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We present results of computer simulations of the time evolution of a model binary alloy following quenching.

Our model system is a simple cubic lattice each site of which is occupied by either an A or a B atom. There

is a nearest-neighbor interaction which favors segregation into an A-rich and a B-rich phase at a point inside

the two-phase region. Starting from a random configuration the system is quenched to and evolves at a finite

temperature T as exchanges between atoms on nearest-neighbor sites are allowed to take place. In our present

study, a lattice having a 20% concentration of A atoms (n„= 0.20), was quenched to temperatures T = 0.6T,
and T = 0.9T„ inside the two-phase region, and to T = 1.1T,. We study the evolution of the spherically

averaged structure function S(k, t), the energy, and various cluster properties, and compare our results with

relevant theoretical predictions. We also compare the late time cluster distributions of small clusters for

T = 0.6T, and T = 0.9T, with the equilibrium cluster distributions for corresponding temperatures on the

coexistence curve (namely, n„= 0.0146 at T = 0.6T„and nz ——0.1272 at T = 0.9T,). This shows that the phase

segregation at T = 0.6T, takes place in two distinct stages (i) a "rapid" condensation of the A atoms into

"liquid" drops and a "gas" phase consisting of monomers, dimers, etc. , and (ii) a "slow" growth of the

droplets. At T = 0.9 T, (which is well inside the "classical" metastable region) such a segregation still seems to

take place but at a slower rate.

I. INTRODUCTION

The quenching of an alloy from a completely
miscible initial state to a point inside the two-
phase region (where the equilibrium state corre-
sponds to the coexistence of two segregated
phases) is followed by a process of phase segrega-
tion. In the classical theory of this process it is
customary to think of a "spinodal curve'" which
separates metastable from unstable parts of the
two-phase region. When the quench is to a point
inside the spinodal curve the phase separation is
assumed to take place by long-wavelength fluctua-
tions and termed "spinodal decomposition. "2 This
is characterized experimentally by the formation
of a uniformly dispersed precipitate and subse-
quent coarsening of the grains." If, however,
the quench is to a state between the coexistence
curve and the spinodal curve, the system is thought
to be stable with respect to these delocalized fluc-
tuations, but still unstable with respect to strong
localized fluctuations, i.e., nucleus formation.
In this case phase separation is assumed to occur
by homogeneous nucleation. 4

The delineation of these two regions is based, in
the linearized Cahn-Hilliard theory, ' on a van der

Waals-like free energy density whose second
density derivative vanishes on the spinodal line.
Not surprisingly the actual situation is much more
complicated than that implied in this simple pic-
ture. In particular there is no evidence for a
sharp separation between the two regions. Rather
there appear to be gradual changes as one goes
away from the center of the spinodal region
towards the coexistence lines. As the coex-
istence line is approached the rate of segrega-
tion becomes slower and slower eventually be-
coming vanishingly small on any observable time
scale: one is then in the metastable region. '

In order to understand the kinetics of the phase
segregation process in a quantitative microscopic
manner we have been carrying out computer simu-
lations of a model binary alloy in two and three
dimensions. The time evolution of a quenched
A-B alloy with equal concentration of A and B
atoms was studied by Bortz et al.' for a square
lattice and by Marro et al.' for a simple cubic
lattice (hereafter referred to as I and II, respec-
tively). Further studies on the square lattice
were made by Rao et af.s (hereafter referred to
as III) where the case of a 20% concentration of
A atoms was also considered and a study was
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FIG. i. Phase diagram for the A-B alloy or for the
infinite three-dimensional Ising model. The coexistence
curve (solid line) is drawn according to a low-tempera-
ture series expansion (Ref. i2). The "spinodal" curves
are drawn assuming a local-free-energy density of the
form f(C) =-nC +PC4+yC below T~. y=0 corresponds
to the inner dashed line ("classical spinodal") and P =0
to the outer dashed line (Ref. i0).

made of the cluster kinetics.
In these simulations the sites of the lattice are

occupied by either an A. or a B atom, while the
interaction energy U is assumed to be of the form

U=-JQ'g(r, )q(f~),

where J&0, and q(r, }=+1, according to whether
there is an A or a 8 atom present at site i. The
sum in (1}is over all nearest-neighbor pairs in
our cubical sample containing N (2V 000 or 125000)
sites ~th periodic boundary conditions. This sys-
tem is isomorphic to the spin-& Ising model of a
magnet, 'where the spin at each site can point "up"
(A particle) or "down" (B particle) and to the lat-
tice-gas model for fluids, where each site can be
either' occupied (A particle) or empty (B particle).
The concentration of A atoms is n„=~(C+1), where
C =N 'Q, q(r, ) is the average magnetization in the
lattice. The phase diagram for this system
is given in Fig 1 (cf. II). Also shown in
Fig. 1 are two "spinodal lines": the clas-
sical one, corresponding to a local-free-
energy density f(C) =- n C~+ PC' and one based
on f(C) =- aC'+ ZC' suggested by Amit and Fisk
and Widom"; 0., p, y are positive constants.

