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Renormalization-group methods are applied to a set of coupled linear chains in a model in which direct
hopping between chains is excluded. Attention is focused on models in which intrachain interactions are
repulsive. It is shown first for two chains and then for N chains that a repulsive 8-function intrachain
interaction scales with decreasing temperature to the attractive fixed point. In the Nwhain model this
attractive fixed point is characterized by a chargeMensity wave whose phase is coherent between chains. A
variety of response functions, spin and charge density wave at wave vector 2kj; (kF is the Fermi wave vector),
and excitonic response functions are calculated numerically. We also evaluate the uniform magnetic
susceptibility and the charge-density-eave response at 4k„.A comparison is made to the behavior of TTF-
TCNQ {tetrathiafulvalene-tetracyanoquinodimethane) at temperatures above 60 K. It is possible to
qualitatively explain most of the behavior of this compound by assuming strong repulsion between electrons.
A simple physical discussion of the strong-repulsion limit is given.

I. INTRODUCTION

Considerable progress has been made in the
theory of one-dimensional metals in the past few
years. This theoretical effort has been inspired
in part by the discovery of many linear-chain
compounds and by the many beautiful experiments
on these new materials. ' ' To date, only limited
progress has been made in uniting theory and ex-
periment especially in the organic conductors.
Indeed there is as yet no unanimity on whether the
interactions are attractive or repulsive in many
cases.

There is, however, general agreement among
theorists on the properties of a single chain with
a nonretarded interaction. ' " If the backward-
scattering matrix element of the potential is at-
tractive, the system scales to the strong-coupling
limit and the charge-density wave and singlet
superconductor response functions have power-law
divergences at low temperatures. If the backward-
scattering matrix element of the potential is re-
pulsive, the interactions scale to the weak-cou-
pling limit and can be described by a combination
of renormalization-group and perturbation meth-
ods.

In practice one always has interchain coupling.
This has been treated in two ways. One approach,
which is applicable for attractive intrachain inter-
actions and weak interchain interactions is to
solve the single-chain problem first and then treat
the interchain interaction within the mean-fieM
approximation. ""When the single-chain corre-

lation lengths become long, this is a very rea-
sonable approach. A second approach has been
taken recently by Gor'kov and Dzyaloshinskii" who
studied the N-coupled-chain problem within the
parquet-graph approximation in which interchain
and intrachain interactions are treated on the
same footing. An alternate method which also
treats the interchain and intrachain interactions
in the same way is the renormalization-group
method and this has been applied to the N-chain
problem by Mihaly and Solyom. " They calculate
the scaling equations for the dimensionless cou-
pling constants up to second order. They show
that as the fixed point for attractive intrachain
interactions is approached the interchain interac-
tions become long range and that a charge-density
wave (CDW), whose phase is coherent in the direc-
tion transverse to the chains, is formed at a finite
transition temperature.

In this paper we will be concerned with the study
of repulsive intrachain interactions. A surprising
feature of our results is the demonstration that
for 5-function intrachain and interchain interac-
tions the system scales to the attractive strong-
coupling fixed point at which there is a phase
transition to the CDW phase with long-range order
in the transverse directions. The other fixed point
of the single chain, characterized by weak inter-
actions, can be reached only from a restricted
domain in the space of the bare coupling constants.
The boundary between the domains of the two
fixed points is not simply determined by the sign
of the backward-scattering matrix element but is
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a more complicated function of the bare coupling
constants. For most physically interesting values
including the case of a repulsive 5-function inter-
action of arbitrary strengths on and between the
chains, one scales to the attractive fixed point,
i.e., CDW phase. Independently Menyhard" has
shown that interchain coupling can drive a system
with repulsive intrachain interaction to the CDW
phase. She treated the case of weak interchain
coupling and the criterion she obtained is that the
single-chain CDW response function diverges.

The outline of the paper is as follows. In Sec.
II we start by studying the two-chain problem
using the lowest-order renormalization-group
equations. We are able to obtain analytically the
boundary between the domains of the two types
of fixed points in the space of the bare coupling
constants. In this section we also consider the
N-chain system, but restrict the range of the
interaction to nearest neighbors —an approximation
which is reasonable near the boundary since the
intrachain interaction is repulsive and interchain
interaction is short range.

In Sec. III the scaling equations for the N-chain
system are Fourier transformed in the transverse
direction and solved numerically to obtain the
temperature dependence of the dimensionless
coupling constants. These are applied in Sec. IV
to study the response functions with varying tem-
perature. We apply this method to obtain three
classes of response functions: (a) with wave vec-
tor q=2kr (kr is the Fermi wave vector}, (b} q
= 0, and (c) q = 4k+. In classes {a}and (b) we study
the CDW, SDW (spin-density wave), and Cooper-
pair response functions. In addition we study some
interchain response functions —in a model with
only electron chains they involve Cooper pairs
composed of two electrons on neighboring chains
and in charge-transfer compounds with electron
and hole chains they describe an excitonic re-
sponse function in which an electron on one chain
is correlated with a hole on its neighbor. The
characteristic of the intrachain response functions
is that over most of the temperature range they
resemble the single-chain response functions and
it is only at quite low temperatures that the fea-
tures associated with the attractive fixed point
appear. Further, among the 2k~ response func-
tions it is only the CDW response that is divergent
at the fixed point.

Finally, in Sec. IV we compare our results to
experiments on several organic conductors espe-
cially TTF-TCNQ {tetrathiafulvalene-tetracyano-
quinodimethane). We find that most of the behavior
of this compound can be qualitatively explained by
the assumptions of strong Coulomb repulsionbe-
tween electrons.

II. TWO CHAINS

We begin our discussion of the coupled-chain
problem by first examining the simpler problem
of two chains. The model consists of two linear
chains which are strictly one dimensional. There
is an interchain potential coupling but interchain
hopping is excluded. Each electron can be labeled
by an index i which denotes the chain number. The
properties of a one-dimensional metal are domi-
nated by the electrons near the Fermi surface.
We denote by nk and pk the electron creation opera-
tors for electrons near +k~ and -k~, respectively,
and measure the momenta k from these values.
The Hamiltonian for an arbitrary number of chains
has the form

H=H +H

with the kinetic-energy term

(2.1)

Ifo= Z &h(~ia ~~ac-P~a P~ao)
t

kO

(2 2)

and interaction term

~t
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OyO

t+@4Pca,aP n,wP sa,e ~)~,+i,~,o) ~

(2.3)

The Fermi velocities v, can in principle depend on
chain index but we will assume throughout this
paper that v, =—v and drop the suffix. The intra-
chain interactions are specified by the coupling
constants g with g„denoting backward scattering
and g„forward scattering, and the corresponding
interchain interactions by av, and sv, . In Fig. 1
the various terms are represented diagrammati-
cally and a solid (dashed) line denotes an electron
propagating with momentum near + k~ (-kr). Note
Q@twe have entirely neglected any interchain hopping
or any interchain exchange of particles. A dis-
cussion of these effects can be found in Ref. 12.
Also umklapp processes are excluded from Eq.
(2 I).

The study of the one-dimensional Fermi gas is
interesting because of the singularities in both the
Cooper or particle-particle channel and simul-
taneously in the zero-sound or particle-hole chan-
nel. For the single-chain problem the leading
logarithmic correction in an expansion in powers
of the coupling constants were summed first by
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Icr I cr jcr The four coupled equations (2.4) can be simplified
at once by noting that the combinations

Icr

lcr

1cr

g Icr

Icr

I cr

W)

I

Jcr

r Jcr

(2.5)

and the A, are therefore invariant. Introducing
the new variables

I cr micr I cr

W2

Jcr

FIG. 1. Basic interactions considered in the model
Hamiltonian equation (2.3). Solid (dashed) line denotes an
electron propagating with momentum near +kz (- kz).

Uq = g~g/2rv,

W= w, /2vv,

V, = (I/2wv)(g„—2g„+2w, ),
we can rewrite the set of equations (2.4) as

(2.6)

Bychkov, Gor'kov and Dzyaloshinskii' using the
parquet approximation. Recently Menyhard and
Solyom' in an elegant paper have applied the re-
normalization-group method to this problem. In
the renormalization-group approach one assumes
that a given Hamiltonian with values of the energy
cutoff E~ and coupling constants g, w can be trans-
formed into a Hamiltonian with a new cutoff E~
and new coupling constants g', w'. The one-par-
ticle Green's function and the dimensionless ver-
tices are assumed to be multiplicatively renor-
malizable under the scaling of the cutoff energy.
The differential forms of these scaling relation-
ships are the Lie equations of the group. The Lie
equations for the coupling constants g, w can be
calculated from a perturbation expansion. The
leading corrections to the four-point vertex func-
tions are shown in Fig. 2. If the series is trunca-
ted at this order, the renormalization-group ap-
proach is entirely equivalent to the sum of the
parquet graphs. '

A system of coupled linear chains has been con-
sidered in the parquet approximation by Gor'kov
and Dzyaloshinskii" and in the renormalization-
group method by Mihaly and Solyom. '4 If we
specialize their results to two chains which we
label as i and j, the Lie equations to lowest order
in the coupling constants take the form

' =2U,'+ 2W',

"=4m,
8$

8W'
= a W(3U(+ 3Ui+ Vq+ V~).

