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We obtain a theoretical expression for the change in Fermi-surface areas when dilute impurities are introduced
in a nearly-free-electron-like host metal or in a d-band host metal having no resonances in the immediate
vicinity of the Fermi energy. Following Stern, we obtain the Fermi surface from the real part of the self-

energy. The self-energy is derived within a pseudopotential T-matrix formalism which is developed as an
extension of usual scattering theory. We approximate the crystal lattice Green's function by a free-electron
propagator in the T-matrix equation. The final expression for Fermi-surface changes involves impurity
scattering phase shifts and pseudo-wave-function angular momentum expansion coeNcients. These are the
same parameters which enter the expression for the electron lifetime. The theoretical results are in agreement
with recent de Haas-van Alphen measurements in dilute lead and magnesium based alloys.

1. INTRODUCTION

{qq ~G~qg= [E -E,(k) -Z{k,E) -ie]-', (2}

where gg are the Bloch states in the perfect crys-
tal (in the absence of impurities) and H is the full

The concept of the Fermi surface is fundamental
in the theory of metals. ' As usually defined, the
Fermi surface is meaningful only for crystals in
which the one-electron Hamiltonian is perfectly
periodic. When an impurity is introduced into a
perfect crystal the Fermi surface formally ceases
to exist, at least as far as its definitionas amath-
ematical surface of constant energy in the space
of the Bloch quantum number k. The point is that
k only exists as a quantum number because of the
exact periodicity of the Qamiltonian, and this
periodicity is destroyed when an impurity is intro-
duced.

Nonetheless, as Stern has shown, ' ' one can still
speak in a meaningful way about Fermi-surface
changes upon introducing impurities. The key to
understanding this is the concept of the electron
self-energy Z(k, E)." It has been shown by Stern
that for weak scattering, ' or more generally, when
the "forward-scattering approximation" is valid, 4

it is meaningful to obtain changes in the Fermi
surface from the relation

~(k) =ReZ(k, E) .
Here ~(k) is the energy shift due to impurities
for the original Bloch state k at energy E. The
"forward-scattering approximation" assumes that
ReZ(k, E)»lmZ(k, E).» This insures that the life-
time, which is proportional to [ImZ(k, E)], is
long enough so that the energy shift can be ob-
served without the uncertainty principle blurring
it out.

In general, Z{k,E) is defined through the Green's
function G =(E H —i») ' by the re-lation"

Hamiltonian including the impurities. E,(k) is the
energy of state k in the absence of impurities. e
is a positive infinitesimal. In practice, the Qreen's
function appearing in Eq. (2) is averaged over all
impurity configurations since this ensemble-aver-
aged G is simpler to work with and has the re-
quired physical content.

Equation (2) is fundamental in that {gg~G[gg), and
hence Z(k, E}, enables one to calculate relevant
physical quantitiessohether or not the I'ermi sur-
face "exists." An important example is the theory
of the de Haas-van Alphen effect in dilute alloys.
It turns out that Qreen's-function calculations of
the de Haas-van Alphen periods" give results iden-
tical to those obtained by naively calculating
Fermi-surface area changes using Eq. (1). In this
respect, even when the "forward-scattering ap-
proximation" is not valid, and therefore Fermi-
surface changes are not meaningful in Stern's
sense, ' ' it is useful to pretend that a Fermi-sur-
face change is taking place. That is the position
we adopt here as we calculate Fermi-surface
changes according to Eq. (1).

It is worth emphasizing that ReZ(k, E) as deter-
mined from scattering theory does not rigorously
give the energy shifts of the unperturbed states al-
though it may enter theoretical expressions for
various phenomena in a role equivalent to such a
shift. In fact, it has been pointed out by Anderson
and McMillan' and others" that the poles of Eq.
(2) as determined by scattering theory do not cor-
respond to the perturbed energy levels except in
the case where the scattering phase shifts are very
small. This, of course, is consistent with Stern's
requirement that the "forward-scattering approxi-
mation" be valid.

