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The Hohenberg-Kohn-Sham (HKS) density-functional equations are solved for clusters of atoms using the
linear muffin-tin orbital method (LMTO) of Andersen. The approach is numerically efficient and the self-
consistency condition applies to the full potential. Binding energies, equilibrium separations, vibration
frequencies, and dipole moments calculated for a series of first-row diatomic molecules agree well with
experiment, indicating that the HKS scheme gives a quantitative description of the energy and electron-density
changes associated with chemical bonding. The ability of the LMTO method to treat non-muffin-tin potential
terms and its energy-independent partial-wave basis make it ideally suited for application to larger systems.

I. INTRODUCTION

The calculation of total energies of atomic sys-
tems, whether arranged periodically in a lattice
or in a cluster of finite size, has received con-
siderably less attention from physicists than the
determination of one-electron properties such as
band structures and Fermi surfaces. One reason
for this has been the absence of a systematic for-
malism for performing such calculations. Over
the last few years, however, the density-func-
tional formalism of Hohenberg, Kohn, and Sham!
(HKS) has given remarkably good results for a
wide variety of systems, in spite of the use of a
simple local density functional for the exchange-
correlation energy. Detailed calculations of the
surface energy and work function of simple met-
als,? and of the cohesive energies, atomic vol-
umes, susceptibilities, and bulk moduli of transi-
tion metals® show very good agreement with ex-
periment. That this accuracy is not limited to
extended systems has been demonstrated by
Gunnarsson and Johansson,* who obtained a very
good binding-energy curve for the hydrogen mole-
cule using the HKS formalism with a spin-density
functional. In view of these successes, it is im-
portant to develop methods for solving the HKS
equations in systems intermediate in size between
H, (where discretization methods are accurate)
and bulk close-packed metals (where a muffin-tin
potential is adequate). The present paper de-
scribes such a method which is both efficient and
accurate.

In the HKS scheme, the total energy E of a sys-
tem of electrons in an external potential V°*t is
regarded as a functional of the electron density
n(F¥). The correct ground-state density minimizes
the energy functional, and can be found by solving
the one-particle problem

[ 3 V24 V@) - €, Ju,@) =0, .1

with the self-consistency condition
Ve (F) = p(F) + VR (T) + V*o(F). (1.2)

Here,

o= [ a0,
veer) = 220D

and

n@) =Y fol ¥al®| 2

The occupation number of the nth state is f,, and
E*°(n) is the exchange and correlation part of the
energy functional. Once (1.1) and (1.2) have been
solved, the energy of the system is given by

E= Y ftn= [ dEn@)N 0@+ V()] + EX[n(P)].

(1.3)

Following HKS, we use the local-density approxi-
mation for E*¢,

= [ dEn@e (), (1.4)

where €*°(n) is the exchange and correlation energy
per particle of a homogeneous-electron liquid of
density ».> Since this is a well-studied function,
Egs. (1.1)-(1.4) constitute a parameter-free
scheme for the calculation of energies and densi-
ties of systems with an arbitrary number of elec-
trons.

The essential advantage of the HKS scheme is
that all exchange and correlation effects are
treated in a single functional which can be approxi-
mated simply and accurately.® By contrast, quan-
tum-chemical methods treat these effects by eval-
uating matrix elements of the form
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<¢(f1,...,¥~)|ﬁ;—1_T’,|¢(fl,...,m»,

where ¥(f,,...,Ty) is the many-electron wave
function and ¥, is an electron coordinate. These
are very sensitive to the detailed structure of the
wave function, which cannot be approximated
simply. The functions ¥,(f) in (1.1) can be viewed
as molecular orbitals, but for a system of non-
interacting electrons in the external potential Veft,
In this reference system, there is no correlation
and an attempt to evaluate the total energy of the
interacting system by forming a Slater determi-
nant from the ¥,(¥) and evaluating the expectation
value of the many-electron Hamiltonian would
yield poor results.

Experience in band-structure calculations has
shown the advantage of methods for solving eigen-
value problems such as (1.1) which use a partial-
wave rather than a linear-combination-of -atomic-
orbitals basis. One of the most popular, the Kor-
ringa-Kohn-Rostoker (KKR) or scattered-wave
method, has been used extensively in cluster cal-
culations.” Recently, a new band-structure meth-
od, the linear muffin-tin orbital method® (LMTO)
has been developed which also uses a partial-wave
basis, but which has two pronounced advantages
over KKR. Firstly, it has an energy-independent
basis, constructed essentially by expanding the
solution ¢,;(r;,€) of the radial equation for each
atomic sphere in a Taylor series about a reference

FIG. 1. Choice of cells for a diatomic molecule. R;
and R{™ denote muffin-tin and external radii, respective-
ly, and T{ is the center point of the ith cell. Region II
is that part of a cell outside the muffin-tin and is shown
hatched for one cell. The cells have cylindrical sym-
metry about the molecular axis.

energy €;;. Secondly, the method gives a varia-
tional solution of the eigenvalue problem for a
non-muffin-tin potential., This feature is essen-
tial for energy calculations, since the muffin-tin
restriction leads to unphysical binding-energy
curves in open systems.®