(2.7)

A. Equivalent chains

Consider first the equivalent chain limit U, =-
U&

and V, —= Vz. It is clear at once from Eqs. (2.V)
that one does not scale away from this limit.
There are two fixed points of these equations.
One is U, V- —~ and

~
W~ -~ and U/V-1 and

~
W~/V-1. The second is U-O, W-O, and V- const. These two fixed points are generaliza-

tions of those foundfor the single chain. The
latter is a generalization of the weak-coupling
limit obtained in the single-chain problem for
g, & 0. The former is the strong-coupling limit
which, of course, is not adequately treated by the
first-order renormalization equations. The de-
marcation between the two regions for a single
chain is simply given by the sign of g, . In the
present case this is not the correct criterion as
we shall now demonstrate.

The three coupled differential equations (2.7)
can be reduced to two by dividing out the $ vari-
able

2(2g~(+ 2w~),

8W~
gl 1 1( 2 g2f g2J)~&

sg2~ gis
8$ Rn'v '

(2.4)

g2, W&2 g) g2, Wq W2 g2~W1 W2 g, W

8w2 w~

8$ Kv'
g2+WP,

~g) W)

g) g2, Wq g2 gqg2g )g2 g 2, W22

where )=In(Ez/Ez). The temperature dependence
of the coupling constants can be obtained formally
by defining $= In(T/E~) and solving Eqs. (2.4).

FIG. 2. Corrections to the four-point vertex function
which are logarithmically divergent. Coefficients of
the intrachain and interchain interactions which enter
are shown under each graph.
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FIG. 3. Slope dx/dy [= ft) {z,y)] is plotted at a lattice
of points. Dotted and solid lines are those curves at
which /=0 and P=~. Dashed line is the curve x=y2
which is the separatrix of Eq. {2.9).

(2.10)

This solution is shown as the dashed line in Fig.
3. If we express this solution in terms of the
original U, V, W variables, then one gets

8$
(UV —W') = 2U(UV —W'). (2.11)

Thus UV= W' is a special solution. Further one
cannot cross this solution since the normal deriv-
ative goes to zero as one approaches this solution.
This special solution forms the boundary also
known as the separatrix, between trajectories
which scale to the weak-coupling fixed point, U,
W=O, and V= const and those which scale to the
strong-coupling attractive fixed point U, V- —~
and

~
W~ -~. It is possible to solve completely

for U($), V($), and W($) along the surfa. ce UV= W'

and details are to be found in Appendix A.
The necessary conditions to scale to the weak-

coupling fixed point are

where tent(x, y) = 0 and Lft(x, y) = ~. Our aim is to
determine the trajectories as $ varies from 0 (high

temperature) to —~ (zero temperature). These
trajectories are determined by drawing continuous
curves through the slopes in Fig. 3. At this point
it is useful to distinguish between V&0 and V&0.
Clearly if V& 0, then V will continue to decrease
and all trajectories will lead to the fixed point
x = 1, ~y ~

= 1. For V& 0, there are two classes of

trajectories. One which flows to , or corre-
spondingly V= 0 and thence unto the V &0 plane.
The other flows into the origin x=0, ~y ~

=0. The
boundary between the domains of these two fixed
points is a curve passing through both. A special
solution of Etl. (2.9) which does this is

dU U'+ W' dW 3U+ V
dV 2W ' dV 4W

(2.8) UV& W' and U&0; V&0. (2.12)

This pair of homogeneous equations can be further
simplified by introducing the variables x(= U/V)
and y(= W/V). They satisfy the single inhomoge-
neous equation

Expressing these conditions in terms of the origi-
nal coupling constants

g, (g, —2g, + 2w, )& w,' and g, & 0; g, —2g, + 2w, & 0.

(2.»)
dx 2x'+ 2y' —4xy
dy 3xy+ y 4y' (2 9)

The two fixed points given above are at x = 0 and
y=0 andx=1 and ~y~ =1. We observe at once that
by dividing EII. (2.9) by y it can be written as an
equation for y'. Thus the sign of y is irrevelant.
[An examination of EII. (2.7) shows at once that
it can be written as a set of equations involving
only W'. &8]

At each point in the (x, y) plane the derivative
is determined by tent(x, y). Figure 3 is a plot which
shows the derivative at a lattice of (x,y) points.
The dotted and solid lines are the loci of points

(g —w)'&0 and g&0; 2w-g&0. (2.14)

It follows that for a 5-function interaction the
scaling trajectories go to the strong-coupling
fixed point irrespective of the sign of the inter-
action. The novel feature of the two-chain prob-
lem is that one can start with a purely repulsive
interaction and scale to the region of attractive
interaction. This feature can be seen explicitly
by numerically integrating the starting equations

If we pass to the limit of 5-function interactions
gQ g and zv, = ~,= ul, then these conditions re-

duce to
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2i B. Inequivalent chains

It is of some interest to discuss two inequivalent

chains. Starting from Eq. (2.7) it is clear at once

that

s (Vq —V/)

8$

O

s

and

' =2(U'-U'}
8$

(2.15)

We see at once that V, = V&+ const. Introducing the

notation

U, = g (U( + U/); V, = a (V, + V/}, (2.16}

then rewriting we obtain the following set of equa-
tions

2.0

O.Q 0.1
En (EFzT)

$.0

BU BU,= 8U'U„'= 2U,'+ 2U.'+ 2S,
8$

BV, BS'
8$

' =4W', = W(3U. + V.).

The first equation can be integrated to give

(2.17)

ln, =8 U $d(. (2.18)

-2.0
0.01

I

O.l
2n (EF/T)

l

I.O

BU

8( i& (2.19)

In the region of attractive values of U, ($) the right-
hand side is positive and as the "attractive" fixed
point is approached, U is also divergent. There-
fore at the "attractive" fixed point U& and U& do
not diverge at the same rate. This suggests we
look for a fixed point at which

~
U,

~

Wl IV. I
U~d~~ these conditions U,

obeys an equation

FIG. 4. Two numerical solutions of the coupled set
of differential equations which are on opposite sides
of the separatrix and scale (a) to the repulsive fixed
point and (b) to the attractive fixed point.

which has a solution of the form

U)($) 1 —2)U (2.20)

(2.7}. In Fig. 4 a series of numerical solutions is
plotted. The interesting ones are those in which
the intrachain g, or U starts out repulsive, weak-
ens, and then because of the presence of the ~,' in
the right-hand side of Eq. (2.4) passes through
zero and into the attractive regime. Note that
this unusual behavior in which the interaction
changes sign occurs at small values of the dimen-
sionless coupling constant —a region where the
first-order renormalization equations are most
reliable. We shall discuss this further in Sec.
III where we demonstrate similar behavior in the
N-chain problem.

where U« is a negative constant. The scaling
equation for W then reduces to

(2.21)

and substituting from Eq. (2.20) we obtain

Wo
(4) (1 2 ()3/4 (2.22)

W,' 4
V.(5)=2U/(5)=. '

( 2 ),g (2.23)

Near the fixed point all of the functions U„U&,

This form may be substituted into Eq. (2.17) to
yield
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V. and wdtverge b« IU~I &'lwl&'IU~I IV.I.
At this point we must add the proviso that these
results were obtained using first-order renor-
malization-group equations and are only qualita-
tively reliable, at best, near the fixed point. In
Sec. III the N-chain problem is discussed and
their behavior is contrasted to that obtained
above.

We turn now to a study of the domains of the
three possible fixed points. The boundary between
the two attractive fixed points is simply given by
the condition U&= U&. This can be seen at once
from the scaling equation for U which shows that
U cannot change sign. We have not succeeded in
obtaining the boundary between the repulsive fixed
point and the attractive fixed points in closed form
as we did for two equivalent chains. We can, how-
ever, obtain bounds on the domain of the repulsive
fixed points quite simply. First it is clear that a
necessary, but not sufficient, condition is that
both U, & 0 and U&&0. [If either U, or U& were
negative then it is clear from Eq. (2.7) that it would
decrease indefinitely. ] If both U&& 0 and U&&0,
then we can derive some bounds as follows. First,
from Eq. (2.7) one obtains the equations

tive fixed point or points the interactions are
short range and it is a reasonable approximation
to neglect the next-nearest-neighbor and further
interchain interactions.

