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I show rigorously that an antiferromagnetic Ising model (with only nearest-neighbor interactions) on a Cu3Au
lattice with spins at the gold sites removed possesses finite entropy at zero temperature. I furthermore propose
that an ordered phase exists and that the zero-point fluctuation does not destroy this order.

I. INTRODUCTION

It is well known that the ground state of the pla-
nar triangular antif erromagnetic Isling lattice
with nearest-neighbor interaction is so degenerate
that entropy consideration always dominates at a
finite temperature and no magnetic ordering takes
place. ' The fcc antiferromagnetic Isling lattice,
which can be viewed as a stack of "triangular Is-
ing" planes with normals pointing in the [111]di-
rection, does go through a magnetic phase transi-
tion despite the fact that the ground state is in-
finitely degenerate, as is shown by Danielian. '
The total number of ground states is of the order

O 5~'~'of 2 '~, where N is the total number of spins
present; the entropy per particle therefore goes
like X'~' and approaches zero as N approaches

If we remove some of the spins from the fcc
lattice, interplanar coupling will decrease; the
ground- state degeneracy will increase. It may
then be possibl. e to achieve a state with finite

I

I

entropy per particle and no magnetic ordering
even though the lattice is still three dimensional.
I found that for some rather simple three-dirnen-
sional lattices the entropy per particle does be-
come finite; however, an ordered phase may sti.ll
be possible in these situations.

These fcc lattices are illustrated in Figs. 1-3
with spins at the positions indicated by the circles
removed. In particular, the lattice shown in Fig.
3 corresponds to the Cu, Au lattice with the non-
magnetic impurities at the Au sites.

I shall show in Sec. II rigorously that the entropy
per particle is indeed finite and then point out
in Sec. III why these degeneracies will only
reduce, but not eliminate, the average value of
the order-parameter correlation function.

II. THE GROUND STATES AND ITS ENTROPY

The form of the ground state and its degeneracy
is the subject matter of this section. My argument
will apply to the situations in Figs. 1-3 but I shall
restrict my attention to lattice 2. My argument
is similar to that of Danielian' and is strongly
influenced by his. The general philosopy is to de-
compose the lattice into basic building blocks,
enumerate all possible lowest-energy spin ar-

FIG. 1. Primitive cell of the superlattiee when im-
purities are put in. The circles indicate the positions
of the nonmagnetic impurities. The magnetic spins are
situated at the lattice sites and are not shown.

FIG. 2. Another possible primitive cell for another
superlattice. Again, the circle denotes the position of
the nonmagnetic impurity.
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FIG. 3. Another possible primitive cell for another
superlattice. Again, the circle denotes the position of
the nonmagnetic impurity.

rangements for these blocks, and finally show
that these arrangements can be put back together
on the lattice. I,et us look at Fig. 4 where we have
drawn a projection of the lattice in the [0, 0, I] di-
rection. The crosses indicate spins at the face-
center positions (0, a/2, a/2), etc. The squares
indicate atoms at the cube corners, E,F, G, H (see
Fig. 1). Consider a pyramid with a square base
(shed) as is indicated in both Figs. 4 and 5. These
pyramids constitute a basic building block of the
lattice; each of the bonds on the base (abed) is
shared with a neighbor while the bonds on the sides
(ae, be, ce, de) belong to the pyramid alone. If the
energy of each pyramid is minimized then the total
energy is also minimized. %e first find how many
possible arrangements there are and then show
that it is indeed possible to put these arrangements
together.

Figure 6 is a top view of the basic pyramid and
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FIG. 5. Side view of the pyramid. Only the pyramid
pointing upwards is shown. The corresponding one point-
ing downwards is not shown here.

shows all the possible lowest-energy states. It
consists of situations with 4, 3, and 2+ spins on
the base (we have not shown the corresponding
situation with the positive spins replaced by the
negative spine). This indicates that the lowest
energy block is of energy —2J and the only situa-
tion not allowed is as illustrated in Fig. 8(c). One
can also put these squares together. A typical
situation is shown in Fig. 7 where circles repre-
sent one layer above and triangles represent one
layer beneath. Some other possibilities are illus-
trated in Figs. 8 and 9. Indeed the lowest-energy
states can be achieved. It is also amusing to point
out that, with the arrangement in Fig. 7, we can
prove that the system possesses a finite entropy
per particle at absolute zero. This is because
each spin in a circle site can be up or down. The
number of possible ground states is thus larger
than 2N~' where N is the total number of spins.
Thus S/N& ,'fn2. —