As an application of the HKS-LMTO method, we
solve Eq. (1.1) and (1.2) for the ground state of
some first-row diatomic molecules. Calculated
values of binding energy, equilibrium separation,
fundamental vibration frequency, and dipole mo-
ment are in good agreement with experiment and
compare with the best available configuration-
interaction calculations. The HKS-LMTO scheme,
therefore, gives an accurate description of the
energy associated with the formation of a chemi-
cal bond. This is significant in that the approach
is not in principle limited to small systems. Since
the LMTO secular matrix is linear in energy, ma-
trix diagonalization will become time-limiting only
when very large symmetry blocks are encoun-
tered. We anticipate that energy calculations
can, therefore, be carried out for clusters large
enough to be relevant to studies of defects in
solids or chemisorption.

In Sec. II, we give an overview of the basic
structure of the method and introduce the muffin-
tin-orbital basis functions. These are discussed
in detail in Sec. III and used to evaluate the LMTO
secular matrix in Sec. IV. The discussion of
these two sections follows closely that given by
Andersen and Woolley® and is included here for
completeness. In Sec. V, we consider the evalua-
tion of the charge density, potential and the energy
and in Sec. VI we discuss partial-wave conver-
gence. In Sec. VII, we present results for the
binding-energy curves of some simple diatomic
molecules, and conclude with remarks concerning
prospects for further applications. To aid con-
tinuity of the main text, various details are dis-
cussed in the appendices. We use Hartree atomic
units unless otherwise stated.

IL. SOLUTION OF HKS PROBLEM USING MUFFIN-TIN
ORBITALS

The basis functions we use will be discussed in
detail in subsequent sections. They consist of
muffin-tin orbitals x{ (x,T,);T,=F - T}, associated
with cells i (center T9) which fill all space. L is
a combined (/,m) partial-wave index. An example
of the subdivision of space into cells, which we
have used for diatomic molecules, is shown in
Fig. 1. Each nucleus is a cell center and there is
a third “concave” cell, comprising all space out-
side the two atomic cells. The muffin-tin orbitals
(MTO’s) are constructed from the spherically sym-
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metrical part of V°*! in each cell and contain an
arbitrary parameter, x. If ¥*<0, the x}, fall off
exponentially in amplitude away from T}, while
if k2> 0 they extend throughout the cluster.

For a given value of k, the best solution of (1.1)
of the form

() = Z Chxh (6, F), (2.1)

and the appropriate eigenvalues ¢€,(«) are obtained
by diagonalizing the LMTO secular matrix

M =(xXL| -3 V%+ VeU[E) —€|xi.). (2.2)

Although the spherical component of the potential
is used to construct the basis MTO’s, the matrix
elements (2.2) are evaluated using the full three-
dimensional potential (see Sec. IV). The only
approximation in solving (1.1) is then the lack of
completeness of the basis set. The diagonaliza-
tion of (2.2) is a linear eigenvalue problem and
will require less computer time than the evalua-
tion of the matrix elements in all but very large
systems.

The best estimates of eigenfunctions and eigen-
values follow by varying « and determining minima
in €,(k). In a previous paper,'! we showed that this
procedure generates essentially exact eigenvalues
for a muffin-tin potential. In total energy calcula-
tions, however, it is computationally inconvenient
that each eigenvalue €, have its own « value. To
simplify the calculation of the charge density, and
to reduce storage requirements, we solve (1.1) for
a single « value, and use « variation to minimize
the total energy. Restricting the choice of « in
(2.1) limits the class of density variations we
allow in the functional and leads necessarily to a
higher energy than the minimum of the functional
we would obtain if each eigenvalue had a different
k value, This in turn is higher than the exact
minimum, since the LMTO basis set is not com-
plete.

Once the eigenvalues and eigenvectors of (2.2)
have been obtained, the new density and effective
potential are calculated and the procedure iterated
to self-consistency. Repetition for several « val-
ues and interpolation gives the best estimate of
the total energy that can be obtained using con-
stant-x MTO basis functions. This procedure can,
of course, be carried out for any set of basis func-
tions. The MTO’s of Andersen have the particular
advantage of combining accuracy with ease of
computation as we now discuss.

III. MUFFIN-TIN ORBITALS FOR CLUSTERS

In Fig. 1, we define nonoverlapping muffin-tin
spheres of radius R, as the inscribed spheres

centered on T{, for the convex cells, and for the
concave cell as the region outside the sphere
centered on the midpoint of the cluster. In each
iteration, the potential V°*!(T) is expanded in
partial waves about each cell center

VeI (F) = ‘L;vu(r,m(m, (3.1)

where Y, is a (real) spherical harmonic. The
muffin-tin orbitals are then constructed from solu-
tions ¢,,(€;;,7,) of the radial Schrddinger equation
for the spherically symmetrical component

Voi (1’(),

- V2 (1
< Z "‘ﬁ/‘v‘u( i)+'(;1) —Eu>

X ¢,;(€,,7:)=0.  (3.2)