The first-order renormalization-group equations
for an N-chain system in the nearest-neighbor
approximation (in this section we consider only
N-equivalent chains) are""

8$ tv [4g,w, + 2z'gu, + 2wi(w~ -g,)], (2,28)

8g2 g~ 8w2 w~
2 2

8$ 2@v ' 8$ Wv'

where z denotes the number of nearest neighbors
and z' is the number of sites which are nearest
neighbors to two nearest-neighbor sites (e.g. , in
a two-dimensional square lattice z'= 0, in a two-
dimensional triangular lattice z' = 2}. The com-
bination & = (g, —2g, —2znr, )/2zv is an invariant.
Eliminating A we obtain the set of equations

8U = 2U2+ 2z W',

—(U, V, —W'}=2U((U(V, —W')+. 3(U, —U~)W',

(2.24)

BW, (z+ 1)V+ (z —1)A
)8$ 2z

(U,V, —W') = 2U, (U,V. —W') —3(U, —U,)W'.

(2.25)

If we take Uz& U, and U, V, & W', then the second
term on the right-hand side of (2.24) is negative
and as $ decreases from zero if the first term
becomes small, then the second term will pre-
vent (U,.V, —W') from changing sign. Thus if both
U~V, & S and U&V, & W', then the scaling trajec-
tories lead to the weak coupling repulsive fixed
point. One can use a similar argument to prove
that if both U, V, &S and UzV, & W', then the scal-
ing trajectories lead to the attractive strong-cou-
pling fixed point.

C. Nearest-neighbor approximation

In Sec. III we will study the N-chain problem
in some detail. We can, however, use an approach
directly analogous to that given above for the two-
chain problem, if we restrict the range of the
interchain interaction to nearest neighbor. The
nearest-neighbor approximation will break down
near the attractive fixed point where Mihaly and
Solyom" have shown that the range of the effec-
tive interchain interaction becomes infinite. How-
ever, in determining the boundary between the
domain of the repulsive fixed point and the attrac-

wh~~~ V = (Z, —2p, + 2zw, )/2zv For sim. plicity we
consider a planar array of chains, i.e., z = 2, z'
=0. Then eliminating the g variable we get the
set of equations

d8' 3U+ V' dU U'+ 2g
dV' 6$' ' dV' 3$ (2.28)

dX 2x2+ 4y2 —6Xy28:4 ( y)' (2.29)

The function Q„„(x,y} has a form similar to the
function P(x, y) defined in Eq. (2.9) for the two-
chain problem. Some of the numerical constants
are different. One of the fixed points is at x = 0,
y = 0 as before, but the other has moved to
x = —', (~33+ 3) and y'= —,', (~33+5). We can make a
plot of Q (x, y) similar to Fig. 3. It has the same
general form but it differs in numerical detail.
It is straightforward to show that any combination
of 5-function interactions, intra- and interchain,
lies in the domain of the attractive fixed point.

The conclusion is that the domain of the weak-

where V'= &(3V+A). This is also a set of homo-
geneous equations which can be reduced to a single
inhomogeneous equation by transforming to the
variables x = U/V' and y =

l
W

l
/V'
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coupling repulsive fixed point is small and that
one can start with purely repulsive interactions
and scale to the attractive fixed point. For re-
pulsive interactions there is a strong similarity
between the two-chain and N-chain problem.

III. N COUPLED CHAINS

Next we consider the problem of N chains cou-
pled together by electron-electron interaction,
again ignoring interchain hopping. The first-
order renormalization-group equation has been
written down by Gor'kov and Dzyaloshinskii"

(3.1)

~y2i s =yj.iy (3.2)

(q~) P &(i'(r( ry)y
1 N li f

ig
(3.3)

y (q~) g e(I (r( 'fy&y-
i/

Eqs. (3.1) and (3.2) become

(3.4)

dr, (5,q) = 2r,'(q)+ 2 g r,(q')[r, (q -q') - r, (q)],

= Z y, (q-q')y, (q').d(

(3 5)

(3.6)

where

r,«=g„/2vv, r.«=g /2(2((,v

y„&= w„z/2vv, y„j= w2(z/2((v, and $ = In(E+/Ez).

The next-order corrections to these equations
have been obtained by Mihaly and Solyom" who
also studied the fixed-point behavior. They argue
that for long-range interaction the first term on
the right-hand side of Eq. (3.1) is of order fq and
will dominate and y, may be neglected compared
with y, . They show that for attractive interactions
one indeed scales from a short-range interaction
to a long-range one, and the assumption that
y, «y, is thus self-consistent. While their ana-
lysis approximately describes the behavior near
the critical point it does not provide information
on the phase boundary in the space of the bare
coupling constants. We have seen that for two
chains terms analogous to the y„~can drive the
coupling constant from repulsive to attractive.
To investigate similar behavior in the N-chain
case it is more convenient to go to Fourier space.
Introducing

The qualitative behavior of y, (&,q) and r, (5,q) is
clear by inspection of these equations. From Eqs.
(3.6) or (3.2) it is clear that y~(& and y, (q= 0) de-
crease monotonically as $ scales from 0 to -~
since the right-hand side of the scaling equations
are positive. The first term in Eq. (3.5} also
tends to decrease y, and by itself would reduce
y, (q) from a positive value until it is zero. How-
ever, the effect of the second term cannot be
ignored. In particular, let qo be the q value at
which y, (q) is minimum. Then [y, (q, -q') —y, g,)]
is positive for all q'. If y, (q') is negative (or has
scaled to a negative value), then the second term
has the effect of slowing the decrease of y, g,)
relative to other q values. Eventually y, (q, ) be-
comes equal for all q, at which point the second
term in Eq. (3.5) is unimportant and one scales to
the y, (q) = 0 fixed point. On the other hand, if
y, (q~) remains positive on the average, when

y, (q,) scales to zero the second term in Eq. (3.5)
may remain positive. Thus y, (q,) would scale
from positive to negative. Once y, (qo) becomes
negative and reasonably large in magnitude the
first term in Eq. (3.5) dominates and we scale on
to the strong-coupling attractive fixed point dis-
cussed in detail by Mihaly and Solyom. " In par-
ticular, Eq. ( 3.S) is satisfied by

r,(q)=[-2(+r, '(5=0, q)] ' (3.7)

if only the first term on the right-hand side is
kept. This implies that y, (q,) diverges at some $.
The interaction becomes long range in real space
and a mean-field-type phase transition is pre-
dicted. Thus it is clear that the fixed-point be-
havior one scales onto depends strongly on the
value of y, (q}. If y, (q) is small or negative, one
would scale onto the weak-coupling regime where-
as for y, (q) large and positive, one would scale
onto the attractive strong-coupling regime even
for repulsive initial y, (q). In particular, from
our results on the two-chain problem, we might
speculate that if we start from a 5-function inter-
action [y, (q) =y, (q)], irrespective of its sign, we
will scale onto the attractive strong-coupling fixed
point;

To verify the qualitative picture discussed
above, we have solved the scaling equations (3.5)
and (3.6) numerically. We take a one-dimensional
array of chains and approximate the q values by a
discrete set. Making use of the symmetry y, (q)
=y, (-q) and y, (q) =y, (-q) we represent the func-
tions y, and y, at nine discrete points between 0
and w/d, where d is the interchain spacing. This
discretization clearly breaks down near the
strong-coupling critical point when y, (q) is rapidly
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varying. However, since we are mainly interested
in the phase boundary which is determined by the
scaling behavior relatively far away from the
critical point, the discretization is not a bad ap-
proximation. For the same reason we do not
expect the dimensionality to play a crucial role in
determining the phase boundary, even though it
would affect the critical behavior. Thus we chose
a linear array of chains for simplicity. Further-
more, whether y, scales through zero or not is
determined by a scaling region in which the cou-
pling constants are small and thus the first-order
renormalization-group equations should be ade-
quate.

We choose our starting Hamiltonian to consist
of intrachain and nearest-neighbor coupling se, and
co, only. For a variety of 5-function initial cou-
pling constants that we tried we find that even
when we start from a repulsive 6-function inter-
action, we scale to the attractive strong-coupling
fixed point. Examination of the numerical solution
shows that if we start from nearest-neighbor in-
teractions, the interaction remains mostly nearest
neighbor upon scaling until quite close to the tran-
sition. This suggests that the nearest-neighbor
approximation studied in Sec. II should provide a
good approximate picture for the phase diagram
in coupling constant space. Specific numerical
examples will be presented and discussed in
Sec. V.