Starting from a random configuration (which
corresponds to an initial temperature T, = ~) the
system is quenched instantaneously to a lower
temperature T=(k P) s', i.e., it is allowed to evolve
by exchanges of nearest-neighbor atoms which
take place according to a Markovian transition pro-
bability per unit time given by

Here &U, f is the change in energy of the system
which would result from the exchange and a ' is
the unit of time. In a real system the energy for
exchange is supplied by the phonons which makes

a strongly temperature dependent: n - v,e ~ ~,
where v, is an "attempt" frequency and (II) is a po-
tential barrier which has to be overcome and is
here assumed independent of configurations.

The linearized Cahn-Hilliard theory of spinodal

decomposition predicts a simple exponential growth

in time for the structure function S(k, f), defined

as the Fourier transform of the spatial correla-
tionN Z&q(r, )q(r, + r) following a quench inside the

spinodal. In contrast, our previous studies have

shown no such exponential growth. We could in-
stead represent the growth of the peak of S(k, t)
by a fractional power law, while the position of
the peak was observed to shift towards smaller
values of k, as the system evolves in time. This
behavior is similar to some experimental obser-
vations"" and the results in II were in good agree-
ment with the theory of Langer et al.~'

The presence of vacancies is assumed to play an

important role in the diffusion and segregation of
species in binary alloys. We have recently tested
the sensitivity of our results to the details of the
model by carrying out computations in which some
sites of the lattice were empty. This corresponds
to having q(r, ) in Eg. (1) take on the values 1,0, -1.
The time evolution now takes place by having an
A or 8 atom exchange positions with a neighboring
vacancy with a probability given also by (2). Pre-
liminary results for the case 49% A atoms, 49%
B atoms, 2% vacancies, T=0.59T„ indicate no
qualitative change in the development of S(k, f).

The phase points studied in II correspond to an
alloy containing 50% A atoms and 50% B atoms
(C=O) arranged on a simple cubic lattice; they
are denoted by P,(4' =1.5, T =0.59T,), P,(4PZ
=1.13V, T =O.VST,), P,(4PZ= 1,T =0.89T,), and

P,(4PZ=0.83, T=1.0VT,}in Fig. 1; T, =4.510j/ks
in our model system. " Here we extend the com-
putations to an alloy containing 20% A atoms and
80% B atoms (C=-0.6}which allows for a study
of cluster formation in the minority (A) phase
surrounded by the "matrix" (B) phase. We inves-
tigate the time evolution following quenching to
different temperatures; the corresponding points
in the phase diagram are marked: Q,(T=0.59T,),
Q,(T=0.89T,}, and Q,(T=1.0VT,) in Fig. 1. We
first describe the time dependence of S(k, f) and
the energy, and compare our results with relevant
computations of II. We then study the cluster pro-
perties of our system and compare the results for
the segregated (gas) phase of Q, and Q, with the
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FIGS. 3. (a)-(c) Early-time evolution of SQr, t) as a
function of time for different values of k at different tem-
peratures corresponding to the points Q&, Q2, and Q3,
respectively, in Fig. i. At the end of each line is shown
the corresponding value of p, = 30k/2n.
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FIGS. 4. (a)-(c) Complete evolution with time of s(k, t)
for different values of k at different temperatures, cor-
responding to the points Q„Q2, and Q3 in Fig. i, re-
spectively.

for n„=0.5, T=1.5T,. Vfe believe that our late
time values for S(k) are those of the equilibrium
system.

In Figs. 3 and 4 S(k, t) is plotted as a function of
time for different values of k, the early time be-
havior being shown in Figs. 3(a)-3(c), while the
late time situation is displayed in Figs. 4(a)-4(c).
A study of these figures shows that there is no
regime where S(k, t) grows exponentially. We see
that at Q, [see Figs. 3(a) and 4(a)] S(k, t} initially
grows with time, reaches a peak, and then de-
cays. The decay starts at successively earlier

times as k increases. This corresponds to the
crossover behavior discussed earlier. For the
smaQest-k values studied this peak is never
reached during the course of the experiment. For
Q, [see Figs. 3(b) and 4(b)] we find a behavior
similar to that for P, (see Fig. 11 in II). Here
S(k, t) continues to grow as time increases until
it reaches a maximum value at t', and then appears
to remain stationary. The maximum value as well
as t' decreases as k increases. This corresponds
to the common tail in Fig. 2(b). Similar results
are obtained for Q, [see Figs. 3(c) and 4(c)] where
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T =0.6Tc
n& = 0.20
T = 0.9Tc T =1.1T

TABLE I. Values of a, a', and a for different points
in the phase diagram assuming a power-law temporal
evolution for the first moment of S(k, t), k(t)- t, the
location of the peak, k~(t) - t~, and the height of the
peak, S(k~, t) t' .