Here, €;; is a site and partial-wave-dependent
reference energy and ¢,; is normalized Withinthe
ith muffin tin

rmax
o1= 1, arrotien=1, (3.9)

where 7P*=0(R,) and »2*=R ;(~) for i convex
(concave). We define the derivative

byile,7y) ’ (3.4)

=€

o 9
Pril€y,7y) = ¢

and note that ¢,; and (1')” are orthogonal to each
other and to all core states of the potential.® Di-
mensoionless radial logarithmic derivatives of
¢4, ®,;; are denoted by

Y
Du"‘(m or, ¢u(€ua7{)> 2’ (3.5)

T§=h

with an analogous expression for Du, the loga-
rithmic derivative of ¢ Finally, the definition

= = %ul&,R;)
Q)li(D) ¢"((”’ ‘) 5 (3.6)

ensures that the linear combination

&, (D, r)=0(e,,7)+ wu(D)‘iu(fu 7)) (3.7)

has logarithmic derivative D. This can be chosen
to be equal to the logarithmic derivative of the
spherical Bessel function

K,(x,7r,), i convex,

cg(x,r,)z{ (3.8)

(Jy(k,7;), i concave,
where

Jy(k,7) = k7Y (kr),
(3.9)
ih{(kr), Kk2<0,

K,(k,v)=x"
167 {~n,(x’r), K> 0,
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and « is a given energy-independent parameter.
The functions j;, h{*’, n, are defined as in Abram-
owitz and Stegun.!? The atomiclike function (3.7)
has logarithmic derivative uniquely determined

by k and is independent of the energy € which
appears in the secular matrix. By contrast, its
counterpart in the KKR method ¢,;(€,7;) depends
explicitly on € and, for a given €, has a fixed
logarithmic derivative.

The basis functions of the LMTO method, the
muffin-tin (MT) orbitals x} corresponding to a
gite 7 and partial wave L, are now defined as
follows. Inside the ith cell,

Xi(k,F)= 2L (G,T))
( ®,(D(G}),r)), 7, inith MT,
EYL i } § { .
| N¥(G)Gj(x,r;), otherwise,
(3.10)
where the factor
N‘,(G)zé,,(D(Gi),R,)/G‘,(K,Ri) (3.11)

ensures the continuity of x},(x,i"‘) as well as its
logarithmic derivative at R;. In cell j#¢, we ex-
pand the Bessel functions centered on T about the
origin of cell j,T}, i.e.,

GLE)= 2 B (OFL. ), (3.12)
where B/, (k) are structure constants (see Appen-
dix A)

Jy(k,7,;), j convex,

F{G,):YL(?,){ . (3.13)

Kx("y’r;), J concave,
and we have used the notation

GL(F)=Gik,r,)Y, 7).

In cell j, we define

Xb(6, )= 2 BYL (84(F,E); 7 in jth cell,
* (3.14)
where
(& AD(F)),7r)), 7, injth MT,
(rj)l Ni(F)F{(k,r,), otherwise,
(3.15)

®L(F,T)=Y,

and
B (k)= BEL. (KNY(G)/NY(F).

The muffin-tin orbital defined by (3.10) and (3.14)
is thus atomiclike in the muffin-tin spheres and
is a spherical Bessel function between them. It is
orthogonal to all core states of the cluster and is
continuous and differentiable everywhere, subject
to the convergence of the sum in (3.14). This
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summation is an important feature of the LMTO
method and allows partial-wave contributions
which would be excluded in the corresponding KKR
calculation.

We now show that the LMTO

Palk, F) =2 Chixh(k,F), (3.16)
Li

where

®!(G,T;), Tincelli,
Xi(K,?,)E

Z BY,.(k)®%.(F,T,), Tincellj

Ll

(3.17)

can be a good approximation to the eigenfunctions
of the one-particle wave equation (1.1). For a
given « value and in a given muffin tin ¢; (3.16)
consists of contributions &f(G,T,) from the MTO’s
belonging to cell i plus contributions &} (F,T,) coming
from the tails of MTO’s centered on other sites.
The net result is a combination of ¢,;(€;;,7,) and
é4(€y;,7,) times a spherical harmonic. Pro-
vided that the coefficients C7; can be chosen ap-
propriately (for the values of the energy for which
this is possible, see Appendix B), the radial func-
tion takes the form

bu(€yy,7 )+ (€ —€) By (€4y,7), (3.18)

namely, the leading terms in a Taylor expansion
of the correct solution ¢,;(€,7;) of the radial equa-
tion of energy €. For a muffin-tin potential, a
value of « exists for which (3.16) is an exact solu-
tion of (1.1) between the spheres. There exists,
therefore, an LMTO which differs from the exact
solution by quantities of order (€ - ¢;,;)?, with
eigenvalue which differs from the exact one by

O(e —¢;,).28

As noted above (Sec. II), restricting the varia-
tion in « rules out the possibility of obtaining the
optimum LMTO solutions of (1.1). The stationary
nature of the HKS functional means, however, that
errors made in calculating eigenvalues and elec-
tron density largely cancel. Although systems
with a large spread in eigenvalues might cause
some difficulty with the constant « approximation;
the errors should not, in general, exceed those
inherent in the LMTO method.

