium. Plainly, this
passive loading is conservative and its external
work 5u during a 5 departure is just the pressure
P times the further decrease in volume. The latter
is conveniently calculated with the Milstein vari-
ables: if the reference cell when arbitrarily de-
formed has edges a, b, c and included angles a, P, y,
its volume is

abc(1+2 cosa cosP cosy —cos'o. —cos'P —cos'y)'~'.

Assuming that the unstressed lattice is cubic, the
deformation on the primary path is purely volu-
metric. The edges of the reference cell are equal
to the all-round stretch A. , and so with a = A, + 5a
anda =-, v+Oa, etc. , in a disturbed configuration

5u/pA = -X(6a+ 6b + 5c) —(6a6b + 6b5c+ 6c6a)

+ —,'[(A6o. )'+ (wbp)'+ (x6y)']+ ~ ~ ~ (34)

to second order in the 5 variations. By comparison
with (10) we can read off the coefficients

(35)

relative to the Milstein variables. The correspon-
ding coefficients for the Green's and stretch vari-
ables are

k'„=p/~, k'„=-p/~, k'„=p/~;

When the environment also has cubic symmetry,
the form k„,5q„5q, can be expanded similarly. The

stability criterion (12) then yields the conditions

c»+2c» ~ 0»+2k»,

ll 12 ~ll ~12 7

44 44 y

which are of course coordinate invariant as in

(12). For example, this may be verified for the
Milstein, Green's, and stretch variables from
(35), (36), and the connections

Z'C' =C" +p~ a'C' =C" X4C' =C" .
ll 11 & 12 12 & 44 44 &

c =c c =c A.'c =c --Ph, '.11 11) 12 12 7 44 44
(39)

which follow from (8).
In fact, every set of conditions (38) is equivalent

to

~&0, p&0, p.'&0, (4o)

where z is the ordinary bulk modulus, -~~avdp/dX,
while p, and p.

' are the usual shear moduli in the
relations between the cubic-axes components of
the Cauchy stress increment 5o;& and the rota-
tionless strain increment 6e,

&
(reckoned conven-

tionally, relative to the current configuration).
To establish this equivalence we observe first
that, for the current cell volume )P,

2(6w —6u ) = x'6o;, 6e;, + ~ ~ ~ (41)

(c"„+2c"„)—(k"„+2k"„)= 3uA,

(cubi
—c„)—(k"„—k„)=

N N I 3
&44 —& ~ ~

(43)

The detailed equivalence between (38) and (40) is
now apparent. Finally, by combining (35) and (43),
the Milstein moduli are obtained as

to second order, where 5u is given by (34) and
summation is implied over i, j =1, 2, 3. The right-
hand term comes from the varying part of the
actual Cauchy stress, -p5&~+5o, ~, in the crystal
after a further deformation 5e;&, the second-order
effects of the interaction between -p5;, itself and

5c&, are already fully accounted for in 5u. Anal-
ogously to (37) we have, from first principles in
strain geometry,

A'6o, &6@,, =z(6a+6b+6c)'+-', g[(6a —5b)'+ ~ + ]

+ p, '[ (xba)'+ (x6p)'+ (X6y)'] (42)

expressed in the Milstein variables. Conditions
(40) now follow at once from the classical stability
criterion, which requires (41) and hence (42) to be
positive definite. Next, with 2(6w —6u) given by
(12) in these same variables, we can compare co-
efficients on both sides of (41):
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(1, 1, 1, 0, 0, 0)5X, when ~=0;

(5a, 5b, 5c, 0, 0, 0) with 5a+5b+5c =0, (45)

cgg = (K+ vp)A ~ c~~ = (K —
3 p —p)A. , c~~ = (p +p}iF

(44)

in terms of z, p, p,
' and the function p(a) on the

primary path. The moduli relative to any other
variables follow by applying (8}, as in the deriva-
tion of (39) for the Green's and stretch moduli.

Possible eigenstates under pressure loading
make (42} semidefinite, and the critical variations
are evidently of the following types:

c«+2c» &0, c» —c» &0, c44&0, (46)

that all coefficients k„, are zero at any stage on the
path. It seems that the "natural" environment for
pure volumetric deformation does not admit such
coordinates; to that extent, therefore, the convex-
ity criterion in this context appears as an entirely
notional concept of crystal strength. Whether or
not this is a correct assessment, we think it
worthwhile to set down the implications, in order
to give further emphasis to our main thesis.

By reference to (37) or (38), the convexity con-
ditions for stability are

(0, 0, 0, 5a, 5P, 5y), when iL' =0 .

when p. =O;
relative to the choice of generalized coordinates.
The eigenstates and critical variations, under
which the conjugate forces are stationary, are

In the first type the eigendeformation is purely
volumetric and is just the actual increment on the
primary path where P is stationary. For actual
crystals this would normally be expected only
under hydrostatic tension, namely where p passes
through a negative minimum. Computations of the
p(x) relation for various model lattices agree with
this expectation. For example, Milstein» "found
that for Morse function and generalized Morse
function calculations, a decreases with increasing
A. but remains positive while A. & 1, and Macmillan
and Kelly'~ found that z vanishes for argon (Len-
nard-Jones model) when X=1.09 and for sodium
chloride (Born-Mayer model) when A. = 1.16. The
second type of eigendeformation makes the cell
orthorhombic at constant volume; the third type
changes the included angles independently but pre-
serves the edge lengths. We are not aware of any
data on the stretch dependences of p. and p.'. It
might be instructive to investigate for some model
lattice the mutual ordering of the three eigenstates.

Stability on the primary path might alternatively
be judged by convexity of the internal energy func-
tion, relative to some set of generalized coordi-
nates. This, as we have explained, is tantamount
to postulating a passive loading environment such

Q stable: ~& —,'P, p. & -P, p.'& -P;
1Vl stable: ~& -', p, p& --,'p, p.'& -P;

1 I 1S stable: K& —P, p&-pP, p &-pP.

(48)

Where such stable ranges of deformation have
finite limits, these accord with the ordering in
(20) when p &0, and in (21) when p &0. This may,
for example, be seen from qualitative sketches of
any single-valued dependences of P, p, , and p,

' on
remembering that K = ——', adp/dA. . With the ex-

pected p(x} relation, and speaking only of the first
type of eigendeformation, the ranges of I and S
stability are identical and exceed the G range,
which itself extendsbeyond the point where the
bulk modulus vanishes.

(1, 1, 1,0, 0, 0), when c»+2c» =0;

(5q„5q„5q„0,0, 0), with 5q, + 5q, + 5q, =0,
(47)

when egg c» 0 '

(0, 0, 0, 5q„5q„5q,), when c„=O.

With the Green's, Milstein, and stretch variables
in turn as generalized coordinates, the predictions
of (46) with (39) and (44) are as follows:
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