TABLE II. Values for different points in the phase diagram
for the equilibrium value of N~/N =u as computed from
the relation (see II) u„(T)= u~(0)o'(T)+u&(T) for T & T~,
where ur(0) stands for the value of g or "surface area"
at T = 0, a(T) for the surface tension (taken from Monte
Carlo computations Ref. 16) and u&(T) is the equilibrium
value of u in the pure phase (estimated by Pade approx-
imants, Ref. 15). Our experimental equilibrium values
for g are also shown.

a
a'
a

0.19
0.20
0.70

0.12
0.16
0.41

0.07

0.24 Expt.
u„(T)

Theo r.

the system actually goes to equilibrium in our
simulations.

Following II, we characterize the time evolu-
tion of S(k, t) by (a) K(t), the first moment of
S(k, t}; (b) the location of the peak k (t); and (c}
the height of the peak S[k (t), f], using a parabolic
fit for three values of k around k . Setting k(f)
-(/+10) ', k (t)-(f+10) ', S(k, f)-(t+10)~', we
find values of a, a', a listed in Table I. Binder
and Stauffer' predict a = 3a' and a' =-', at "low
temperatures, " a'=-,' for T= T„and a'= ~ for
T &T,. Only the first of the predictions is in rea-
sonable agreement with our results for Q, . A
comparison of the exponents displayed in Table I
(n„=0.20) with those given in Table II of II
(n„=0.50} shows that the results are rather sim-
ilar for Qy and Pg and for Q2 and P,. We also
find that results for Q, are similar to that for
T =1.5T, and n~ =0.5 as given in Ref. 13. The
difference between values for a and a' in Table
I for Q„seems to be due to the fact that S(k, t)
for this point is not so sharply peaked as for Q,
near its maximum. This is even more so for Q,
where we could not determine a meaningful value
for a'.

We have also studied the shape of S(k, t) for
k&k (t) by fitting it to the expression

(3)

We find that the absolute value of c,(f) decreases
with time during the experiment; c,(t) itself is
always positive for high temperatures (Q, and Q,),
while it remains negative for Q, as one would ex-
pect for a system undergoing decomposition. The
values of c,(t) corresponding to the latest times
in our simulation are, for increasing temperatures
-0.38, 0.39, and 1.74, respectively. The quantity
c,(t) in Eq. (3) markedly decreases with time for
Q„corresponding to the crossover of the tail in
Fig. 2(a), while it decreases very slowly for Q,
and remains stationary for Q, giving rise to a
common tail in these two cases [see Figs. 2(b}
and 2(c)]. Our latest values for c, are 2.2V, 5.56,
and 7.69 for increasing temperatures, respective-

0.6
0.6
0.9
0.9
1.1

0.20
0.0146
0.20
0.127
0.20

0.082

0.55
0.79

0.18
0.08
0.65
O.53

The values of b and b' are given in Table III. A

comparison of the present results with those in II
(Table I), shows once again the exponents for

TABLE III." Values for different points in the phase
diagram of the parameters characterizing the time evo-
lution of the energy of the system [see Eq. (4)] assuming
a power-law behavior.

T =0.6Tc
n~ = 0.20
T = 0.9Tc T = 1.1Tc

0.16
0.28

0.02
0.14

~ l ~

1.0-1.1

ly. The rms fluctuations for the numbers quoted
above are in every case around 2%.

We have investigated the asymptotic time be-
havior of the quantity u =N»/N, where N» is
the number of A-8 bonds in the system, u is re-
lated to the energy per site U/N defined in Eq.
(1) by U/N = (2u —3)J. The equilibrium value of

u, which we denote by u„(T}, can be obtained for
the point Q, in the one-phase region, from
our computer experiments when the system
reaches its equilibrium state. " For points
in the two-phase region, u„(T} was obtained
approximately [see Eq. (3.1) in II] from es-
timates of the interfacial energy and the equil-
ibrium energy in the pure phase; the latter were
taken from our computer experiments on the co-
existence curve (Q,

' and Q,') which are in good
agreement with the values obtained from low- and
high-temperature expansions for the specific heat"
(see Table II for a comparison). As in our pre-
vious studies, the time dependence, for the
range of time studied, can be put in the form,
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Q, and Q, are rather close in value to those for
P, and P„with the exception that b' for Q, is
rather low. Our result for Q, seems to be in
good agreement with that of Binder and Stauffer"
(b' =—',}but not so at other points. Clearly how-
ever we might not yet be in the asymptotic regime
and the power-law representations are just one
of several possible ways of analyzing the data.