The definition of the basis function (3.7) requires
a prescription for choosing the reference energies
€,;;. Since for a muffin-tin potential the error in
the total energy due to linearization of the basis
is of order (€, —¢€,;;)* we choose the €,;; by mini-
mizing

> fa

For the systems we have considered the energy is

1
I(C’,',,)z(e,,—eu)“. (3.19)
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insensitive to the €;; and the above procedure gives
results only marginally different from the more
obvious one of setting €,,=¢, the center of grav-
ity of the eigenvalue spectrum.

IV. CALCULATION OF SECULAR MATRIX ELEMENTS

If we define B}, =0, the secular matrix ele-
ments

My =(xh | - 5VE - V@) — € (4.1)

may be written as the sum of cellular integrals
M. =8,(2%(G)|H - €| 8}.(G)),
+ 2, (Bf1+ (0L (0)| H ~<| oL (F),
+(&}..(F)|H - €| 8}.(G)),BY,.

+ D B8 (F)|H €| 8% m (F)),BE |
RLT g m
(4.2)

where the subscript in ( ), denotes integration
over the kth cell.

It is convenient to separate each cellular integral
into three contributions.

a. Type I or muffin-tin contributions. These

involve the spherical part of the potential and ex-
tend over the muffin tins, for example,

[M},.(G,F)];=(8L(G)|-3V?

1
+ (an)i% Voilry) —€ Iq’i'(F»r,Elm MT*

(4.3)

Using definition (3.7) and the properties of ¢;; and
¢y, it is straightforward to show® that

(MY, (G, F)),= GLL'{wH DEFED)+ (e - €)
X[1+ 0 (DFDIw,, (D(G:)K‘i?:)]},

(4.4)
where

. 7
2y=
@ [? .

The integrals M%,.(F,G), M},.(G,G), M, .(F,F)
are obtained similarly.

b. Type Il contributions. These involve the non-
spherical part of the potential inside the muffin
tins

(ML, (G, F)]yy

max
2 ]
drivi o%i(ey,7y).

=(@L(O)] 20 Viwsr) Y8 (N, satas e -

(4.5)
Defining the Gaunt factors

Coprzn= [ @Y PV PVY,. 0, (4.6)

we reduce (4.5) to the sum of one-dimensional
integrals

'nlu
i
[MiL'(G,F)]1x=;CLL'L"fu dryri

i

X VLM;(T()‘I’H (D(G:);‘V()‘I’u (D(F‘,),‘V‘)
(4.7)

with the &,,(D,r,) defined by (3.7). The integrals
in (4.7) are evaluated accurately by ten-point
Gaussian integration.

c. Type IlII contributions. These are cellular
integrals over the part of the cells outside the
muffin tins

(M3 (G, F)]pyy
=(85(6)] k24 VH () - €| & Ny
T; outside ith MT. (4.8)

These integrals are evaluated using the projection
operators of Andersen and Woolley!°®

0 r)= [ @, 6EY0)Y,.0), (4.9)

with 6*(F,)=1 (0) for T, inside (outside) cell i. If
we define cellular potentials

Vilr)= ; O r)Vyii(ry), (4.10)
then
R”
i
[M},L‘(G’F)}III-"- ; Crpepe f, arr*Ni(G)
” R‘

X N4 (F)GY(k, 7 )Fi(k,7,)

X[V pu r;) + (k2 — €)(4n )1 268 v,
(4.11)

where R;=R,(R{™) and R{=R{** (R,) for 7 convex
(concave), with R{** the distance from T? to the
farthest (nearest) point in cell ;. The accuracy of
this procedure is limited only by the accuracy to
which projection operators (4.9) can be calculated.
Since these operators depend solely on the shape
of the cell they need be calculated once only. We
used Monte-Carlo integration with 10° points and
checked that the cellular integrals (4.11) are ac-
curate to a fraction of one percent, which is prob-
ably better than necessary.
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V. CALCULATION OF CHARGE DENSITY, POTENTIAL,
AND ENERGY

A. Partial-wave components of density and potential

With the HKS eigenfunctions given by LMTO’s of
the form (3.16), the charge density is

n@®=3f. 2, ChCLxilk,r XL (k,7),  (6.1)
n iJLL’

J
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where the LMTO normalization is given by

> cr.cn (xiIxin=1. (5.2)
ijLL’

The matrix elements in (5.2) have already been
calculated in evaluating the secular matrix ele-

ments. Expanding »(¥) in partial waves centered
at T leads to partial densities

ng (ry)= Zf,, L;~ <C},,,C,'1,.‘C“.L,.-<I>}. (D(G}),r )3k (D(GL), 7))

+2 22CL Cleg 2 Cuzon,Bfar BL(D(GY), 7 0L (DY), 7))
1

n i
+ ; CL’JCZ"):LZL Bi"L’_Bi“'chLLle d’il(D(F';l),7¢)¢;2(D(F§2),7',)>- (5.3)
! 172

This expansion has nonzero contributions up to
21,4, where I, is the maximum !/ value included
in(3.17). From it we construct the cellular density

figy(7y) E; 01z ring (). (5.4)

From the partial densities (5.3) we calculate par-
tial-wave components of the exchange-correlation
potential V*°(F) and the exchange-correlation ener-
gy density, €*¢(f). These quantities have nonlinear
dependences on the density and each partial wave
component must be calculated by two-dimensional
(Gaussian) integration, for example

Vst = [ a2 VmENYL (), (5.5)
where
n(F,) = ;nL,(r‘)YL(?,). (5.6)

There is a corresponding expression for €5(r,).
In practice, 10-20 Gaussian points provide suffi-
cient accuracy for such integrals.