To appreciate the distinction between ReZ(k, E)
and the actual energy shift one should recall how
complex Z(k, E) comes about. One starts with the
observation that the poles of the Qreen's function
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pin-point the energies of the eigenstates in the
perturbed crystal, and that these energies are of
course real. To show this, one can let G operate
on Z„iq„)(@„i=1, where 4„are the exact complete
set of eigenfunctions in the presence of the impur-
ities. One then obtains

G =g (E -E„-f~) -'i4 „)(e„i,

where E„are the eigenvalues of H. In the limit e
—0 for a crystal of finite volume, the poles of G
therefore occur at E =E„. On the other hand, the
poles of Eq. (2) occur at complex energies since
Z(k, E) is complex. The resolution of this apparent
paradox is subtle and involves the handling of the
e-0 limit and the V-~ limit (V is the volume). "
In the scattering-theory limit procedure the V- ~
limit is taken before the e -0 limit. This implic-
itly introduces the physical assumption that the in-
dividual discrete eigenstates are so close together
that only a level density is meaningful. " Analytic
continuation of the Green's function then gives a
pole at complex energy E =E,(k) +Z(k, E). This
pole simulates the effect of the state k and its in-
teraction with a level density of neighboring states.
The complex energy is associated with the complex
frequency m =E/5 which describes the time devel-
opment of a particle placed in the unperturbed
state if') before the interaction is turned on. This
frequency is not the real frequency associated with
a particle placed in the perturbed state i4 g). How-
ever, if the damping is small enough the two fre-
quencies must be approximately equal.

Keeping in mind these points concerning the con-
ceptual limitations of Eq. (1), we proceed to cal-
culate Fermi-surface changes. Our method of
calculation is based on pseudopotentials and or-
thogonalized plane waves (OPW's). '"" The QPW-
pseudopotential theory has proven useful, especi-
ally in dealing with simple metals"" and noble
metals. "'" Other techniques, based on the Kohn-
Korringa-Rostoker (KKR) formalism" '~ or Wan-
nier functions, "may be more useful for other
metals.

The phase-shift model for the T matrix which
we shall use is derived here more rigorously than
it was in our earlier discussion of Dingle temper-
atures. " ' Our results are similar in structure
to the results obtained through a KKH formalism
by Coleridge" in applying the theory he developed
with Holzwarth and Lee."

5A =- (2v/g )m~(ReZ(k, E~O)) (5)

where ms is the band-structure effective mass
with the sign convention that it is positive for an
electronlike orbit and negative for a holelike orbit.
5A is positive if an electronlike orbit area in-
creases or a holelike orbit area decreases, and
negative otherwise. The average (~ ~ ~ ) is defined
for any function f (k) as

(I(@) (yf( )
}

dk'

Vj
(6)

where vi is th. . magnitude of the component of vel-
ocity vg in the plane of the orbit and the integrals
are around the orbit.

To calculate Z(k, E) we use the relation that for
dilute impurity concentration"

Z(k, E) =cNT ~,
where c is the atomic concentration of impurities,
N is the total number of atoms, and Tt;g
=(g giT if') is the diagonal element of the T matrix
for a single impurity in the unperturbed Bloch
state representation. T(;k will be evaluated within
a pseudopotential scattering theory formalism.

III. PSEUDOPOTENTIAI. SCATTERING THEORY

A. Derivation of T matrix

will change the Fermi energy from the unperturbed
value E„' to the perturbed value E~ where

E~ =ED(k) + ReZ (k, E) . (~)

We assume for now that there is no change in
volume upon introduction of a very dilute concen-
tration of impurities (corrections will be dis-
cussed in Sec. V B). This implies that the change
in Fermi energy is zero. "'" We define 5k to be
the change in wave vector k in order to get to the
new Fermi surface from the old Fermi surface.
To lowest order in the concentration of impurities
the Fermi energy change is

5E~ =Ivy 5k+ReZ(k, Ez') =0, (4)

where 5E& ~E& -E& and vg =g 'aE, /s k is the vel-
ocity of an electron in state k.

Equation (4) allows one to solve for the change in
the component of 5k normal to the original Fermi
surface. This fixes the new Fermi surface. Upon
integrating around an orbit on the new Fermi sur-
face we obtain an area change 5A given by

II. FERMI-SURFACE CROSS SECTIONS

We obtain the change in Fermi-surface extremal
cross sections from Eq (1) for the case of a very
dilute concentration of impurities. The impurities 4g =(1-P)cg, (8)

To evaluate ~g we introduce the pseudo-wave-
function 4g, which is related to the exact wave
function @g by" "
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where H~, is the total pseudo-Hamiltonian, i.e.,
(10)

where H~„ the pseudo-Hamiltonian in the perfect
crystal, equals p'/2m + W', where p is the elec-
tron momentum, m is the electron bare mass, and
W' is the pseudopotential for the perfect crystal.
so is the impurity scattering pseudopotential.