As mentioned earlier the theoretical predictions
of Langer et al.fj for S(k, t} are in very good agree-
ment with our results in D for n„=0.5. In that
theory it is assumed that S(k, t) obeys scaling laws
in the vicinity of the critical temperature, T & T,.
The function S(k, t} may then be expressed in a
universal form S(q, ) ), using dimensionless
variables q and 7 (cf. Ref. 11 and II). We
compared our results for Q, and Q, with
those obtained from the theory proposed by Lan-
ger et a/."with x, =0.617 and 0.805, respectively,
where x, = (n„—0.5}/(n„'""-0.5}. We found, not
surprisingly, that scaling no longer holds for our
concentrations and temperatures. Although the
theory approximately predicts the position of the
peak its predictions for S(k, t) are typically smal-l

1ler than the observed values by a factor of —,.
Indeed our observations for Q, and Q, are in
reasonable agreement with computations in Ref.
11 for x, = 0 and x, =1/W3, respectively, instead
of a larger values of x, they should correspond to.
This disagreement may be due primarily to the
use, in Ref. 11, of a quartic polynomial for the
free-energy density below T„or it may indicate
the necessity for a new theory to describe the
behavior of S(k, t) when the system is ftuenched
to points close to the coexistence line. It would
certainly be useful to carry out computations on
Langer's theory with a more general free energy
function. As already mentioned, using a quadratic
plus sixth-order term in the free energy' makes
the point Q, lie in the spinodal region, and it is
possible that Lounger's theory with such a free
energy would be consistent with our observations.
It would be even more interesting to understand
what is happening at Q, where, as we shall see in
Sec. III, the system is undergoing phase segrega-
tion at a very slow rate.

III. CLUSTER ANALYSIS

We describe now our observations concerning
the formation of "clusters" of A atoms following
quenching. A cluster C is defined as a group of
A atoms linked together by nearest-neighbor
bonds. Each cluster C was characterized in our
computations by k, the number of sites in the
cluster, and s, the surface area, defined as the
total number of AB bonds incident on C», . For
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1 1492

6 38
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8 26
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}6 5
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FIG. 5. Snapshot pictures of four 30&30 planes of the
random system &T =); i.e. , the initial configuration
corresponding to one of the runs. U in the figure stands
for u; N for the number of exchanges. Note the meaning
of the different symbols in Figs. 5-8: (T) denotes an "in-
terior" A particle (all of whose neighbors are A parti-
cles), + denotes a noninterior A particle, / denotes an
interior B particle, and the absence of any symbols in
the lattice, a noninterior B particle. The corresponding
cluster distribution in the system is also shown.

our model system, s corresponds to the energy of
the cluster C»„ i.e.,

u=N ' sN»,
Ss»

where N», is the number of clusters of type C», .
The computer is pr rammed to list, at pre-
scribed times, N»=, N, the total number of
clusters of size k and s» =,sN„, the total surface
area of all clusters of size k.

We first study the cluster properties qualita-
tively with the help of snapshot pictures of four
30 x 30 planes of the system, taken from one of
our runs, shown in Figs. 5 8. (See figure cap-
tions for the interpretation of the different sym-
bols. ) The cluster distribution tt for the system
at the time of the snapshots is also shown in each
of the graphs. The initial random state is shown
in Fig. 5. We note that in the initial state there
are no "interior" A particles, and the largest
cluster size is only 37.

Figs. 6(a) and 6(b) show evolution at f}},where
the final state should be one of coexistence of two
phases. After a rather short time, the system is
characterized by the appearance of (i) a stabilized
phase containing small clusters (k ~ 10) (we identi-
fy this as the gas phase as discussed later); (ii)
one or two giant clusters containing about (40-60)%
of the A particles present in the system; and (iii)
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FIG. 6. Same as in Fig. 5 for T =0.6T~ at two different
stages of the evolution. The value of the time, shown in
the figures, is in units of n '. See Sec. III for details.
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FIG. 7. Same as in Fig. 6 for T =0.97~. See Sec. III
for details.

a set of intermediate size clusters 10Sk ~ 2000
which break up and coagulate in an irregular man-
ner with a net tendency to an increase in size.
This situation is shown in Fig. 6(a). Little further
change is observed in the small cluster distribu-
tion throughout our experiment. The number of
intermediate size clusters, however, continually
decreases with time as the phase segregation pro-
ceeds. The large clusters also getnoticeably more
compact and regular in shape as time goes on. A
typical picture of the late state situation is shown
in Fig. 6(b).

