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Energy bands in ferromagnetic nickel are calculated self-consistently using two different potentials: the Kohn-
Sham-Gaspar local-exchange approximation and the spin-polarized exchange-correlation potential of von

Barth and Hedin. The linear-combination-of-atomic-orbitals method was employed using a basis set of
independent Gaussian orbitals. Spin-orbit coupling and other relativistic effects were ignored. Improved
techniques for the calculation of the exchange potential and for integrations over the Brillouin zone have been

developed and applied. Use of the exchange-correlation potential leads to significant improvement in the

nagneton number and the exchange splitting. Results are also presented for charge and spin form factors,
contact charge densities, and the Fermi surface.

I. INTRODUCTION

In previous publications, we have reported self-
consistent calculations of energy bands in ferro-
rnagnetic nickel using the linear-combination-of-
atomic-orbitals method" and the Kohn-Sham-Gas-
par' (KSG) local-exchange approximation. The
basis set consisted of atomic wave functions for
the 1s, 2s, 3s, 4s, 2p, 3p, and 4p states plus
five independent d-type Gaussian orbitals. Re-
sults obtained were in reasonable agreement with
a variety of experimental measurements. In or-
der to determine whether the remaining discrepan-
cies between theory and experiment could be re-
moved by calculations using improved techniques,
the self-consistent calculations were repeated with
several major changes in the programs. The re-
sults largely confirmed previous findings; however,
substantially more precise results were obtained
for wave functions, particularly of s and p type.
We concluded that most of the disagreement be-
tween theory and experiment should be attributed
to inadequacy of the basic model. We have there-
fore repeated the self-consistent calculation using
the spin-polarized exchange- correlation potential
of von Barth and Hedin' (vBH), which modifies the
KSG exchange potential through inclusion of some
correlation effects. Significant improvements are
found in the calculated magneton number and in
the exchange splitting.

This paper is organized as follows. In Sec. II,
we describe several different improvements that
have been made in our computational techniques.
Our results are presented in Sec. III, where they
are compared with experiment. The residual dis-
crepancies between theory and experiment are dis-
cussed. The conclusions are stated in Sec. IV.

II. PROCEDURES

The Bloch wave functions are expanded in a set
of independent Gaussian orbitals including thirteen

s type, ten p type, five d, and one f. This extends
our previous work in which atomic wave functions
were used for all states except 3d and f orbitals
were not included. The use of independent orbitals
should lead to improved wave functions particularly
for s and p states. The Hamiltonian and overlap
matrices have dimension 75x 75. The exponents
of the s, p, and d orbitals were those used by
Wachters' in a self-consistent calculation for the
free nickel atom, except that the s and p orbitals
of longest range were deleted. Very-long-range
orbitals contribute little to a band calculation and

cause severe problems with extensive overlap and
approximate linear dependence. The f orbital was
chosen to have the exponent 0.8. Spin-orbit cou-
pling is neglected in the present calculation. The
changes in the Fermi surface and other properties
due to spin-orbit coupling have been considered
previously, and do not concern the questions
studied here.

The essential features of the computational tech-
niques used in our previous work have been dis-
cussed elsewhere. ""Significant improvements
have been made. A detailed account of our current
programs will be published in another journal.
Here we will give a brief discussion of five major
changes. The first concerns the construction of
the Fourier coefficients of the starting exchange
potential for the iterative process leading to self-
consistency. The atomic cell is divided into three
regions. The charge density is in the innermost
region (r(1 a.u. ) is spherically symmetric. In the
region between 1 a.u. and r = —,'a (a is the lattice
constant), the exchange potential is expanded in a
series of Kubic harmonics up to the eighth order.
The angular part of the Fourier transform is
carried out analytically and Filon's rule including
400 points in the range is used to perform the
radial integrals. In order to include the contribu-
tion from the interstitial region between the in-
scribed sphere and the cell boundary the irreduci-
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ble wedge of the unit cell was partitioned into 1'785
cubes and the exchange potential was interpolated
linearly inside each cube.

Second, the computation of the changes in the ex-
change potential in the iterative process leading
to the self-consistency has been modified as fol-
lows: The change in the exchange potential as the
iterations progress is small compared to the initial
quantity. Hence it is legitimate to retain only first-
order terms in the expansion of the exchange (or
exchange correlation potential) in terms of the
change in charge density compared to starting den-
sity. I.et f(p} be the relevant function of the charge
density, and let f„denote the coefficients in its
Fourier expansion

f(p) =f(po)+f'(p. )6p.

Then

f»=fo,»+Q f»» 6P»
t

in which f»», is a Fourier coefficient of f', and

f, » refers to f(p,). For example, for the KSG ex-
change potential,

V„=—2e'I(3/4») p, ]' ',

the change in V„(ff») is then

&/3

6V„T& = — — Q (Po, o )T& Tc6PK (4)
4m

K'

A somewhat similar expression is obtained for the
vBH potential. The Fourier coefficients of the
change in charge density 5p K are required for the
computation of the changes in the Coulomb poten-
tial, and are available in our program. Hence, if
we compute the Fourier coefficients of the deriva-
tives of the exchange-correlation potential, it is
possible to find the Fourier coefficients of this po-
tential corrected for small changes in the charge
density. In r space, po' ' is smooth near the
boundary of the unit cell, and small near the cen-
ter, therefore we would expect (p,,'~')» to be sig-
nificant only for modest values of K. The sum in
(4} should converge readily, and our experience
shows that this is the case. We retain the lowest
20 Fourier coefficients of the changes in the ex-
change potential and keep the first 40 5p K, in (4)
to calculate these.