The partial-wave components about each cell
center of the Coulomb potential

n
@)= [ ar 2EL (5.7)
are conveniently found by cellular integration.

Defining the Coulomb potential arising from the
charge density in cell ¢ as

¢,(F)= m‘ﬁ'_@‘r (5.8)
so that
o) = 2 o4(F), (5.9)

we obtain the partial-wave components of ¢,,

R l

bulr)=gis [ Carir SGan 6. (5.10)

+1 R, 7S
The cellular density is given by (5.4), », (v;) is
the smaller (larger) of »;,7;, and R;;=0 (R{*),R,,
=Rt (v), for convex and concave cells respec-
tively. The integral (5.10) is complicated by the
discontinuity in the derivative of the integrand at
r=7" and the Gaussian mesh used for the cellular
density. We have used Gaussian integration to
evaluate

d”zﬁz_ts'["u(”;) i ry)],

which has proved to be sufficiently accurate, in
practice.

The partial-wave components of ¢(¥,) about cell
center i are given in terms of the ¢,;(r;) by

Ris

Gri(F)=bp,0r)+ #ZZ fdlyiyL(/?l)YL’(?j)(pL'!(rl)
1

(5.11)

and can be evaluated as a sum of one-dimensional
integrals using the technique of Lowdin'* (see Ap-
pendix C). Once the ¢,; and the V¥, are known,
the HKS potential is in a form sultable for evaluat-
ing the cellular integrals required in Sec. IV.
Spherically symmetric terms (I=0) inside the
muffin tin are used to construct the basis func-
tions (3.6), as well as to perform cellular inte-
grals, and are treated separately. The term
ny;(7;) is calculated on a linear mesh from 7;=0
(R,) to R, () for i convex (concave). This is
interpolated onto the logarithmic mesh used for
solving (3.2), and Poisson’s equation is solved to
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obtain the intrasite Coulomb potential, Vii*™(r,).
The contribution due to the charge outside the
muffin tin ¢, Vit is evaluated using an expres-
sion similar to (5.11).

B. The total energy —“frozen-core” approximation

Once the self-consistent potential V** has been
found, the energy is given by Eq. (1.3) and (1.4).

Its evaluation is facilitated if we assume that the
4

nuclei , core w
E;= 2, (Z <¢,‘.l—év2|¢,‘.>-4wz‘f drrng(r)

i

core density does not depend on the internuclear
separation. With this “frozen-core” approxima-
tion, the total energy can be decomposed into

core (E,.) and valence contributions (E,). Let
nuclei

n(F) = n,(F) + n,(F) = n,(F) + 2 1 (7)), (5.12)

where the core density is written as the sum of
spherically symmetric terms which vanish for
7;>R;. Then

w© @ 2 «©
+8Tr2f dT*f d’riﬁ%—”ci(ﬁ}ﬂa(ﬁ)"“;”ﬁ dar, ﬁ"ci("t)im(”‘ci(ﬁ») (5.13)
0 (4]

and

val

Ev= 2 futa [ i @l30,@)+ V) - < u()

where Z,,; is the net positive charge of core i.

For the first-row diatomic molecules, E, is al-
ways less than 50 a.u. and may be evaluated to
sufficient accuracy using the cellular integration
techniques and partial wave arrays described
above.!® The core contribution E, is independent
of the nuclear positions and need be evaluated only
if absolute energies are required. In the present
work, we evaluate E, using an atomic program
and E, using the HKS-LMTO program. For larger
systems, a better procedure would be to evaluate
E, in the atomic program, in which case it would
be unnecessary to calculate E.

There might be considerable advantage in separ-
ating from E, a contribution arising from over-
lapping unrelaxed atomic densities. Apart from
having calculational advantages, this would lead
to a simple interpretation of the results and could
suggest useful approximations. We note that the
behavior of the HKS eigenvalues does not give a
direct guide to the variation of the total energy.
For example, a fixed-core density does not imply
that the core eigenvalues remain constant with
changing nuclear positions. The core eigenvalue
shift is first order in the change of the self-con-
sistent potential from atom to cluster in the
regions surrounding the nuclei. Although this may
be comparable with the binding energy, the chan-
ges in the core density and total energy are of
lower order in the same quantities and should
give a negligible contribution.