The Lippman-Schwinger equation' based on Eq.
(9) is"

Cg =P„+(E H~, —ie)-'w&j&g,

where Q„are the unperturbed pseudo-wave-func-
tions stiafysi gnH(, pg =E,(k)pg. The connection
between g g and Q g is""

(12)

where P' is the projection operator onto the core
states of the perfect crystal.

The structure of Eqs. (9)-(11) is identical to the
equations in which H~, is replaced by a real Hamil-
tonian. Therefore, in analogy to that case we can
define a pseudo-T-matrix 1~' by

&eylT"Ifg& =&eyl~lcg&

and obtain

g~* = ao + ao Q ~'w + se Q~ re G~'w + ~ ~ (14)

where G~'=(E H",, fe) ' -plays-the role of the
Green's function for the pseudo-Hamiltonian. "

Since Tgg= &g,.l
tu

l
q'; &, assuming a Hermitian zv,

it follows from Eqs. (8) and (12) that

Tgg =
& &g&-„l&

l
c'- &+ ( +„- l

PwP —Pxv —wP
l
4- & .

(15)

Now according to pseudopotential theory, the
plane-wave matrix elements of P or P' are re-
garded as small compared to unity" (generally
(klPlk')c 0.1, where lk) stands for a plane-wave
state). Therefore, since Qg is generally plane-
wave-like in OPW-pseudopotential theory, "we can
ignore the second term in Eq. (15), and write to a
good approximation

(16)

Equation (16) is a generalization of a result ob-
tained by Austin, Heine, and Sham" for weak

where P =Z lo&&al is the projection operator onto

the actual core states l~& in the presence of the

impurity.
Following pseudopotential theory" "we use Eq.

(8) to transform the Schrddinger equation H4'g
=E4 g into the corresponding pseudopotential equa-
tion

(9)

pseudopotentials. In their work T~ was replaced
by sv since the Born approximation was used.

B. Approximation scheme

g"' = w +mQ, 'so + zoG~'soG, 'so + ~ ~ ~, (17)

which is equivalent to the T matrix of a scatterer
w placed in a free-electron gas. Assuming spher-
ical symmetry for m, the plane-wave matrix ele-
ments between plane-wave states on an energy
shell is therefore"

2

(klT 'lk') = g (2l +1)e' ~ si n5P, (cos8),mk~Q, 0

(18)

where A~ is the Fermi wave vector, 0 is the crys-

Our next approximation restricts us to metals
with small energy gaps near the energy Ez. We

propose replacement of G~' in Eq. (14) by the free-
electron propagator GP =(Ero -p'/2m —ie) '. This
replacement is valid for small band gaps since
only electrons scattered by w into the relatively
few states in the immediate vicinity of the gaps are
exposed to the crystal-lattice scattering effects
contained in G~ but not in Go~. Mathematically one
can see this by inserting the complete set of inter-
mediate states" (lpga&, la&) between the G~' and w

operators in Eq. (14). For small gaps, the con-
tribution is dominated by matrix elements of G~'

between free-electron-like (one-OPW) states

lpga&,

and these matrix elements are very close to the
matrix elements of Go~ between these states. This
implies G ' may be replaced by Go~' in Eq. (14).

Clearly a large domain of non-free-electron-like
states in the neighborhood of E~ and within scat-
tering range of u would spoil this approximation
scheme. We are thus restricted to nearly-free-
electron-like metals and to noble metals or other
d-band metals with resonances well removed from
E~. The d-band metal case can be handled within
the framework of Harrison's transition-metal
pseudopotential. " This would lead to extra d or-
bitals contributing to Eq. (8) and to Eq. (15). It
can easily be verified that these corrections are
of order n/(Ez -Z~), where b, is the 1 bandwidth
and E~ is the position of d band. The corrections
are therefore negligible provided that E~ is suf-
ficiently removed from resonance.