Pictures for Q, are shown in Figs. V(a) and V(b).
For intermediate times [Fig. V(a)], no giant clus-
ter is present, but again the small clusters are
stabilized quite rapidly. A giant cluster does ap-

pear at later times, shown in Fig. V(b). The clus-
ters in this case however are significantly less
compact than for Q, at a comparable time. A com-
parison of Figs. 6(b) and V(b) also shows that, al-
though in both cases a very big cluster is present
(with about 2000 particles), their nature is quite
different; for Q, the cluster is very loose and re-
sembles more a "percolation" cluster; see also
Fig. 5.

Figure 8 shows the picture for Q, when the sys-
tem has more or less reached its equilibrium
state. This corresponds, in the lattice-gas lan-
guage, to a supercritical fluid at a density and
temperature where cooperative effects are sig-
nificant; we expect and find a cluster picture
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FIG. 8. Same as in Fig. 5 for T =1.iT~ at a late state
in our simulation for comparison with Figs. 6(b) and 7(b).

which is significantly different from what it is at
T =~, when the different sites are independent as
in Fig. 5. We note that there is no giant cluster
(and this is so even at much later times than the
one shown in Fig. 8): the small clusters are still
stabilized early, though not as early as in Q, or
Q2.

Let us now discuss the clusters in a more quan-
titative manner. Our first conclusion is that phase
segregation has taken place, during the course of
our simulation, at the point Q, . This can be seen
very clearly in Fig. 9, where the fraction of par-
ticles in clusters of size less or equal than k (de-
noted by fs) is plotted against log,P. The flat por-
tion of curve I in Fig. 9 for 10~k & 100, shows the
absence of these clusters in the late time cluster
distribution. In terms of the lattice-gas model,
this situation corresponds to a well-segregated gas
phase comprised of rnonomers, dimers, etc., and
a liquid phase made up of a collection of large
clusters resembling liquid droplets. As already
mentioned the phase separation at Q, takes place
on two different time scales: the vapor phase
segregates within approximately 10 time units
whereas the liquid phase has still not completely
consolidated even at the latest time of the simu-
lation (-4000 time units).

To examine whether the distribution for small
clusters (k & 10) is indeed similiar to that of a
pure gas phase, we performed computer simula-
tion at the coesixtence density (n„=0.0146; T
=0.59T,) marked Q,

' in Fig. 1. Here the system

rapidly evolves to its equilibrium state which is
made up of small clusters (k s 10) only. The num-
ber of clusters of size k, N~, at these two differ-
ent concentrations is shown, for small k, in Table
IV. Also shown there are the values of the "k-par-
ticle cluster partition functions" Z~ at this tem-
pera, ture, "

Zs(T) = Pe-szs (5)

Here the sum is over all different types of clusters
containing k particles and E, is the (lattice-gas)
energy of the cluster which is equal to 4PJN»,
where N» stands for the number of A. -A bonds in
the cluster (clusters differing only by a lattice
translation are counted as one). Z, =l, Z, =3e~~,
etc. (Our computations for k» 5 are based on re-
sults communicated to us by M. F. Sykes. )

At very low densities, when the clusters are es-
sentially independent, we expect" that N, =
VzsZ, (T), where V is the volume of the system and
z is the fugacity. If this relation held exactly then
the ratios A.,—= (Ns„/Z„„)/(Ns/Z, ) would be constant
and equal to z. Even when cluster interactions are
not entirely negligible we still expect" that A.„will
be approximately constant and correspond to a
"renormalized" fugacity. The values of X~ for our
various cases are shown in Table IV. They are
seen to be indeed approximately constant; es-
pecially in the equilibrium case, n„=0.0146.

We determine an "effective" value for A., A,„by
doing a least-squares fit to the formula for fs:

f, =N„'N, gnj}."Z„, k=1, . . . , 10,
n=l

the fraction of A particles in clusters of size k or
less. This gives X values X, which differ slightly

0.

0.

0.

0.
0)

1 2 3 5 7 10 20 4060 100
k

300 1000

FIG. 9. Size dependence of fI„ the fraction of particles
in clusters of size «k. The triangles correspond to
equilibrium states while the circles describe the situation
at the values of the time shown.
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TABLE IV. Values for Zz, the k-particle cluster partition functions [see Eq. (5)j and the

number of clusters N&. The results are averages over different runs (8 when the system was a

30 x30 x30 lattice and 3 when it was a 50x50x 50 lattice; some time averaging was also per-
formed in each case. The standard error of the mean is shown, also the density of clusters
A&, X, and A~ (see Sec. III for details). The value A& was not included in the calculation of A.

and A~. The case n~-—0.0146 refers to a 50x50x 50 latticeandthe valuesof NI, were normalized.