Note, however, that corresponding to the situa-
tion in Fig. 7, there is actually long-range order;
the spins on alternate layers are arranged just
like a planar antiferromagnetic square lattice.
There are, of course, other ground states for
which this order is destroyed (Figs. 8 and 9, for
example). The crucial question is whether the
importance of such states outnumber the present
one or not. To put it quantitatively, let us look

FIG. 4. (001) projection of the basic lattice. The
crosses indicate positions at the face-center positions
(O, a/2, a/2), etc. A base for a basic pyramid is indi-
cated by abed, with e as its tip. Positions indicated by
squares are occupied by spins one layer below at |'x,y, 0).
The lattice then repeats itself.

6a
-2J

6b
-2J

6c
OJ

6d
-2J

FIG. 6. All the possible spin combinations on a base
of a pyramid. The spin in the middle corresponds to that
of the tip of a pyramid from either one layer above or
one layer below. The corresponding combinations with
the "+"'s replaced by the "—" ' s, are not shown.
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FIG. 7. One possible set of ground-state configura-
tions. Note that the spins in the circle (one layer above)
can be either "+"or "-"so that the degeneracy of this
state is 2+~4 where N is the total number of spins.

at the correlation function b, defined by

6 = lim (S(r= 2 lz)s(r' = 2jx+ 2k' + 2 Iz)),
JM 00

where angular brackets denote thermal averages.
The ground-state average value of 6 is given by

& =n,S'/(n, +n, ),
where n, is the number of states with a nonzero
b and n, is the number of states for which the
order is destroyed. If n, /n, approaches zero (a
finite constant) as N- ~ then the order is
destroyed (retained). We have not been able to
settle this question rigorously. Instead in the next
section we shall give arguments indicating why we
think such an order is possible.

FIG. 9. Another possible ground- state configuration.
Only the configuration of the base of the pyramids is
shown. The spin arrangement of the tips can be easily
put in if one uses the choices in Fig. 6.

III. EXISTENCE OF LONG-RANGE ORDER

The simplest way by which we can flip the spin
B at the site 2jx+2ky+2l2 and hence destroy the
long-range order is to align its neighboring spins
on the upper and lower layer so that they point op-
posite to those on the same layer; thus allowing
spin B to move freely. This gives a contribution
to n, equal to 4n, and will not outweigh the order
state. Let us write n, =E,n,'", where the super-
script i indicates various possible spin arrange-
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FIG. 8. Another possible ground-state configuration.

FIG. 10. Graph showing the spin arrangements on a
domain wall. The graph on the right-hand side is a sec-
tion of the regular lattice shown here for comparison.
The graph on the left-hand side shows the domain wall.
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ments for which the long-range order is destroyed.
We thus have n,"'=4n, .

From the above argument we see that so long as
there is long-range order among the spins on the
basal planes of the pyramids, the fluctuation of
the spins on the tips will not drown out the order.
The simplest way to randomize the basal plane
spins is to create a domain boundary as is indi-
cated in Fig. 10. On the right-hand side of this
figure we have shown the spin arrangements char-
acteristic of our states; on the left-hand side we
have shown the simplest boundary we can think of.
In order that the spin arrangements conform to
either one ot' Fig. 6(a), 6(b), or 6(d), only two
situations are possible, corresponding to 0, =0,

= o,' = ' ' ' =+. By creating a domain boundary,
the spins 0,' are no longer free to move. The con-
tributions of this spin arrangement to n, is given
by n2" =2 '""n,N. The factor of N comes from
the different places at which the domain can be
situated. The above number is too small to be of

significance. The philosophy of the argument is
now clear. Each time we randomize the spins on
the basal plane, the spins on the tips will become
fixed; the resulting factor overcompensates the
entropy of the boundary location. This thus com-
pletes our argument in favor of the ordered state.

IV. CONCLUSION

There exist the ice models' that possess finite
entropy and yet long-range order. These are,
however, two dimensional. The present one is
three dimensional and still quite simple. It would
be interesting to investigate a possible relation-
ship between them.
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