It is important to realize that our approximation
does not require that the individual atomic pseudo-
potentials of the host lattice are weak. We only
require that the energy gaps are small, i.e., that
the full pseudopotential is weak at a reciprocal-
lattice vector. This does not imply that the atomic
phase shifts are small. "

Our approximation then replaces (14) by
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tal volume, and 8 is the angle between k and k' on
the one-OPW Fermi sphere [k[= [k'[ =br. The
phase shifts 5, are at the Fermi energy. The P,
are Legendre functions.

We now expand Qg in plane waves, by writing

where q„are the reciprocal-lattice vectors, and
use Eqs. (7), (16), and (18) to obtain

Z(k, E) = g (2l + 1}E&e@tsin5&, (19)
Plkg Q0 f ~0

where

F, =g a„»(k)a„.(k)P, (cos8„„), (2o)
N»N

and where fl, =0/N and e„„iis the angle between
R-q„and k q„i I-n ob.taining (19) by using (18) we
have had to assume that the appreciable a„(k) co-
efficients occur for (k-q„) very near kz. This
"on-Fermi-sphere approximation" is a good one if
the energy gaps are small near the Fermi energy. "

We remark that the basic idea of using a plane-
wave T-matrix expression similar to (18) for de-
scribing scattering between Bloch states Pg was
originally suggested by Ziman along heuristic
lines. ' In our derivation we have shown how the
approximation can be justified within pseudopoten-
tial theory.

IV. CALCULATION OF FERMI-SURFACE CHANGES

The self-energy (19) leads via Eq. (5) to a rela-
tive change in the Fermi-surface cross-sectional
area A which is given by

217 ~ C (2l+I)(F,)sinN, .
E 0 =0

(21)

(
5A .bm 2gmlcgZ
A g'Q, s(E~)A (22)

where 4Z is the nominal valence difference be-
tween impurity and host atoms. 4Z can be related
to the phase shifts 5, through the Friedel sum
rule"

Note that in the free-electron limit (EP=1, and we
obtain a result identical to Soven's for the relative
change in area, or equivalently, in de Haas-van
Alphen frequencies. ' In the weak- scattering limit
(~6, ~«ys) we recover the perturbation theory re
suit based on replacing ReZ((t, Ez') by(pg~tvipg) in
Eq. (5). The free-electron weak-scattering limit
of (21) gives the rigid-band-model result" except
that the band-structure density of states s(Ez') in
the rigid-band model is replaced by its free-elec-
tron value mt'/s'O'. The rigid-band-model result
isSI

where m* is the phonon enhanced electron mass
and ks is Boltzmann's constant. " From Eq. (19)
we then obtain our earlier result"

2N 7SX~= 21+1 F& sin'5,
lg P Q0 gfg g~0

(23)

The (Fg factors can easily be determined for
each orbit of interest from an OPW calculation.
This has been done for Al, "In, " Pb, "'"and Mg."
The only undetermined parameters are the 5, char-
acterizing the impurity scattering. These phase
shifts can be obtained from first-yr inc iyles yseudo-
potentials or model potentials. It is easier, how-
ever, to obtain the 5, by fitting to experimental
data.

In the numerical calculations reported here for
Pb and Mg alloys we used the (Eg values which
we have calculated for Pb, ""and the (F,) values
which Fung and Gordon have recently calculated
for Mg." These values are listed in Table I along
with effective masses and cross sections of the
various orbits.

One set of phase shifts which we used were those
previously obtained from a local rescreening" of
published form factors. For Pb alloys, the form
factors used are those of Heine-Abarenkov-
Animalu. "' For Mg alloys, Fung and Gordon"
have calculated 5, using a similar procedure based
on the model potential of Aypapillai and Williams. "
These first principles 5, mere computed within
the Born approximation (as in Ref. 18). For con-
sistency, when using these 5, in Eqs. (21) or (23)
we treat them as small and replace sin25, by 25,
and sin'5, by 5,' in the respective equations. The
results for X» and 5A/A are shown in Tables II
and III for Pb alloys and Tables IV and V for Mg
alloys. (Values are labeled with superscript b in,
the tables. }