(a) r =0.6r,
ng = 0.0146 nz = 0.20

Na

1

2

3
4
5
6
7
8
9

10

1

13.445 067
301.283 05
8681.7083
282 852
10 037 271
377 899 380
14 890 638
6 075 549
25 502 368 x 10~

z=e ' ~ =O.off 1

273.36+0.63
37.25+ 0,27
8.89 + 0.10
2.73+0.10
0.97 + 0.06
0.35+0.03
0.17+ 0.02
0.03 +0.01
0.02 + 0.01

A,~ =0.0103

0.0101
0.0106
0.0107
0.0106
O.oi 02

X = 0.0106

227.44 +4.08
36.00+ 1.79
10.81 + 0.65
3.88 + 0.40
1.50 + 0.34
0.81 + 0.18
0.38+0.12

A~ = 0.0122

0.0188
0.0134
0.0125
0.0119
O. of 53
0.0123

A, = 0.0131

(b) T =0.9T

nz= 0.127 nz = 0.20

1
2

3
4
5
6
7
8
9

10

8.1548
110.836
1830.894
336.5853 x f0
660.1819x 10
f354.5203 x fo
28 711.7867 x 10
623 883.7193x f 0
1.382 24 x 10"

z = e '~&~ = O.0498

621.06 + 6.37
163.6f +2.15
72.17 + 2.19
43.78 ~ 1.34
25.39 + 0.99
19.33 + 1.29
14.17 ~ 0.55
12.39+0.87
9.06 + 0.66
7.94+ 0.85
Ae = 0.0338

0.0323
0.0325
0 ~ 0367
0 ~ 0315
0.0388
0.0357
0.0413
0.0337
0.0396

A. = 0.0362

475.04 + 5.2
116.96 + 1.95
50.83 + 1.60
27.71 + i.16
17.42+ 0.74
11,88+ 0.55
9.13+ 0.74
6.79 + 0.44
4.29 + 0.41
3.SS+0.53
~~ = 0.0321

0.0302
0.0320
0.0329
0.0342
0.0348
0.0375
0.0351
0.0291
0.0408

A, = 0.0346

from those obtained by averaging the X~, X (see
Table IV). In the equilibrium case (n„=0.0146)
we obtain X, =0.0103, which is close, as it should
be, to the value of the fugacity, z =0.0111=e "~~

on the coexistence line (zero magnetic field). For
the clusters in the gas phase at n„=0.2, A., = 0.0122
which is considerably higher than the value on the
coexistence line. This is in accord with our ex-
pectations"' since the gas phase at n„=0.2 is not
in equilibrium with a bulk liquid but rather with
relatively small liquid droplets (i.e., clusters of
sizes -1000) which, because of their curvature,
will be in equilibrium with a gas at a higher vapor
pres sure.

A problem arises now however if we want to
compute the expected number of monomers. Since
Z, =1, we should have, N, = V„,A., where V,~ is
the volume (number of sites) belonging to the vapor
phase. For n„=0.0146, V,~=N, the number of
sites in our system and thus N, =0.0103 x 27 x 10

= 278.1, in agreement with the observations [Table
IV(a)]. For n„=0.2 we might thi~ at first to use
the "lever rule" for obtaining V,~: this gives
V,~= 0.809 x 27 x 10'. This yields however a value
for N, which is about 20% higher than that ob-
served. We believe that this is again due to the
small size of liquid droplets with which the vapor
is in equilibrium. It is clear that the layer of lat-
tice sites directly adjacent to the droplets should
not be counted as part of the volume available to
the vapor. An approximate computation of this
reduction in V, (using the sum of s~ for large k
as an estimate of the "surface layer" ) brings the
observations in agreement with the theoretical ex-
pectations.

The analysis of the cluster distributions at the
point Q„shown in Fig. 9 and Table IV(b) presents
a more difficult problem. As already mentioned
the system in this case has not, during the period
of our simulation, evolved as far toward its final
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equilibrium state as at Q, . This can be understood
as resulting from the fact that the temperature is
closer to T,. This reduces the difference in den-
sity between the vapor and liquid phases, or equiv-
alently the difference in the composition of the bi-
nary mixture phases. There is a corresponding
diminution in the surface tension between the two
phases and thus of the force driving the segrega-
tion.

Quite aside from this fact, i.e., even if we had
continued our simulation to much longer times,
the cluster distribution in the gas phase at
Q,

' (n„=0.127), extends to much larger clusters,
k -200, than at Q', (see Fig. 9). Hence even after
phase segregation has taken place the gap in our
cluster distribution at Q, would not be so large
as at Q, . Indeed the large gas phase clusters
might appear to be small liquid droplets and the
physical interpretation of large clusters as liquid
droplets becomes now more obscure. We have
nevertheless carried out an analysis of the small
clusters at Q, and compared them with those at
Q,

' in the same way as for the lower temperature
points [see Table IV(b)]. We find the effective X

values: X, =0.0338 at Q,' and A.,=0.0321 at Q, . Not
surprisingly the value of X at Q,