We should point out one significant difference
between the two-chain and the N-chain problem.
In the two-chain problem the attractive fixed point
consists of g„g„zo„u,all becoming infinite.
Thus the interaction truly becomes attractive. In
the N-chain case the divergence is in y, (q) and the
spatial representation of the coupling constants
remains finite. In particular if we look at the
coupling constant within the chain, we find that
y, may remain positive whereas y, usually be-
comes small and negative. This kind of coupling
constant can correspond to a repulsive interaction
for two electrons on the same site and a stronger
repulsion for two electrons on neighboring sites
in the same chain.

Next we discuss briefly the situation when there
are two types of chains inthe system. Let us con-
sider a one-dimensional array of alternating a and
b type chains such that the spacing between a and
b type chains is denoted byd. We will label chainaby
odd indices and chain b by even indices. We shall
assume that the Fermi velocity of the two chains
is identical and define y', , ~ and y'. . .as the cou-
pling constants between the a chains and similarly
for type b chains (i —j is even) and y,'~i

&, ym~i.
&

as
the coupling constants between a and b chains (i
—j is odd). Again we go to Fourier space

(q)= Q

yi, a«)= Q &"'yi. a
k even

(3.8)

yi ~(q)= Z &'"yi,'a
k odd

Similarly we can define y~(q), y~(q), and y,~(q).
The scaling equations are as follows:

&y„(q)
d'] = »i.(q)+»,'~(q)

+ 3 Z y2. (q -q')[yi. (q') yl-. (q)], (3 9)
a'

dyad c =»,' (q)+»,'. (q)

+2K yah(q-q')h„(q)-y„(q)],
a'

(3.1O)

= 2y...(q)[y„(q)+y„(q)]

-y„,(q) Z [y~(q')+y(q')]

+3 Z y, ~(q')y, ,(q-q'), (3.11)

dy,.(q) = ~ y, (q-q')y, (q'), n=a, b or ab

and

y,.(q) = [-~5+ y, '.(q)] ',
y, +(q) = [-~&+y,.'(q)] 'y„,F,.', (3.13)

y, i,(q) =[-&5+ y, ,'(q)] '[y...yii]'+ const

are consistent in that y„(q)»y, (q)»y (q) for
q near q, if the initial condition f„~y,, is much
less than one. Equations (3.13) are ohtained hy
keeping only the leading term on the right-hand
side of Eqs. (3.9)-(3.11). Thus we see that a
mean-field-like transiton takes place simultane-
ously on both types of chains with the usual Orn-
stein- Zernike behavior. The power-law behavior
obtained in Sec. IIB for two inequivalent chains
is then a special feature of the two-chain problem.

Finally, we should mention the special case when
repulsive interaction between the type-a chain
dominates. Then condensation is expected to take

(3.19)

First we discuss the behavior near the strong-
coupling fixed point. As in the equivalent chain
case we neglect y, relative to y, . Then the follow-
ing approximate solutions:
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place at q =v/2d For this value of q we see from
Eq. (3.8) that y, ~~(q =)(/2d) = 0. It is easy to see
from the scaling equations that y, ~~(q=v/2d) re-
mains zero upon scaling and that the a and b cou-
pling constants are independent at this particular
q value. Thus it is possible for a phase transi-
tion to take place on the type-a chain alone. In
this case the problem reduces to that of the equiva-
lent chains discussed earlier. Once the a chains
are ordered it is possible for a distortion to be
driven in the b chain at some lower temperature. "

IV. RESPONSE FUNCTIONS

x (T[o)(z, r, , t) O(0, r~, 0)]) (4.1)

In this section we discuss in turn the response
function of the system at momentum transfer of
2k„,0, and 4k~. We shall investigate the power-
law behavior of the response functions at zero
temperature and finite frequency by the renormal-
ization-group method, keeping in mind the fact
that max(ur, T, vk) can be substituted for ur. Thus
our results can be interpreted as the zero-fre-
quency response at finite temperatures. The re-
sponse function is defined by

B„.(k, ~ )= —i f ltd' e"'e +'

o(z, r, )= 0() ) (z) 0(2((z)+ 0'(. ((z) 4'(, ((z);

(iv) triplet- superconductor response:
&r(k, q, ~)

O(z, r, )- y(, &(z) q,'»(z) y(2&—(z) q(»(z).

(4 4)

(4 6)

For the coupled-chain problem there are two other
response functions that are of interest.

(v) Excitonic response: X")(k,q, ~)
t t

O~~ (z ~ r() = &(,)a )))( ), aa' + &(2s 0(+))o' ~ (4.6)

As it is written, this response function actually
describes superconducting pairing of a+A~ elec-
tron with a —k~ electron on a neighboring chain.
We call it the excitonic response because we have
in mind a model of the charge-transfer system
in which alternating chains are described by an
electron or a hole band and the Fermi surface is
at the crossing of the bands. For simplicity we
assume that the two bands have identical Fermi
velocity

annihilation operator on each side of the Fermi
surface;

(ii) spin-density wave (SDW) response: X(k, q, (0)

O(z, r )= P, (z) 4 .) (z) - 4', ((z) 4,.) (z); (4 3)

(iii) singlet-superconductor response:
&z(k, q, &o):

R(k, q, u&) = —Pe "'~( '&'R(~(k, &o}, P, a
i odd

P, a
i even

H = ~ &~a,~aai~ —~ C&CiDaCi&a (4.7)

where 0 is some two-particle or four-particle
operator.

where a,'~, (c~(~,) creates an electron on the odd

(even) chain. By viewing the even chains as hole
chains we make the transformation

A. 2kF and superconducting response functions
C&Pe ~i-Pa. (4 8)

O(z, r, ) = P y,',.(z) g„.(z), (4.2)

where

(z) g e((ay+a)u(y (k)
k

(z ) Q (e-(+)k)p) sP (k)

are the spatial representations of the electron

It has long been recognized that the one-dimen-
sional electron gas has logarithmic singularities
in its 2k~ response functions even in the noninter-
acting limit. Interaction enhances some of the
response functions and suppresses others depend-
ing on the coupling constant. For the single-chain
problem the following response functions have been
investigated' ":

(i) charge-density wave (CDW) response:
N(k, q, ~}

It is easy to see that all the chains now have the
same band energy. The interaction Hamiltonian
among a or among b chains is unchanged but the
coupling constant between a and b chains now has
opposite sign. The problem now reduces to the
N-chain problem discussed in Sec. III. In particu-
lar pairing between particles on neighboring chains
as described by Eq. (4.6) in this model is actually
a pairing of an electron and a hole on neighboring
chains. This response function then describes
the tendency towards an excitonic state. This can
be seen by examining the ordered state that would
result if these response functions were to diverge.
These ordered states involve hybridization of the
chains in one of several ways. If the spin indices
are chosen to give a pairing of the electron and
hole in a spin singlet state, then the ordered
state with (X'z ') x 0 has a hybridized charge den-
sity in the region between the chains. Note that
while the size of the energy gap in these excitonic
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to, (x &()=&i, .&g.„2.~ ~ (4 9)

As it is written, Eq. (4.9) describes a 2k+ CDW
between neighboring chains. Again for the elec-
tron-hole model, this response function corre-
sponds to the Cooper pairing of a,~, and c„»~with
a net momentum of 2k~. This novel pairing is
called to our attention by Anderson who pointed
out its close analogy with pion condensation. "

Following the suggestion of Zawadowski, Solyom
has provided a simple procedure for calculating
these 2k~ response functions which is easily gen-
eralized to the N-chain case. It is convenient to
work in the spatial representation in the trans-
verse direction. We then follow Solyom and as-
sume that it is the auxiliary quantities fT-sBls)
that satisfy scaling equations. We define

8N 8XN=mv, X = 2rv —,
S(T) g(+) 2 fyo'

86 ax('~
s(T) v 8] & NJ (4.10)

phases does not involve the overlap integral be-
tween chains, any measurable order parameter
will involve this overlap integral. For example,
the change in charge density when (X'z"') 4 0 is
proportional to this overlap integral. This charge
density is uniform along the chain direction and
varies as the cosine of the phase parameter. The
energy of the ordered state is independent of this
phase parameter which in the present case is the
relative phase of the wave functions on the two
chains. However, the presence of a small amount
of overlap is sufficient to select a particular phase
as the ground state. A state with (X'z ') 0 0 is of
some interest since it corresponds to a state with
nonzero current along the chain direction. Such
orbital current states have been discussed previ-
ously in connection with exciton insulator phases'
though in most cases they alternated in space. In
the present problem, such currents are uni'orm
along the chain axis but their magnitude depends
on the overlap between next-nearest-neighbor
molecules on different chains and should be small.
This current-carrying state cannot be the ground
state and is probably never stable but the enhance-
ment of the X' ' response function may have impli-
cations for the conductivity in the fluctuation re-
gion. Owing to the small interchain overlap, such
contribution is probably of no practical interest.
Finally we note that the triplet-spin excitonic re-
sponse functions are the spin-density and spin-
current analogs of charge density and current
states discussed above.