A second set of phase shifts which we used were
obtained by a three phase-shift fit to experimental
data. The three yhase-shift fit assumes that only
50 5 1 and 5, are nonvanishing. There are only
two fitting parameters 5, and 5„ the third shift 5,
is determined from the Blatt-Friedel sum rule"'"

AZ = —Q (2I +1)5,
2

1

provided that lattice distortion is neglected.
Equation (21) gives the area changes on alloying

in terms of the parameters (F,) and 5, . These are
the same parameters needed to calculate the Dingle
temperature X*which enters the de Haas-van
Alphen effect. ""

The relation between X* and the self-energy is

X» =-(m„jm»sk, )(imZ(k, Er)),
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TABLE I. Cross-sectional areas A, effective-mass ratios ~s/m and m*/mm, and ampli-
tude factors (E& ) for orbits on the Fermi surfaces of Pb and Mg.

Metal Orbit [A(a.u. )] (~Bs/~) (~ /~as) +p) (Ff) (E2) b

Pb
Pb
Pb
Mg
Mg
Mg
Mg
Mg

o, [110]
p[ioo] '
y[110]
p', (0 )
p~((30')

p, &(90')

q,'(45')
7', (0)

0.425
0.137
0.048
O.OQ22

0.0019
0.0072
Q.0020
0.0597

0.576
0.570
0.228

-0.085
-0.080
-0.107
-0.080

0.080

1.92
2.13
2.44
1.30
1 30
1.29
1 30"
1.25

1.380
0.484
0.041
0.807
0.778
1.432
0.490
1.031

1.456
1.396
1.097
0.854
0.869
0.589
1.109
0.969

0.449
1.049
1.578
1.298
1.302
1.090
1.215
1.000

Values from Ref. 33 for Pb and Ref. 34 for Mg (negative mzs/m indicate hole orbits).
Values from Ref. 20 for Pb and Ref. 32 for Mg.

'In Refs. 20 and 33 the orbits corresponding to the z, p, y oscillations are denoted by g, v,
and &, respectively.

"Assumed value based on taking electron-phonon enhancement to be isotropic.

(24)

where b,Z * is the effec tive-valence difference. Ac-
cording to continuum model prescription"

d, Z+=d, Z Z(5n-/n, ), (25)

where Z is the host valance and 60 is the local
volume change due to the impurity as estimated
f rom lattice distortion data. " The calculated X*
and 5A/A values using the fitted 5, are shown in

TABLE II. Dingle temperatures X*and Fermi-surface
area changes 6A/A in dilute Pb-Tl alloys per at.% Tl
(X* in K/at. %).

Tables II-V with superscript c.
Finally a third set of phase shifts were obtained

by treating all phase shifts as independent param-
eters not subject to the Blatt-Friedel sum rule.
This procedure, used previously in noble-metal
studies, "'"generates a set of phase shifts which
can then be used to calculate c Z* from Eq. (24).
The resulting X* and 5A/A values and the corre-
sponding 5,Z* are also given in Tables II-V. (The
X* and 5A/A values are labeled with superscript
d.)

Orbit Calc. Expt.
TABLE III. Dingle temperatures X*and Fermi-surface

area changes 6A/A in dilute Pb-Bi alloys per at.% Bi
(X~ in K/at. %).

X* 5.7
o.58'

v.6b

0 35
10.1
o.5o'

10.2 "
0.51

10.4'
0 50 Orbit Calc. Expt.

100'"'"
6A/A -1.8'

3.8
—1.02

8.6
—1.36

8.1
—1.25

55 6.4
6A/A —0.58

9.1 10.S
-0.53 -0.52

10.2 "
-0.50

X* 4.5'
6A/A -2.0

17
—1.07"

5.9'
—1.15

5.9'
-1.00

59
1.9' 5.8

1.33b
8.9
1.38

7 cl

1.36
6.v'
14

~Free-electron values obtained by setting (E&} =1 in
Eq. (23) and using Born-approximation phase shifts
computed in Ref. 20 from Heine-Abarenkov-Animalu
model potential (6p =-0.4430, 6& ———0.1514,62 ——-0.0581).

Full calculation using Born-approximation 6& given
above.' Calculated from best two-parameter fit with 6& subject
to Blatt-Friedel sum rule and DZ* taken from Ref. 20
(6p ——-0.135,6i ——-0.345, 62 ——-0.033,~*= —0.85).