V1. PARTIAL-WAVE CONVERGENCE

All methods which employ a partial-wave basis
can only be useful if large ! components make no

J+ [ anc(F)[e"c(n(f))—e"“(nc(F))]+%25”7';—?"1, (5.14)
i#j i

I

essential contribution. In the KKR-cluster meth-
od,” for example, there is one [, to be chosen for
each site, and these determine the size of the se-
cular matrix. Eigenvalue corivergence is obtained
with small values of /., typically 1-3, while con-
vergence of the density requires much larger val-
ues and is rarely attempted. This difficulty is re-
lated to the transfer of Bessel-function tails from
site to site and the LMTO method has the advan-
tage that the maximum [/ value associated with this
transfer ,,, does not determine the size of the
secular matrix. The limit of the sums in (3.16),
therefore, places no restriction on I,,,, the limit
of the internal summation (3.17).

The present calculations were performed with
lnax = 2 for each site (including the concave cell).
This gives a 27 X 27 secular matrix which is then
symmetrized into blocks of size 9,6,6,3,3. Val-
ues of /,,, up to 7 were used, although larger val-
ues could certainly be used for small molecules.
For larger clusters, however, the rapid increase
in computer time with Z,,, (~I{,,) would limit the
calculation. Convergence of the method depends
almost entirely on choosing cell boundaries such
that the transfer sums (3.12) are used as far as
possible from their radius of convergence. De-
tails of our choice of cells for diatomic molecules
are given in Appendix D. With these cells, the
main effect of increasing /,,, from 4 to 7 was a
rigid shift in the binding-energy curves. For ex-
ample, for the ground state of the N, molecule,
this shift was 0.8 eV between /,,,=4 and 7 and 0.2
eV between /,,,=6 and 7. These shifts are to be
compared with the calculated binding energy of
7.6 eV (and a total energy of ~2950 eV!). Equili-
brium separations and vibration frequencies are
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almost independent of [,,, in the range 4-17.

In addition to 7_,, and I, ,, we must also choose
the maximum [ values for which potential and par-
tial densities (5.3) are to be calculated. The den-
sity obtained from the LMTQ’s has components
about each cell center up to ! ,=21,,, and we have
included all of these in the present calculations.
We included potential components up to I,=1, , but
many of these are negligible. In the case of N,,
the binding -energy curve with 7, , =7 shifted rigid-
ly by only 0.08 €V on changing [, from 7 to 4.

Provided that the sums (3.12) are used inside
their radius of convergence, the LMTO method is
intrinsically convergent. To establish this con-
vergence numerically is quite difficult (except in
the case of H, where convergence to 0.01 eV oc-
curred at /,,,=4), since Gaussian integration
methods are less accurate for more rapidly vary-
ing functions. Thus the small energy differences
we obtain between /,,, =6, 7 could equally be due
to numerical inaccuracies. That these differences
are small and that our results for a range of first-
row diatomic molecules are systematically ac-
curate is evidence that values of I, , ~6 or 7 are
sufficient, in practice.

VIL. BINDING-ENERGY CURVES FOR FIRST-ROW
DIATOMIC MOLECULES

Calculations for a series of first-row diatomic
molecules have been carried out using the HKS -
LMTO method. For reasons of space we do not
give a detailed comparison of the results with the
extensive literature on these systems.!® Qur aim
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FIG. 2. Calculations of the binding-energy curve for
the H, molecule. The Hartree-Fock results are due to
Kolos and Roothaan (Ref. 18) and K-W refers to the

accurate variational calculation of Kolos and Wolniewicz
(Ref. 19).

is to demonstrate the potential of the HKS density
functional scheme and the accuracy of the LMTO
method in connection with molecular bonding. In
general, our results are better than those obtained
by the Hartree-Fock method and compare with the
best available configuration-interaction calcuta-
tions. We emphasize that there are no adjustable
parameters in the HKS scheme, the only input
being the nuclear charges of the constituent atoms.
We have used the Gunnarsson-Lundqvist® approxi-
mation €*(n, ¢) for the exchange-correlation en-
ergy of a homogeneous electron gas of density »n
and spin density ¢. The spin density is zero in
the ground state of all molecules we have con-
sidered, except for B, and O, where it has been
estimated perturbatively using the spin-restricted
eigenfunctions. Binding energies are determined
by subtracting from the total energy of the mole-
cule the energies of the constituent atoms. These
are calculated using a spin-polarized program®’
with the same approximation for €*°(n, £).

The binding -energy curve we obtain for H, is
shown in Fig. 2 together with the results of a spin-
restricted Hartree-Fock calculation'® and an es-
sentially exact variational calculation.!®* Qur vi-
bration frequency of 4200 cm™ is somewhat
smaller than the experimental value (4400 cm™),
and the equilibrium internuclear separation of
1.44a,, slightly larger (1.401a,). These trends
are quite general for small molecules, although
the comparison with experiment is less favorable
when the bond is more complicated. The LMTO
energy curve lies a constant 0.1 eV above that cal-
culated by Gunnarsson and Johansson,* who solved
the HKS problem essentially exactly using a dis-
cretization method. This is in accordance with
the variational principle for the energy and indi-
cates that incompleteness of the LMTO basis is
unimportant in the case of H,. Since there is only
one eigenvalue and no core our other approxima-
tions introduce no error.