' differs greatly
from the value of the fugacity (z =0.0498) there:
the "renormalization" is not small. Note however
also that there are large fluctuations (of order
20%) in the values of X„ i.e. , the cluster distribu-
tion is not described well by an "effective" fuga-
city. The same is true for Q, . Finally we men-
tion that we do not know the reason that X at Q, is
smaller than at Q', which is the opposite of what
happens at Q, and Q', . This may again indicate the
breakdown of the cluster-droplet analogy at these
densities and temperatures. " Nevertheless the
behavior at Q, seems characterized by the exis-
tence of small clusters like those of the gas phase.
This evidence of phase separation contradicts the
conclusion from the structure function (drawn
earlier) that Q, is outside the spinodal region.

In order to test the extent to which large clusters
are (at the late stages of our simulation) compact
and thus distinguishable from large "percolation"
clusters at infinite temperatures we have plotted
in Fig. 10 the "surface"-to-volume ratio s,/k of
clusters of size k vs k. We see there quite clear-
ly, that the larger clusters are considerably more
compact at the lower temperatures, especially at
7 =0.6T„ than at high temperatures. Neverthe-
less the actual value of s,/k for large k (because
s~ includes also "internal" A-B bonds it will al-
ways be proportional to k as k- ~) indicates that
our clusters are far from having an over-all com-
pact shape. An inspection of the pictures in Fig.
6(b) indicates that although the two-dimensional

3,8

3,2

2,6

2.0

5 10 100
k

500 1000 3000

FIG. 10. Size dependence of surface-to-volume ratio
s&/k for typical clusters at "late" times or at equilib-
rium.

cross sections are compact, the three-dimen-
sional structure is likely to be rather ramified. (The
critical density for percolation on the coexistence
line is n„=0.19 for the simple cubic lattice and
n„=0.5 for the square lattice. ")

We also note in Fig. 10 that the ratio s~/k at T
=0.91', and n~ =0.2 is equal to its value at n„
= 0.127, on the coexistence line for all clusters
of sizes less than about 200. This supports our
belief that phase segregation has taken place in
this system with the small clusters, k&200, be-
longing to the gas phase.

IV. TIME EVOLUTION OF CLUSTERS

There are currently several theories' '~"
which purport to describe the growth of precipi-
tated "grains" or droplets of the minority phase
after quenching. The growth of droplet size with
time then depends on the mechanism which is as-
sumed dominant in the phase segregation. In the
Lifshitz-Slyozov" theory the growth of grains is
accomplished primarily by the evaporation of A
atoms from one droplet and their deposition on
another droplet. This leads (after making various
approximations) to an asymptotic behavior in which
the volume grows linearly with time: R'(t) -R,'
~ t, where R(t) is some average droplet radius and
Ro is the "initial" value of R. Assuming interfacial
control of droplet growth Wagner predicts a lin-
ear time dependence for the surface area of the
droplets: R'~ '(t) —Ros~ ~ t. More recently Binder
and Stauffer'4 have developed a model in which the
growth of droplets, in the later stages of phase
segregation, is due primarily to the diffusion and
coagulation of large droplets: they find R'(t) ~ t' '
in three dimensions at low temperatures (c f. III
and review by Binder et al. cited in Ref. 2).
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TABLE V. Values for the exponents in Eqs ~ (6) and

(7) corresponding to different temperatures, g&-—0.20.
The values for m and n at T =0.6T~ seem to evolve in
time (see Sec. III for details). The rest of the values
are obtained from a fit to the data for t &100.

4.2,

3,4'

SYMBOL TEMPERATURE TIME SLOPE INTERCEPT rmsf

X 0 6 Tc t. ~450 0,36 1,71 0,04
+ 0,9 Tc t )100 0, 10 1.68 0.02
0 1, 1 Tc t )100 0,04 1.60 0.02

0.6
0.9
1.1

0.63 —0.36
0.10
0 04

0.11-0.19
0,00
0.00

3.0"

o' 2, 6"
O

2.2"

T =0.6
450&t)

SLOPE = 0.6
INTERCEPT=0, 9

rmsf= 0,0

It is tempting to interpret our clusters as the
droplets in the above theories. This is indeed
what we did in II when dealing with a two-dimen-
sional system. There are some difficulties how-
ever with this interpretation in the present case.
All the above theories assume (explicitly or im-
plicitly) that the grains are compact, approxi-
mately spherical, objects. Experimental investi-
gations of grain growth by means of electron
microscope studies of thin cross sections (or re-
lated methods) are also interpreted in terms of
compact droplets. As we have seen ho~ever this
is not at all the case in our system at the densities
we are considering. As already mentioned perco-
lation effects tend to give our clusters a shape
which is far from spherical and so their relation
to the "experimentally measured" grains is un-
clear.