Calculated from best three-phase-shift fit without
Blatt-Friedel sum-rule constraint (6p ———0.330, 6&
= -0.285, 62 ——-0.124, AZ* = —1.15)-

'Reference 33. There is significant experimental un-
certainty in X~ and 6A/A. The latter were estimated
from the figures in Ref. 33 and typically contain a + 20%
experimental uncertainty.

Calculated from rigid-band-model expression (22).

34
1.15'

5.9'
i.iv'

5.9
1.16

59
28

Free-electron values obtained by setting (E&) =1 in
Eq. (23) and using Born-approximation phase shifts
computed in Ref. 20 from Heine-Abarenkov-Animalu
model potential (6p = 0.3719,6.

&

——0.2519, 62 ——0.0252).
Full calculation using Born-approximation 6& given

above.
'Calculated from best two-parameter fit with 6& sub-

ject to Blatt-Friedel sum rule and AZ* taken from Ref.
20 (6p = 0 75 6

&

= 0.350 62 = 0.010 &Z~ = 0.81
Calculated from best three-phase-shift fit without

Blatt-Friedel sum-rule constraint (6p ——Q. 130,6
&

——0.345,
6p ——0.034, AZ* = 0.85).

'Reference 33 (see Table II).
Calculated from rigid-band-model expression (22).
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TABLE IV. Dingle temperatures X*and Fermi-surface
area changes 5A/A in dilute Mg-Li alloys per at.$ Li
(X*in K/at. %).

Orbit Calc. Expt.

24+

6A/A

24
6A/A

X+ 24
&A/A 8.2

16b
15

15'
16b

27b
72'

f24c
21

12.5
24

11 1 c

73'

9.6"
17 d

9.6
19'

10.6
6 4d

91
f78

9.6'
178

10.6'
7 ~

2'

p2~ (45') X*

q,'(0 ) SA/A

24 ~ 11 13

-7.3' 5.8 b 70c
9.5

-6.0
94
6.9'

~Free-electron values obtained by setting (F&) =1 in
Eq. (23) and using Born-approximation phase-shifts
computed in Ref. 32 from Appapillai-Williams model
potential (6p =-0.699, (5& ——-0.136,62 =-0.025).

Full calculation using Born-approximation phase
shifts given above.

Calculated from best two-parameter fit with 5& sub-
ject to Blatt-Friedel sum rule and ~*computed from
data in Ref. 38 (6p -—-0.2f 5, 6& ——-0.235, 62 ——-0.130,
hZ* = -1.00).

Calculated from best three-phase-shift fit without
Blatt-Friedel sum-rule constraint (6p = —0 310 t5g

Q2
—-0.088, ~*= -0.85).

'Reference 32.
Calculated from rigid-band-model expression (22).

~Reference 36.

V. DISCUSSION
A. Comparison with experiment

We note from Tables II-V that the fitted phase
shifts give good agreement with the experimental
values for both X~ and 5A/A . The calculations
based on first-principles pseudopotentials do not
agree with experiment. This lack of agreement is
to be expected in view of the crude determination
of impurity scattering phase shifts through the
Born approximation. (See Sec. V C for further
discussion. )

It is encouraging that the values of 5, obtained
from the fitting procedures based on independent
phase shifts without the constraint imposed by the
Blatt-Friedel sum rule (24) are close to the 5, val-
ues obtained by the fitting procedure in which the
sum rule (24) is imposed as a constraint. An ex-
ception is the case of MgLi where the ~Z* for
optimal fit is -0.85 rather than -1.00. The -0.85
value is in better agreement with the hZ* value of
-0.93 estimated by Fung and Gordon" using the
method of Tripp and Farrell. 39 [Unfortunately the
~Z* value for MgIn estimated by this method is"
0.85 and this gives a considerably poorer phase-
shift fit to experimental data than the ~Z~ value of
1.01 com~uted from Eg. (25).] It turns out that for

PbBi, MgLi, and MgIn the agreement with experi-
ment is spoiled by attempting to use a two-param-
eter fit with ~Z* fixed at a value appreciably dif-
ferent from the optimal aZ~ (typically a 20%
change in ~Z* leads to at least a doubling of the
total error). This sensitivity implies that lattice-
distortion effects need to be accurately known in a
fitting scheme which uses the Blatt-Friedel sum
rule.