The binding -energy curve parameters of the
first-row diatomic molecules B,, C,, N,, O,, F,,
CO, and BF are shown in Fig. 3. The data plotted
correspond to the experimental ground states,?°
which coincide with the HKS ground state except
in the case of C,.*" Equilibrium separations 7,
and vibration frequencies w, have been deter-
mined by fitting the points closest to the minimum
(at least five in number) to a cubic equation

E)=E(r)+ A(r-v,)*+B(r-7,)3,

where 7 is the internuclear separation. While not
as remarkable as in the case of H,, the level of
accuracy is very satisfying. The trend across the
series is given correctly and differences between
theory and experimental are quite systematic.
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FIG. 3. Binding energies (Ep), equilibrium separa-
tions (7,), and vibrational frequencies for the ground
states (experimental) of diatomic molecules. Experi-
mental values are from Ref. 20.

Calculated equilibrium separations are too large
by ~(0.1-0.2)a,, vibration frequencies and binding
energies are too small by 100-200 cm™ and 1-2
eV, respectively. It is not yet possible to say
whether these discrepancies are due to the inac-
curacy of the local density approximation for the
exchange -correlation part of the energy functional
or to the LMTO approximation used to determine
its minimum. As we have stressed at several
points above, however, we will always obtain a
higher energy than the exact HKS energy, provided
our calculation is converged in [, ,. Since the
atomic calculations are essentially exact solutions
of the HKS equations, this means that the true
HKS binding energies will be larger than those ob-
tained here, and therefore in better agreement
with experiment. Furthermore, the constant
approximation will be most in error when the
spread of the eigenvalues is greatest, that is, the
smaller the internuclear separation. Therefore,
the exact HKS binding -energy curve should deviate
most from its LMTO approximation at smaller
separations and give equilibrium separations in
better agreement with experiment.

As a check on the electron density, we have
calculated the dipole moment u of CO and BF as
a function of internuclear separation. In Fig. 4,
the results are compared with Hartree-Fock
calculations® and with results derived from spec-
troscopic intensities.?*?* For CO, the dipole-
moment function has been determined in the form
of an expansion

#(1‘): Mo+ y,l('r—’re) + “2(7—73)24' U-S(Y—Te)a. (7.1)

For the nine points closest to 7,, we obtain ,
= -0.01 Debye (experiment: -0.112 D) and u,
=1.70 (experiment: 1.64+0.03). The signs and
order or magnitudes of u,, u, are also in good
agreement with experiment.

On the basis of these results, we conclude that
the HKS-LMTO method gives a quantitative de-
scription of the energy and electron density in a
chemical bond. Discrepancies between theory and
experiment are systematic and can be reduced by
improving on the constant-« approximation.

VIII. CONCLUDING REMARKS

We have described an approximate LMTO method
for solving the HKS density functional equations
for a cluster of atoms. Binding energy curves for
seven first-row diatomic molecules confirm the

A" B
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exptl re
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w
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"Bt I I 1
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FIG. 4. Dependence of dipole moments of CO, BF on
internuclear separation . Experimental values of the
equilibrium separation 7, are shown. Hartree-Fock
results are taken from Huo (Ref. 22) and the values de-
rived from spectroscopic intensities are from Lovas and
Johnson (BF: Ref. 23) and Toth etal. (CO: Ref. 24), LD,
for local density approximation, refers to the present
work.
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general accuracy of the HKS scheme in the calcu-
lation of energies and electron densities and sug-
gest further work in two directions.

a. Larger systems. The partial-wave basis and
a secular matrix linearly dependent on the energy
make the LMTO method ideally suited to the study
of larger clusters. Matrix diagonalization (~N3,
for N basis functions) will ultimately be time-
limiting, but only for very large symmetry blocks.
For the molecules considered here, our program
requires only a few seconds per iteration on an
IBM 370/168 computer. For larger systems, we
expect the time requirement to increase roughly
as N2 and to be able to treat ten-atom clusters in
less than 1 min per iteration. Applications cur-
rently under consideration are the simulation of
chemisorption on transition-metal substrates
using a 5-15 atom cluster, and the energy of de-
fects in a solid. In both cases, an extension of
the theory to include coupling of the cluster to an
extended system would be very useful.

b. Small systems. It would be of interest to ex-
tend the present calculations in two ways. Firstly,

J

to improve the solution of the HKS problem by (i)
including core relaxation, (ii) giving up the con-
stant-x approximation, and (iii) improving the
basis by allowing more than one MTO per site and
partial wave. Secondly, to examine more general
expressions for the exchange-correlation energy.
For example, the nonlocal extension of the HKS
functional proposed by Gunnarsson, Jonson and
Lundqvist®® leads to significant improvements in
atoms, and we expect this to be true for mole-
cules as well,
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APPENDIX A: STRUCTURE CONSTANTS

The Bessel functions J(k, T;) and K, (x, T;) sat-
isfy the following well -known expansion theorems?®

Ty, T =T =am 2 O LTk, Wk, T,

L'L”

47 Z: il'.!-lnKnlr.tnCLLlL" JL,(K, F)KLH(K, F’); = I> | FI ,

o)
-
K (k,T-T")=

an Y e, K B B, B F

L'L”