(vi) lnterchain Cooper pairing: A~, (k, &u)

A straightforward lowest-order perturbation cal-
culation of the response function leads to the fol-
lowing scaling equations:

8 lnN]q
8g

8 lng )~
8(

= —2ya«~~~

8 ln&q = 2(yi«+ emu)5~»

(4.11)

(4.12)

(4.1s)

8 lnZ,
yli g

+ y2H)~f j~ (4.14)

8 lnY,",,'
2(+ yllj+ y2lj)SI (4.15)

8 lnX„,
s) yml j 4+1 j' (4.16)

The first thing to note is that except for N, all
other response functions involve a 5 function in the
chain index. We recall from Sec. III that singular-
ity in the coupling constant y, develops in q space,
and that in real space the coupling constants re-
main finite. Thus it is clear that at the three-
dimensional ordering temperature only the CDW
response function develops a true singularity.
This result is a simple consequence of the neglect
of interchain particle and spin-exchange scatter-
ing, which means that the CDW is the only one
that can take advantage of the interchain Coulomb
interaction. The rest of the response functions
remain basically one dimensional.

To illustrate this point we have numerically
integrated the scaling equations to get N, X, and
X+', starting from the initial condition that at
~=Ej„)=0,and lnN=lnx=lnX"'=0. These re-
sults are then further integrated to give the re-
sponse functions N, X, and X"'. A specific nu-
merical example will be discussed in Sec. V.
Here we note a rather interesting feature that if
one begins with a repulsive short-range intrachain
interaction, the SDW response X is more strongly
enhanced than the CDW response N over a large
temperature range. It is only very close to the
transition that N(q= 0) rapidly increases and be-
comes dominant. The reason for this is obvious
from Eq. (4.11) as the initially positive y, reduces
the growth of N relative to y. It is only when y,
changes from repulsive to attractive that N grows
rapidly. Even at this temperature the growth of
X is not directly affected, as it is driven only by
y, . That the SDW response should be dominant
over a large temperature range if we begin with
repulsive interactions is a rather general feature
of these equations. We also note that the inter-
chain Cooper response function is suppressed for
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attractive interchain particle-hole interactions.
Even if we start from a repulsive interaction it
will become weaker upon scaling and wi11. not be
strongly divergent.

0.6

04—

B. Uniform response functions

The uniform response functions that are of in-
terest are:

(i) q= 0 density-density response function which

is related to the compressibility: N, (k, q, +)

0

-0.2—

-041

g / 2 ~ v *g /2 vr v = 0.62
W&/2yfv * -O.ot
W2/2~ e -0.5

I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.S
T/ EF

I

0.9 1.0

O(z, r, ) = g [p'„,(z) p„,(z)+ g'„,(z) II, 2,(z)] (4.17)

FIG. 5. Plot of y fgg the intrachain coupling constant
vs T/EJ; .

and (ii) q = 0 spin density response function which
is proportional to the uniform spin susceptibility:
X.(k, q, ~)

f tO(z, r,.) = g, , & g„&+ g (4.18)

These response functions have been studied in the
single-chain case by Fukuyama, Rice, Varma, and
Halperin' using the renormalization-group method.
The uniform spin susceptibility for a single chain
has been calculated by Dzyaloshinskii and Larkin'
using Landau Fermi-liquid theory. The difficulty
with the q = 0 response function is that it requires
the evaluation of

D(P, &)= QG(k, ~) O(p —k,~ —v),
kv

which is well known to have different limits for
q, &o-0 depending on the ratio vq/&o and care
must be exercised in a diagrammatic expansion.
The difficulties are not present if one uses Landau
Fermi-liquid theory to relate N, and Xo to vertex
functions evaluated at the Fermi level. This latter
method is more transparent and we shall use it
here. For completeness, some details of this
method are given in Appendix B. It is clear that
the spin susceptibility correlation function must
be diagonal in the chain index and the result is
similar to the single-chain result of Dzyaloshin-
skii and Larkin

fact, for the single-chain problem, y, scales to
zero at T = 0 and the susceptibility enhancement
is given by the velocity renormalization only.
Shiba" has calculated the zero-temperature sus-
ceptibility for the one-dimensional Hubbard model
with arbitrary filling using the exact solution of
Lieb and Wu." ln Eq. (4.19), y,«goes to zero at
T= 0 and we find that in the small g, /2vv limit
X~ agrees with Shiba's results. In fact it appears
that if we use a linear correction to the effective
mass instead of the velocity as in Eq. (4.20), the
agreement is maintained out to g, /2vv= 1. For
the N-chain case we find a similar decrease in the
susceptibility enhancement. The new feature is
that near the transition temperature y,«can be-
come negative and the susceptibility is further
reduced. In Fig. 5 we show the behavior of y„;
obtained by numerical integration of the scaling
equation.

Finally we discuss the compressibility. For
the single-chain problem Fukuyama et al.' have
shown that there is no logarithmic correction for
the compressibility. The equation analogous to
(4.19) for the density-density response function
in the chain representation is

linl fq«&(k, ar, T)

lim X,(k, ~, T) = X,'$1+y„;(T)], (4.19) =N,', 1+ y„f5„-2 y„, , 4.2y
f

where go*, is the noninteracting uniform suscep-
tibility computed with a renormalized Fermi velo-
city v* given by

v*/v=1-g, /mv (4.20)

to lowest order ing, and y, «(T)=g, ($)/2wv*. Thus
the susceptibility is directly related to the renor-
malized coupling constant y„,within a chain.
Equation (4.19) predicts that for a repulsive inter-
action the susceptibility is enhanced relative to
the noninteracting Pauli value and that the en-
hancement should decrease with temperature. In

where N« is the noninteracting compressibility
computed with v*. It is clear from Eqs. (3.1) and
(3.2) that the combination of the coupling constants
on the right-hand side of Eq. (4.21) is invariant
upon scaling. (In the single-chain case this re-
duces to the invariant y, —2y, .) Thus the com-
pressibility remains unrenormalized.

C. 4kF response

To obtain a response function at 4k~ we have to
consider four-particle correlation functions. Two
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cases are of interest:
(i) 4k' charge density wave II(4k++ k, q, &),

tO(z, r~) = y (4.22)

t tO(Z ll ~) $2g0$2g+1O' Plg+1+ 41(+ (4.23)

(4.24)

The derivation of Eg. (4.24) can be found in Ap-
pendix C. It is natural to assume that II plays the
same role as the 2k~ ~»~~~ptibilities and we as-
sume that dII/d$ is the quantity that satiafies the
scaling condition. We then obtain a power-law
behavior for II(4k+) in the usual way

II (4k (g) ~ ((g/E )2+4(cg 2f2) /Rfll

Just as in the case of interchain Cooper pairing,
case (ii) is expected to be enhanced only for attrac-
tive interchain interactions between electrons.
We shall focus our attention on case (i).

The 4k~ density-wave response function was
first studied by Emery. " It differs from the 2k+
ones in a fundamental way. Whereas the 2k~ re-
sponse functions are logarithmically divergent
even for noninteracting systems, the 4k~ ones
are not. Indeed it is easily seen that II(4k', &u)- const + co'Into/er. This is because 4k+ response
is basically a convolution of two 2k~ responses and
the &' factor comes from the extra momentum and
frequency integral. First let us consider the
single-chain problem. Examination of the per-
turbation series shows that it is of the form

II(4k ) - const + &o'll/32v'v',

where

Owing to the presence of the &' term, a large
negative value for (g, —2g, )/2rv is required for
II(4k'} to be divergent.

Before we discuss the N-chain problem, we con-
sider the possible ways of coupling to a 4k~ exci-
tation starting with two-particle interactions only.
The natural way is to first excite an electron to an
intermediate state near 3k~ as indicated in Fig.
6(a). Denoting the coupling constant by g the cou-
pling to 4k~ density fluctuations will be reduced
by the factor (g/D)' where D is an energy denom-
inator corresponding to the 3k~ intermediate state.
We note that for a tight-binding band, depending
on the value of 2k~, D may be a small fraction of
Er and g/D may not be too small.