Although the rigid-band-model expression (22)
gives reasonable agreement with experimental data
for 5A/A on several orbits, we note that there are
some significant departures from rigid-band be-
havior in Tables II-V. One can expect such de-
partures on orbits where an (F,) differs consid-
erably from unity and the corresponding phase
shift 5, is appreciable. This is the case on the y
orbits of Pb where (F,)=0.04. This small (F,)
value leads to a reduced s-like contribution to
5A/A and hence a smaller 5A/A than expected
within the rigid-band model. This effect is some-
what evident in Pb Bi and is in agreement with ex-
periment. However, the same effect apparently
worsens the agreement for Pb Tl.

The s-like reduction in 5A/A may also explain
the observed failure of the rigid-band model in the

TABLE V. Dingle temperatures X*and Fermi-surface
area changes 6A/A in dilute Mg-In alloys per at.$ In
(X+ in K/at. %).

Orbit

X*

Calc.

21 20
-f6 -17

20
-18d

Expt.

18'
X~

p~(30 )

X*

~(,45') X+

yi (0') 6A/A

27 a

-8.2

7 3f

2pb
—17

35
-7.9
16b

6.4'

20c
-19

22c
-6.4
21

6.6

20d
-20

22d
-6.8
21d

6.9

216
19'
22'
-7.4
210

6.6'

Free-electron values obtained by setting (F~) =1 in
Eq. (23) and using Born-approximation phase shifts com-
puted in Ref. 32 from Appapillai-Williams model potential
(6p ——0.804, (5 i ——0.183,6g = 0.004).

Full calculation using Born-approximation phase shifts
given above.

'Calculated from best two-parameter fit with (5& subject
to Blatt-Friedel sum rule and bZ* computed from data in
Ref. 38 (6p-—0.470, 6) -—0.345, 52 = 0.016,6Z* = f.pf).

dCalculated from best three-phase-shift fit without
Blatt-Friedel sum-rule constraint (6p ——0.465, 6& = 0.345,
5g —-0.030, b,Z~ = 1.05).

~Reference 32.
Calculated from rigid-band-model expression (22).

~Reference 36.
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case of Pb impurities in In, where it was found

that the rigid-band-model value is too high for or-
bits in the third-band corner of the In Fermi sur-
face." For these orbits (F,)=0.05." A similar
effect may have been observed in the P orbits of
AI upon addition of Ge." We have calculated (E,)
=0.38 for this orbit" and have estimated a large
5, for Ge impurity in Al. " Based on this picture
for A. lGe we have predicted" a sign change in the

low-field Hall coefficient as impurities are added.
This has been subsequently confirmed experi-
mentally. "

8. Effects of lattice distortion

It is straightforward to modify our 5A/A results
to take into account the volume change upon alloy-
ing. Following Stern, "we can correct our results
by simply changing the volume of the crystal ma-
trix to its appropriate final value. This value hV'

is determined from the continuum theory to be

(&d, V)(1 —2o)/(1- cr), where 5,V is the total volume

change upon alloying and cr is the Poisson ratio"'"
(the local volume change at the impurity is 5Q =aV
—AV').

The volume change then adds to our 5A/A ex-
pression (21) an amount (aV'/A)(dA/dA), where
the volume derivative of the Fermi surface area
is that associated with hydrostatic pressure de-
formations. This derivative is known experimen-
tally for a number of pure metals. " Using experi-
mental values for the Pb,"and Mg, "orbits under
consideration we find that the correction to 5A/A
is negligible (less than two percent in all cases).

The local distortion field is more difficult to
treat. It was included in our analysis through the
Blatt-Friedei sum rule (24) and the continuum-
model expression (25). This approximation seems
to work well since the fitted 5, are very similar
whether or not the sum rule (24) is imposed as an
additional constraint. However as mentioned earl-
ier, the continuum expression (25) is suspect in
the case of MgLi. It has also been challenged in
the case of noble metals, "where more realistic
treatments of lattice distortion were shown to be
necessary. ""

We remark that our calculations may be extended
to treat more realistic models of lattice distortion
as well as complex anisotropic scattering centers
such as di-vacancies and impurity clusters. To do
this we must go back to Eq. (17) and find the T ma-
trix for the multiple-scattering problem consisting
of only defects in a free-electron gas. The T ma-
trix is then expressed in the Bloch representation
through the expansion coefficients a„(k). This is a
much more tractable problem than one would con-
sider within KKR formalism where one needs to
treat lattice atoms and defects simultaneously.