With the aid of (A1) the structure constants in Eq. (3.12) may be written

E pralel® pale
(4" I g K gl T),
T

sU=1=1% 1%41%-1 0
B0 ={ 4T S g T, B,
Jral-l w_qe
dr YT O Tk, rY)),

T
\

+0 _ %O 70
where T3;=7{ -9

APPENDIX B

If all L sums are carried to convergence, the
wave function

ZP,,(K, a= ;C’I',iX},(Ky Fi) (Bl)

is continuously differentiable. For a muffin-tin
potential it satisfies the Schrédinger equation in
the interstitial region for the energy € if

(A1)
i,j convex,
i concave,
j convex, (A2)
i convex,
Jj concave,
r
k*(€)=€ - Vyy, (B2)

where Vy, is the constant potential in the inter-
stitial region. For this value of k, the function
(B1) is therefore a solution if the Lth component
inside the muffin-tin sphere i is proportional to
the exact solution of the radial Schrédinger equa-
tion

buile, 7)Y L (F)). (B3)



15 MUFFIN-TIN ORBITALS AND THE TOTAL ENERGY OF... 3037

Using Eq. (3.17) to expand the MTO’s in (B1),
the condition (B3) is written

<c;i+ Z Z C",,Bf:L(K(E)))(i)u(im 7;)

j#i L’

+(CLeow6iD+ T o0 B k(@)

T
X‘i’u(fw 5)=Ajdule, 7)), (B4)

where A} is a constant. If a Taylor expansion in
energy of ¢,,(e, 7,) is inserted in (B4), it im-
mediately follows that (B4) is satisfied to first
order in (e - €,;) if

(C’iﬁ ; 2 C'bﬁﬁﬁff(é))) (€ —€;)

L’

= CLwiDGI+ 2 ChywnDFNBL k().
i# L
(B5)

At certain values of €, the Egqs. (B5) have a solu-
tion and the corresponding function (B1) satisfies
the Schrédinger equation to first order in (e — €;,).
It follows that ¢, whether determined from (B5)
or by evaluating the expectation value of the one-
electron Hamiltonian using this function, differs
from the exact eigenvalue by quantities of order
(e - €;;)*. By regarding « as a variational param-
eter instead of using (B2) we find the optimum
LMTO without having to solve the nonlinear eigen-
value problem (B5).

APPENDIX C: EVALUATION OF COULOMB POTENTIAL

In evaluating the integrals in (5.11) required
for the intrasite contribution to the Coulomb po-
tential, we use the method suggested by L8wdin.!*
Let the vector T9, linking two cell centers have
direction cosines afy;; with respect to the Z axis.
Let 4, 7, be angular coordinates for cell i,j such
that the Z’ axis is along the direction T§,. Then
the spherical harmonics obey the relations

m’=+1
Y100)= 2 YT G)Rm(abr), (1)
m'=-
where the R}, (Q) are rotation matrices. The in-
tegrals appearing in (5.11). may now be written

f AP YL ()Y 1PV ()
=2 [ T EOYE @)L, 0)

X R i (BY 4 )Ry m@Byy,),  (C2)

where we use the fact that #}, #) have a common ¢
coordinate. The integrals in (C2) are one dimen-
sional

A G AV

1
=211N’,"N',",f d(cosb;) Pi(cos;)PT.(cos6,)V, ,(7;),
-1
(C3)

where N7 is the normalization of Y7 and where

0

79 7S
cosf,=—tl——i4

riry (c4)
2
r;=(ri+ery; - 27w cosh,) /2.

For a diatomic molecule the three cells can be
chosen to have a common Z axis, F‘i’jz |r‘:, |Z,
and the rotational matrices are Kronecker deltas.

APPENDIX D: CHOICE OF CELLS FOR DIATOMIC
MOLECULES

The cells in Fig. 1 were chosen to optimize
the convergence of the expansion theorem for the
spherical Bessel functions (Appendix A). Ex-
pressing the tail of the ith MTO in terms of func-
tions centered at T} requires that

Cy;=7,/r3<1 for all T, ccell j. (D1)
For the concave outer cell (j=0), we require
Cyo=79/7,<1 for all T, c outer cell. (D2)

To show that (D1) and (D2) place quite severe
limits on the choice of cells, consider the case of
a diatomic molecule with cubic atomic cells. The
maximum value of C,, is then 0.86 (for T, at a

cell corner), but some points in the bonding re-
gion yield C;, equal to unity and expansion (3.12)
does not converge. Optimum cells for this struc-
ture may be found by defining the outer cell bound-
ary by

Ci=Cyy. (D3)

This yields cylindrically symmetric cells with a
small interstitial region. The maximum values of
Cis Cy; are 0.8 and rapid convergence of the I
expansions results. For larger clusters with
more complicated geometries, the maximum value
of Cy, will be closer to unity and higher Z,,, values
will be necessary. The optimum way to include
them would be to introduce a site-dependent Z,,,
and increase this only for those cases where C;,
or C,;, is large.

int
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