Now we discuss the effect of interchain coupling.
Just as for the 2k„charge-density wave the most
important interaction is that which couples charge-
density waves on different chains. There are two
different ways in which the interchain coupling
can occur. The first is depicted in Fig. 6(a) and
is simply the Hartree coupling of the 4k~ charge-
density waves. Note that the coupling is first
order in the interchain interaction, but involves
intermediate states in the electrons that can be
far away from the Fermi surface. If this coupling
is strong, we can have a locking of the 4k~ CDW
on different chains. However, as discussed below
we expect this coupling constant to be weak, in
which case the CDW will remain uncorrelated from
chain to chain until a lower temperature at which
the 2k~ CDW begins to order three dimensionally.
In this case a second process depicted in Fig. 6(b)
becomes important. Note that this process is at
least second order in zo„~. Homever, near the
three-dimensional transition for the 2k~ CDW
av„~becomes relatively strong and long range and
this second process may dominate. As a rough
approximation we can assume that

II( ~(4k'}= (N(~)2

near the three-dimensional transition temperature.
Then if N(q) is developing a pole at q -q„ii(4k', q)
will develop a pole at q = 2q, and will appear as a
harmonic of the 2k~ distortion.

(b)

FIG. 6. Examples of diagrammatic contributions to
the 4k+ response function. (a) Double line denotes as
electron with momentum near 3k&. @) Example of in-
terchain coupling that is second order in go&&&.

U. DISCUSSION

In this paper we have studied the behavior of an
array of one-dimensional metallic chains under
the influence of interchain interactions. The most
interesting conclusion is that even when the bare
interaction is short range and repulsive, as the
temperature is lowered the problem scales onto
the fixed point corresponding to strong attractive
coupling leading eventually to a three-dimensional
phase transition into the CDW state. This behavior
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y = dx V[@ + (x) -x~) ]e2rv

dx V[e'+ (x,. -x,)'],
2m'

(5.2)

where V(r~) is the interaction potential in real
space. We start with the Coulomb potential V(r')
= e'/er where e is the high-frequency transverse
dielectric constant in the conducting phase. For
the estimate of y, this Coulomb potential should be
screened since screening at q= 0 is not logarith-
mically divergent and has not been included in our

is in fact not too unexpected, lf we rememberembdr that
for the single-chain problem, when g, —&~~, 0 th

CDW d SDW response functions diverge with thean
thesame nega lve expt' exponent This is in contrast to

Hartree-Fock result which states the SDW is en-
hanced while CDW is suppressed. This rather
surprising result arises because the diagram
giving rise to the Hartree-Fock singularity is
exactly cancelled by a graph in the Cooper channel.
Thus for the single-chain problem we already have
the rather surprising result that CDW response is
divergent even for a repulsive short-range inter-
action. Now if we couple the chains together, and

use mean-field theory to describe the interchain
interaction, it is obvious that the CDW response
will diverge at some transition temperature
whereas the SDW response will be unaffected.
The renormalization-group theory that we carried

an-fieldout here is nothing more than a proper mean- '

th ory for the coupled-chain problem and it is note
surp rlslng that we find a divergent CDW respons
with the additional feature that the coupling con-
stant g, becomes large and negative in a region
of momentum space. The reader may prefer to
think of this change from repulsive to attractive
attraction s "screening" by the interchain inter-
action. However, we emphasize that the "screen-
ing process 's is in fact much more complicated
than the usual mean-field theory involving particle-
hole excitation and is a special consequence oe of the
one-dimensional problem.

W'e next discuss the application of this model to
organic conductors, of which TTF-TCNQ is a
prototype. These are charge-transfer salts in
which sheets of donor and acceptor stacks alter-
nate in the a direction. The donor and acceptor
bands are clearly not the same, but a model of
alternating electron and hole bands with the same
Fermi velocity and intrachain coupling constants
is adequate as a starting point. The importance
of intrachain Coulomb repulsion in the organic
conductors was first pointed out by Torrance" "
and by Ovchinnikov" and co-workers. We esti-
mate the coupling constants as follows:

1.6
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FIG. 7. Scaling behavior of the invariant coupling
constants in momentum space, y&(q = 0), y1 q == 7f'

y (q=0) and y2(q = 1I/d). (a) Scaling towards the weaky2q —,an
coupling fixed point. Note that y, becomes small and
independent of q. (b) Scaling towards the attractive
fixed point. Note that y, (q = 0) goes to —~ at some tem-
perature.

approach. To obtain an order-of-magnitude esti-
mate we assume a screening length of one lattice
constant in the b direction, we take c = 6 which is
the measured low-temperature dielectric constant
in the a direction, ~ and a bandwidth of 0.3 eV. The
estimate for y,«„turns outto be of order unity. For
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(00.0 i

10.0—

0.1

0

g /2yrv g /2~v ~

W& /2w v ~ -0.01
W2/2 w'V ~ —0.5

2

Xn (Ep/T)

= 0.1U/t.
Figure 7 shows the behavior of the renormalized

coupling constants y, (q = 0), y, (q = rr /d), y, (q = 0),
and y, (q = ri/d) for the two sets of initial coupling
constants. We see that starting from w, /2rrv
= -0.5 we scale onto the strong-coupling limit in
which y, (q= 0) diverges whereas starting from
rs, /2riv = 0.5, we scale to the weak-coupling limit.
Again a rough criterion for the phase boundary in
coupling constant space may be obtained by exam-
ining the two chain case. Since we start with a
very small w„the only relevant criterion for
scaling onto the weak-coupling limit is that V& 0
or g, —2gs+ 2rv, & 0. Starting from a repulsive
5-function intrachain interaction it is clear that
for 2w, &g, which is satisfied for all negative and
relatively small and positive w„we scale onto the
strong-coupling fixed point. However, for w, /
2rrv=0. 5 and g/2riv=0. 6, we scale to the weak-
coupling limit as expected. At the same time we
remark that for w, &0, the transition temperature
we obtain is enhanced over that predicted by a
simple mean-field theory of interchain coupling.
For example, in mean-field theory T, is given by
the condition"' "

FIG. 8. Response functions corresponding to CDW,
SDW, and X(~), the excitonic response, are plotted vs
In(EJT). Density of states factor -(2rrv) ' for SDW

and X ~ and —(n v) ' for CDW have been removed.

the intrachain coupling y,«, it has been argued
that two electrons on a TCNQ molecule tend to
stay on opposite ends of the molecule and that
there are large polarization effects. Both of these
effects are unlikely to make y,«smaller than the
nearest-neighbor interchain coupling that we al-
ready estimated. Furthermore, since we assume
a screening length of the order of a lattice con-
stant, the interaction is short range and we con-
clude that y, «=y, «are also of order unity. On
the other hand

y„„,= (1/2rr v)(e'/e)4K, (2kr d), (5.3)

where d is the spacing between stacks and K,(s)
-(ri/2s)'rse ' is the Bessel function. We estimatey„„,to be of order 10 '. This coupling constant
is small because the potential between two sinus-
oidal charge-density waves decreases exponen-
tially with the interchain spacing. In the rest of
this section we shall discuss numerical results
using the parameters g, /2rrv =g, /2rrv = 0.6, w, /
2riv=+10 s, and res/2riv=+0. 5 where the (+) sign
should be used between identical chains and the
(-) signbetweendonor and acceptor chains. In
terms of the more familiar Hubbard notation, we
note that for 0.59 electrons per atom, g, /2rrv

1 —2w, ii(2k', T,) = 0,

where II(2k~) is the strictly one-dimensional den-
sity-density response function. The value of II can
be estimated from Fig. 8 by extrapolating the CDW
result from the intermediate temperature region
[In(Er/T) = 2] where the system is approximately
one dimensional. It is clear that a much lower
T, will be obtained in this way. Thus the present
theory suggests that there is a stronger tendency
toward the locking of the donor and acceptor chains
than the locking of similar chains. However, ex-
perimentally it appears that in TTF-TCNQ it is the
TCNQ chains that first undergo a three-dimen-
sional ordering which later drives a distortion
in the TTF chains. ' 9 While this cannot be ac-
counted for in our model in which the donor and
acceptor chains are identical, it is easy to envi-
sion a situation in which interchain w, between
TCNQ's are stronger than that between TTF and

TCNQ, and that the Coulomb repulsion within each
chain is different. In that case it is possible for
sheets of TCNQ's to order first, which in turn
leads to a three-dimensional ordering of the TCNQ
sheets before driving a CDW on the TTF chains.