C. Calculations from first-principles pseudopotentials

The failure of the first-principles pseudopoten-
tial calculations may be due to the highly simpli-
fied method of constructing the pseudopotentials
used here. Specifically, the local screening pro-
cedure is suspect. We are also ignoring additional
corrections in the nonlocal energy-dependent part
of the solute pseudopotential when it is placed in

the solvent lattice. More sophisticated pseudo-
potential constructions are needed.

A more fundamental difficulty may lie in the use
of the Born approximation for obtaining phase
shifts. In the view of Heine and Weaire, for ex-
ample, the Born approximation is not valid for
defects except perhaps in the case of isovalent
substitutional impurities, where the phase shifts
are generally small. " Although for all the dilute
alloys considered here the fitted phase shifts are
not very large (5, ~ 0.5), this does not insure the

validity of the Born-approximation formula" "
r'j, (kr) w (r)j, (kr) dr

2mk
(26)

where j, is the spherical Bessel function.
The exact phase shifts satisfy the equation"

2m
sin5, = —, j,(kr)w(r)y, (r)rdr,

0
(27)

where r 'y, (r) is the solution of the radial Schro-
dinger equation with normalization such that

y, (r) sin(kr -——
2 I«+5, ) as r

Now for 5, values up to 0.5 one can replace sin5,
on the left-hand side of Eq. (27) by 5, with an error
of only a few percent. (Even for 5, =0.8, the error
is only ten percent. ) This leads to an equation like
(26) except that the pseudopotential w is replaced
by an effective pseudopotential w,«(r) which equals
w(r)y, (r)/krj, (kr). The important point is that the
Born-approximation phase shifts of w,«are very
close to the exact phase shifts of w despite the
fact that the Born-approximation phase shifts of w

may be very different from the exact phase
shifts. "

We therefore suggest that our fitted 5, can differ
significantly from the first-principles 5, computed
within the Born approximation because the fitted
5, are essentially the Born-approximation phase
shifts of zo,«rather than of w. As far as we know
the distinction between w and w, « for first-
principles pseudopotentials has not been investi-
gated. Obviously, the distinction arises from the
distortion of the pseudo-wave-function from the
unperturbed plane-wave form since if y, (r)
=krj, (kr) then w, ff(r) =w(r). The quantitative ef-
fect of this distortion will be better understood
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when accurate first-principles pseudopotentials
are constructed for impurity scattering and the

appropriate phase shifts are obtained by numerical
computation. If the distortion effect is negligible
then the objection of Heine and Weaire" concern-
ing the use of the Born approximation can be re-
jected and Harrison's approach" I to impurity
scattering would be vindicated.

VI. CONCLUSION

A pseudopotential-based scattering theory has
led to expressions for Fermi surface area changes
[Eq. (21)j and Dingle temperatures [Eq. (23)j which
are similar in structure to the corresponding KKH
expressions. We have not invoked the muffin-tin
assumption, however, and hence we can handle
more realistic defect complexes and distortion
fields in a more consistent way. In exchange for
this advantage our results are restricted to near-
ly-free-electron-like host metals or to d-band
host metals with relatively small gaps and no d-

band resonances close to the Fermi energy. For
the case of weak scatterers (e.g. , iso-valent im-
purities) our results reduce to first order pertur-
bation theory using pseudopotentials and multiple-
plane-wave pseudo-wave-functions.

We have been able to fit experimental data for
Pb and Mg alloys using a two-parameter phase-
shift model. Departures from rigid-band-model
behavior can be traced to non-free-electron-like
amplitude factors (E,) combining with appreciable
phase shifts for that l value. Phase-shift calcula-
tions from known pseudopotentials us'ing a local
rescreening within the Born approximation do not
give good agreement with experiment. It is sug-
gested that further effort be made in determining
phase shifts from first-principles pseudopotentials
without using the Born approximation or linear
sc reening.
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