While keeping these reservations in mind we
have analyzed the temporal behavior of cluster
properties in terms of power laws. The average
cluster size is

x V e b e» e- ~ w e
e

crossover. " Fitting our data for (k) for f & SO we
find at T =0.6T„m=0.49, which is in very good
agreement with the value 0.5 predicted by Binder
and Stauffer. " We further note that the exponents
m and n at Q, and Q, are much smaller compared
to those for Q, . This shows the difference in the
phase separation process at different temperatures
once again. It is obvious however that even aside

1.0
1,0 1.4 1,8 2,2 2.6 3 0 3.4 3 8 4 2

Iog (t+10)

FIG. 11. Time dependence of average cluster size (k),
vrhere the average is taken over clusters of size k ~ 10.
The slopes obtained from least-square fits to straight
lines are indicated.

(l )=(Q kN)(Q h',
) t

The average "surface/volume" ratio is

s sk'

0.9

0.8"

0.7"

SYMBOL TEMPERATURE TIME SLOPE INTERCEPT rmsf

X 06Tc t&450' 0 19 0 91 0 02
+ 0.9Tc t &100 0,00 0,55 0,00
0 1. 1 T, t &100 O.OCr- 0.56 0.00

In this way we find the exponents in Table V: Figs.
11 and 12 correspond to this analysis. ~

An inspection of Figs. 11 and 12 shows that the
exponent m in Eq. (6) seems to decrease with
time, while the exponent s in Eq. (7) increases
with time during the late states in our simula-
tion; the two values reported in Table V at T
=0.6T, correspond respectively to an initial fit
for 30 & t & 450 and to a late one, t & 450. This was
also the case in III and it may perhaps be inter-
preted as a change in the dominant mechanism of
aggregation or coarsening from that assumed by
Binder and Stauffer, or an even slower process,
to that assumed by Lifshitz and Slyozov; Binder
has given some arguments to explain this apparent

0.6'

~Co

0.5
O

0,4

450&t&3
SLOPE=-0

INTERCEPT=O.
rmsf =0,01

0,2"

0.1

1.0 1.4 1,8 2.2 2.6 3.0 3.4 3,8 4.2
log (t+10)

FIG. 12. Time dependence of average surface-to-
volume ratio (s/k) where the average is taken over clus-
ters of size k ~ 10. The slopes obtained from least-
square fits to straight lines are indicated.
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from the reservations mentioned earlier our data
are not sufficiently accurate to determine pre-
cise exponents.

V. SUMMARY

The time evolution of the structure function

S(k, t), the energyu, and the cluster properties
of an A Bal-loy containing 20% A atoms have been
studied following quenching from an initial ran-
dom state (T = ~) to different temperatures, T
=0.6T„O 9T„.and 1.1T, (marked by Q„Q„and
Q, in Fig. 1). We found that these are qualitatively
similar to those of an A Ba-lloy containing 50% A
atoms quenched to T = 0.6T„1.1T„and 1.5T„
respectively (see II and Ref. 13) and much larger
than the S(k, t) predicted (at Q, and Q, ) by the the-
ory of Langer et ul." If we adopt the criterion
that S(k, f) should not change appreciably for large
values of k (& 1/a) at late times (t & 100 time units)
if we are outside the "spinodal region, " then our
results indicate that Q, is within the spinodal re-
gion, whereas Q, is outside.

The phase segregation at Q, appears to take
place in two separate stages: (i) a "rapid" segre-
gation into a "gas" phase, consisting of clusters
of size ks10, and into "liquid" drops; and (ii) a
"slow" growth of the droplets. A clear gap ap-
pears in the cluster distribution rather early.
The late time distribution of clusters of size k &10
at Q, is found to be similar to the equilibrium dis-
tribution of the pure gas phase at Q', (on the co-

existence curve at T = 0.59T,), when the presence
of liquid droplets at Q„which changes the fuga-
city and volume of the gas phase, is properly
taken into account. The phase separation process
at Q, takes place at a much slower pace than at
Q, . It is far from completion even at t = 1600
units, in contrast to the situation at Q, . Yet we
believe on the basis of the cluster distribution that
here too there has been some segregation into dif-
ferent phases with the clusters making up the
liquid phase growing very slowly, in contrast to
the conclusion that would be inferred from S(k, f)
alone.

Our experiments therefore indicate that the con-
cept of a sharp spinodal line which separates un-
stable and metastable regions of our system is
probably untenable, and that "spinodal-like" be-
havior extends much closer to the coexistence
curve than that predicted by the conventional the-
ories. We are currently carrying on simulations
at T =0.59T, for different densities of A ~atoms

(s„&0.20) so that we may understand quantita-
tively the variation in the kinetics of phase segre-
gation as one proceeds from the spinodal region
towards the coexistence curve.
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