We next discuss the various physical properties
based on our results on the correlation functions.
It has been noted that the room-temperature mag-
netic susceptibility of TTF-TCNQ corresponds to
a bandwidth of only = 0.15 eV if the two chains are
assumed to have similar bandwidth and consist of
noninteracting electrons. ' This bandwidth is less
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than the usual estimates and it has been suggested
by Torrance and co-workers that the susceptibi-
lity is enhanced due to electron-electron repul-
sion." Using Eq. (4.19) for the susceptibility we
see from Fig. 5 that the susceptibility enhance-
ment is slowly reduced as the temperature is
lowered and the susceptibility drops off abruptly
near the three-dimensional transition. If we inter-
pret room temperature at roughly T/Er= 0.2, we
see that the gradual dropoff is too gentle to explain
the experiments which drop by a factor of 2 be-
tween room temperature and 60 K. In practice
electron-phonon interaction will enhance the
growth of the CDW and might help explain the dis-
crepancy.

As mentioned earlier the various divergent 2k~
response functions have been computed numeri-
cally and are shown in Fig. 8. We see that the
CDW instability at q= 0 is the only one that shows
a real divergence at the three-dimensional transi-
tion temperature. For our choice of a large so„
the excitonic responses X"and X' ' are strongly
enhanced. This would imply a hybridization gap
which will. be strongly modified by fluctuation
effects. The fluctuating gap appears as a self-
energy correction in second-order renormaliza-
tion-group theory and is not included in the pres-
ent calculation. The physical interpretation of the
enhancement of X' ' is that the wave functions on
the two chains are developing coherence with
respect to each other. In practice the direct ob-
servation of this coherence will be difficult, since
the very small overlap of wave functions on neigh-
boring chains will be involved. It is possible that
the transverse conductivity will be enhanced as
coherence develops in the transverse direction.
However, in the absence of a satisfactory theory
for the transverse conductivity, a convincing
observation of the excitonic enhancement does not
seem possible at the present time.

We next discuss the implication of the 2k~ CDW
response function for dc conductivity in the chain
direction. Let us consider the scattering of elec-
trons by impurities. Quite generally the bare
impurity potential V, is screened by the inter-
acting electrons

V,(q) = zz A~ (q, kr) Vo (5.4)

as discussed by Heine, Nozieres, and Wilkins"
within the Fermi-liquid theory. Here A~ is the
charge vertex function and z~ is the quasiparticle
renormalization factor. To lowest order in g, and
g, we have the expansion

c—= lim —V2O~ ——,Imll(k —k', ~),
7 (y 0 + ~~ Bk ek

(5.6)

where c is the impurity concentration and II(q) is
the density-density response function. Clearly
the main contribution in Eq. (5.6) comes from
k -k' near 2k+ where we have already calculated
the real part of the response function Reii(2kr+q)
=N(q). The imaginary part can be obtained by
using the Kramers-Kronig relation from calcula-
tions of N(g} shown in Fig. 8, for instance. We
mould like to make a rough estimate by assuming
that

N(q, T), &u & T,
Rell(2k'+ q, v) =

where the constant a is chosen so that Reli(&u}
is continuous and

(5.7)

8lnN 1 N
8(lnT/Er) xv N

(5.8)

is the local slope in the logarithmic plot shown in
Fig. 8. The Kramers-Kronig analysis can be
done and it is easy to show that

I;m Imll(2kr+q, (u) 2 v
( )tu 0 (d wT p+$ (5.9)

If v «1 we obtain using Eqs. (5.6), (5.8), and
(5.9):

I/v = cVo(2/w}'N(q = 0, T), (5.10)

where we have performed the sum over q by as-
suming that N(q) extends only over the range

~
vq~

& T. It is amusing to note that the lowest-order
expansion in g„g,of N agree with that of
[Vo(2kr)] given in Eq. (5.5).

In the strictly one-dimensional case N(T) has
been given by Solyom' within the lowest-order re-
normalization-group theory

N(T) = [1 —(g, /vv) In(T/Ez)) '~ (T/Er), (5.11)

where u = (g, —2g, )/2rv. It is easy to show that a
minimum occurs in' at a temperature T „given
by

ther reduced, g, scales to zero and may become
negative, at which point the impurity potential
becomes enhanced. Since the scattering rate
I/r ~ [V,(2k+)]', we expect a minimum of the
scattering rate at some intermediate temperature.
This point can be made more quantitative by the
use of the memory function formalism"" which
gives

Vo(2k„)= Vo[1+ (2g, -g2}1nT/E~+ ~ ' ' J. (5.5)

As T is lowered from E„,the second term in Eq.
(5.5) screens out the bare potential. As T is fur-

Tmf n 2&& —g2
Er (gy —2g2)gg

and that the minimum value of Ã is

(5.12}
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N „=(- o./3g, )' 'exp[2+ &(o'./g, )]. (5.13)

For g1 g2 y KIItf II 0.523 independent of g, . When
interchain coupling is included we find that the
chains behave as if they are one dimensional over
a wide temperature range and for the parameters
chosen in Fig. 8, N „andT „arein reasonable
agreement with the one-dimensional result. It is
of course possible to obtain a smaller N „anda
lower T „byvarying the parameters g» g, and
thus obtain a deeper minimum in 7 '. We might
add that electron-phonon scattering for T& ~~
can be treated in the same way by assuming that
the excitation of the phonons produces a fluctuating
potential so that V', -(V',~ g~kT. To summarize,
the conductivity at some intermediate temperature
can show a more rapid rise with decreasing tem-
perature that T ' owing to the screening of the
random potential. Moreover, at lower tempera-
ture when the CDW is strongly enhanced, the ran-
dom potential is enhanced and the conductivity
decreases.

The other interesting feature in Fig. 8 is that
for our choice of the repulsive intrachain inter-
action the SDW response is much stronger than the
CDW response over a large temperature range.
The SDW response function averaged over all
momentum transfer should be directly measurable
by the nuclear-spin relaxation rate which is given
by"

(s.14)

where A, = —', vgpsy„~u, (0)
~

' and u (0) is the wave
function at the nuclear site and y„is the nuclear
gyromagnetic ratio. In Eq. (5.14), X" is the imag-
inary part of the retarded spin-flip response func-
tion. It has been argued" that at relatively low
temperature T«E~, the absorption from q near
s 2k+ dominates the sum in Eq. (5.14) and TP
should be a direct measurement of the 2k~ SDW
response. The experimental observation that
(T,T) ' decreases with decreasing temperature
and apparently satisfies the Korringa relationhas
been used as an argument that no SDW enhance-
ment occurs and therefore the electrons are
weakly interacting. " This contradicts the esti-
mates of the coupling constants made here and as
we shall see, makes the observation of 4k~ CDW
difficult to understand. In fact more recent
work" "has suggested that 1/T, T may be domi-
nated by the small q behavior of y" (q, &o). This is
because for ql &1 where l is the mean-free path
the response function is diffusive, "i.e.,

X"(e, ~)/~ = De'/[~'+ (Dq')'], (5.15)

where the diffusion constant is, roughly speaking,

vlf. Insertion into Eq. (5.14) shows that in a
strictly one-dimensional problem 1/T, T is en-
hanced from the Korringa-type expression by the
factor (&uD/vz') '~' where a is the lattice constant.
Of course the co ' ' singularity is cut off by spin-
orbit scattering or by the interchain hopping rate.
Some frequency dependence of 1/T, T has in fact
been observed. "" It is thus likely that (T,T) ' is
dominated by the small q behavior of the spin-
density response function and contains no direct
information on the 2k~ SDW and hence the strength
of the interaction.

Further support of the existence of strong Cou-
lomb repulsion comes from the recent observa-
tion of diffuse x-ray scattering streaks at 4k~ in
TTF-TCNQ, ' '" which have a different tempera-
ture dependence from the scattering at 2k~."'"
Emery ' has pointed out that a strong repulsive
interaction can explain this observation. He cal-
culated the 4k~ charge-density wave response
function for a single chain and obtained the follow-
ing power-law behavior:

II(4k+, a&) - (&o/Ez)",

W= —2+4[1+(g, 2g,)/2. vP&

x[I-(g, -2g.)/2 ] '",

(5.16)

(s.17)

Our renormalization-group result agrees with this
exponent to lowest order ing, —2g, . As we ob-
served before if p. & 0, the interaction must be
strongly repulsive since it has to overcome the
leading u' term. If the 4k~ divergence is stronger
than the 2k~, then a large repulsive interaction
is required. It is worth remarking that for strong
Coulomb repulsion, the SDW is strongly divergent
and we already expect a 4k~ CDW to occur as a
harmonic of two SDW responses. This has, for
example, been observed in the SDW phase in
chromium metal. 44 We also wish to emphasize that
for repulsive interaction, a 4k~ CDW necessarily
coexists with strong SDW enhancement. It is then
useful to consider the limit of the strongly re-
pulsive Hubbard model and provide the following
simple physical picture. In the infinite repulsion
limit no two electrons may occupy the same site
and the spin degrees of freedom may be approxi-
mated by that of a Heisenberg antiferromagnet.
Ovehinnikov" has already considered the —,

' filled
band and concluded that in the presence of a suf-
ficiently strong nearest-neighbor repulsion, an
energy gap exists and a CDW develops. This CDW
in fact has wave vector 4k~ and simply states that
electrons are localized on every other site. This
is physically reasonable as the nearest-neighbor
repulsion may compensate for the energy cost of
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localization. It is amusing to note that a nearest-
neighbor repulsion corresponds to g, &g, which
favors a 4k„CDWaccording to Eq. (5.1"I). In
TTF-TCNQ the charge transfer is 0.59 per mole-
cule and we are about 15% away from the —,

' filled
situation. Then we may envision a structure in
which electrons are localized on every other site
with occasional "defects" where two adjacent sites
are occupied. This picture is similar to the dis-
commensuration idea proposed by McMillan~ and
would show up as a 4k~ periodicity in x-ray dif-
fraction with strong harmonic contents. This
structure would conduct by the hopping of "de-
fects." The detailed behavior of the conductivity
will obviously be complicated. As the temperature
is lowered, the coupling constantsare renormalized
in the way discussed in this paper. Eventually the
electrons pair up to form singlet pairs and a 2k~
CDW is formed. The physical behavior is similar
to the spin-Peierls transition. 4'

In conclusion, we have studied a model of cou-
pled chains in which electron-electron interaction
alone is considered. The most important feature
is that even if we start with strong repulsive Cou-
lomb interaction on both donor and acceptor chains
(which we believe to correspond to the physical
situation in charge-transfer compounds), we find
that eventually the ground state is a CDW state
that is three-dimensionally ordered. Enhancement
of the magnetic susceptibility from the noninter-
acting band value and some decrease of the en-
hancement factor with lowering temperature is
predicted, even though the temperature dependence
is not strong enough to explain the experimental
result in TTF-TCNQ. Strong SDW enhancement
is predicted over a wide temperature range.
While SDW has not, been observed it is also not
contradicted by existing data. Finally a simple
physical picture of the strong-coupling limit is
presented which exhibits a 4k& CDW and is con-
ducting. It appears that a model with repulsive
electron-electron interaction may form a useful
starting point for understanding the organic met-
als.

ACKNOWLEDGMENT

We would like to thank Adrian Simons for help
in the numerical computation and to P. W. Ander-
son, B.I. Halperin, and A. Zawadowski for helpful
discussions. One of us (R.K.) is grateful for the
kind hospitality received at Bell Labs. We are
grateful to Dr. L. Mihaly, Dr. J.Solyom, and Dr. N.
Menyhard for communicating their results prior
to publication.

APPENDIX A: SPECIAL SOLUTION FOR TWO EQUIVALENT
CHAINS

A special solution of Eqs. (2.7) can be found
along the surface UV= W'. Substituting in the first
of Eq. (2.8) leads to the result

Vdx =-, (1 -x),
where as previously x =—U/V. This is a separable
equation which can be integrated at once to give
the relation

(Al)

[(U —V)/(U, —V,)]2= V/V„ (A2)

=2Z' ~Z+S.
d$ Zo

(A2)

This equation can be integrated to give Z($) and
thus from Eq. (A2), U($), V($), and then W($).

The properties of the solution are as follows:
(i) if U, &0, V,&0, and U, & V, then as $- —~,
U-O, V-0 but U/V-+~ (this corresponds to
scaling to infinity in Fig. 3); (ii) if U, & 0, V,& 0,
and U, & V, then as $ -—~, U- 0, and V- (U,
—V,)'/V, (i.e. , solution scales to the origin in
Fig. 3); (iii) if U, &0 and V, &0 then U- —~ and
V- —~ for a negative finite value of g (i.e., solu-
tion scales to the attractive fixed point).

APPENDIX B: UNIFORM RESPONSE FUNCTIONS

Consider first the uniform magnetic susceptibi-
lity. Then quite generally we have

where U0 and V, are constants. Introducing the
additional variable Z = U —V leads us to a separable
differential equation for Z($),

lt (k, q ~)= f p G(p, v)G(p+k, &a+v)+ —ge' ' & & g G(pq~v~)G(px+k~vx+~)
Pr V f.J p p p2v21122

x I' i't'&~f(p„p, + k;p„p,—k) G(p„,) G(p, —k, , — ), (Bl)

where

p(it jim)
asy6 =

g;Fy a.5B 5it55m 5—jFa~gaA65im5fi (B2)
is the vertex function. It is clear that when there

is a spin flip at the vertex, only the single-chain
vertex function I'"'"' enters in Eq. (Bl). Thus
X,(k, q, ~) is independent of q and involves only a
single chain. The difficulty remains that an inte-
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(b)

ignore, and I evaluated at the Fermi surface can
be written in terms of the renormabzed coupling
constants y, and y, defined as g, ($)/2vv* and

g, ($)/2vv *, respectively. This leads directly to
Eq. (4.19). Similar consideration leads to Eq.
(4.21) for the compressibility.

FIG. S. Graphs that contribute to the 4k& response
function: (a) noninteracting response function, (b) a
term proportional to g2, and (c) a term proportional to

gration over the entire energy band is required
inEq. (Bl). This difficulty is circumvented using
techniques that are standard in Fermi-liquid theo-
ry.

The starting point is the observation that the
Green's function can be written, near the Fermi
level, as

G(k, (o) = e- v *(Ik I —kr)+ i5 sgn( Ik I —kr} '

APPENDIX C: CHARGE-DENSITY-WAVE RESPONSE

AT WAVE VECTOR 4kF

In this appendix we outline the calculation of the
4k& charge-density-wave response function
II(4k+, &) of a single chain. First we consider the
noninteraeting response function II'(4k~, &o), shown
graphically in Fig. 9(a). By integrating over the
internal variables associated with up- and down-
spin lines one can obtain at once the result

II'(4k, i~)=
~ 2 2

11'(2k +k, iu+i~)f dm dk

(as)
xll (2k -k, —iu), (Cl)

where v*= v(l g, /2-rv+ }is the velocity nor-
malization. (Strictly speaking in the bandwidth
cutoff model of Menyhard and Solyom there is no
velocity renormalization. However, such renor-
malization exists for the Hubbard model or for
models with a cutoff in the momentum transfer. )
We note that there are no logarithmic corrections
to the velocity renormalization. Thus it is natural
to perform the velocity renormalization first (i.e.,
v is replaced by v* everywhere) and then sum the
logarithmic terms using renormalization-group
theory. The lowest-order logarithmic self -energy
term shown in Fig. 5 of Ref. 7 has been shown by
Menyhard and Solyom to correspond to a renor-
malization of z such that

z=[I -(4v'v*') '(g,'-g,g, +I,')In(~/E )]- (B4)

where II'(2k++ k, iu} is the noninteraeting 2k+ re-
sponse function. It is convenient to evaluate all
frequency integrals along the imaginary axis

II (2kr+k, iu)= ln
V2k2+ Q2

4m V p
(C2)

The integrals in (Cl) ean be evaluated straight-
forwardly leading to

2

II'(4k„,i~) = const — » ln— (cs)

The corrections of first order in the interaction
are shown in Figs. 9(b) and 9(c). There are four
graphs of type 9(b) involving g, but because of the
restrictions imposed by the spin indices only two
of type 9(c) involving g, . Both types involve the
same function II"' which has the form

In the Landau Fermi-liquid theory it has been
shown in the long-wavelength limit that Eq. (Bl)
can be rewritten4'

lim II,(k, q, &o) = 1 kv*
a. ~-o ' ' 2vv* &o —kv* (2vv*) &o -kv*

x z'I", ("„(k,k„,k„k,)
(B5)

The important points are that the wave-function
renormalization does not appear in the first term
and that the second term is now evaluated only at
the Fermi surface. The z2 factor in the second
term is now a higher-order correction which we

Il' '(4k»i&a) = — —11'(2k++ k, iu+ &u)
, ), . du dk

x [II'(2k —k, iu}]'. (C4)

Using the form (C2), one obtains

(a) ~II (4k', iu)) =
(4 ), ~

)c dy~ ln g+ (df 2+. y2 ln2 g2+y2

(C5)

where we have changed to variables ~' = &u/E~,
x =u/E~, and y= vk/EI, . It is convenient to intro-
duce polar coordinates x=r cos8 and y=r sine.
After integrating by parts and discarding an unin-
teresting constant we obtain
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271 ) g ~i 2 0

Finally we obtain the expansion

tl(nn, }=aanntt, , '}n 1 — ' ' tn + ") .3&'g' Z~ 2n g) Z~

(C6)

(c7)
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