Third, we have modified the programs to include
an Ewald-type procedure for the calculation of ma-
trix elements of the Coulomb potential in a manner
similar to that described by Chancy et al. ' In this
procedure, the crystal potential V,(r) is separated
into two parts,

V,(r) = V, (r)+ [V,(r) —V, (r}],
in which the localized potential V, (r) has a Coulomb

singularity at each nuclear site but vanishes at the
boundaries of each unit cell, while the difference
V,(r) —V, (r) is not singular and is expanded in a
Fourier series in the reciprocal lattice. The fol-
lowing form was found to be convenient for V, (r)

2 -8 f'
V, (r) = —(Ze'/r)e i" + (n/x)(e ~" —e 2" ).

The second term represents a part of the potential
of the electron distribution.

Fourth, we have adopted the procedure of Chancy
and Dorman for the calculation of the matrix ele-
ments of cos K r.' This greatly simplified the cal-
culation of the matrix elements, especially those
involving f orbitals.

Fifth, Brillouin-zone integrals are calculated
using a linear analytic method in which the irre-
ducible &th of the Brillouin zone is divided into
tetrahedra. ""The advantage is that the contri-
bution from the occupied portion of a given tetra-
hedron can be evaluated exactly. This is particu-
larly helpful in the case of nickel where the L2&

state sometimes oscillates about the Fermi energy
in the iterative procedure toward self-consistency.

Comparison of calculations with the Kohn-Sham
exchange potential, Eq. (3) with experiment as de-
scribed in Sec. III indicates that the calculated
magnetic moment and exchange splitting are too
large. The Kohn-Sham potential evidently over-
estimates the tendency toward ferromagnetism,
and this overestimate should be reduced through
the use of a potential which incorporates additional
correlation effects. Such a potential has been in-
troduced by von Barth and Hedin. ' Instead of (3),
the exchange potential for electrons of spin cr is

V„, .= &(p) (2p. /p)'/'+ &(p),

in which p =p&+p& is the total charge density. Pa-
rameterized forms for A and B are given in Ref.
4. In order to reduce storage requirements in the
iterative process leading to seK-consistency, we
expand (6) to first order in the difference between
majority and minority spin densities before apply-
ing (1).

III. RESULTS AND COMPARISON WITH EXPERIMENTS

The band structure of nickel has been calculated
self-consistently for both the KSG and vBH po-
tentials using the procedures described in Refs. 1
and 2 modified as specified above. All calcula-
tions were made for the observed lattice constant
extrapolated to T=O'K (a=6.644 a.u. ). The cri-
teria of self-consistency was that in the last itera-
tion, no Fourier coefficients of potential (either
Coulomb or exchange) should change by more than
4@10 ' Ry. The charge density was sampled at 89
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TABLE I. Energies (in rydbergs) determined in the Kohn-Sham potential, Eq. (3), of the
lowest six states above the core at symmetry points of the Brillouin zone. The number in
parentheses following the energy designates the irreducible representation.

Band r(ooo) X(100) w(i-, o) z(-,'-,'0)

Majority spin

—1.0437 (1)
-0.5603(25')
-O.5603(25')
-0.5603(25')

o.4vv 1(12)
o.cvv 1 (12)

o.v18o{1)
—O.6869(3)
—0.4238(2)

o.4123(s)
O.4123(5)

-o.21s9(4')

—0.6657 (2')
O.6O99(3)

-0.6099(3)
-0.4818(1)
-o.4122(1')
+o.1vv2(3)

—0.7409 (1)
-0.5605(3)

o.seos(3)
—0.4246(3)

O.4246(3)
o.41ev(2')

-0.6715(1)
—o.6587 (1)

O.5389(3)
-0.4655(4)
—0.4314(2)
+o.o3oo(3)

-1.0531(1)
—0.5050(25')
-0.5050(25')
-0.5050(25')
-O.4213(12)

O.4213(12)

Minority spin

-0.6852(1) -0.6317(2')
-0.6413(3) -0.5669 (3)
-0.3651(2) -0.5669(3)
-0.3478(5) -0.4285(1)
-0.3478(5) —0.3477 (1')
-0.2245(4') +0.1875(3)

Ep
——-0.3747

—0.7121(1)
o.so83(3)

—0.5083(3)
O.42V3(2')
O.3629(3)
o.3629(3)

O.6361(1)
-0.6174(1)

o.495s(3)
—0.4104 (4)
—0.3681(2)
+0.0426(3)

points in &th of the Brillouin zone. After comple-
tion of the calculation of the self-consistent po-
tentials, energy levels and wave functions were
obtained at 505 points in ~th of the Brillouin zone.

Energy levels along certain symmetry lines are
shown in Fig. 1 for the KSG potential. In general,
the relative position of the energy levels agrees
quite closely with that reported in Ref. 1(difference
of 0.01 Ry or less, except for A ). The most in-
teresting change is that the exchange splitting of
certain of the s and p states is now negative
(I'„L,', X,'). This results from a predominance of
minority spin density (Fig. 2) both close to the nu-

clei and in the outer portion of the atomic cell.
The inclusion of the correlation potential lowers

the energy levels typically in the range 0.14-0.16
Ry, and reduces the exchange splitting of the d
states by roughly 0.015 Ry. Detailed comparison
of Kohn-Sham and vBH energy levels can be found
in Tables I and II where energies of selected states
at the symmetric points I', X, W, L, and K (and the
Fermi energy) are tabulated. It will be observed
that the exchange splitting of states near the top
of the d band (X„W() is 0.0645 (0.88 eV) with the
KSG potential but is reduced to 0.0463 Ry (0.63 eV)
with the vBH potential. There is a corresponding

TABLE II. Energies (in rydbergs) determined in the vBH potential, Eq. (5), of the lowest six
states above the core at symmetry points of the Brillouin zone. The number in parentheses
following the energy designates the irreducible representation.

Band I (000) X(100) w(1-,'o) z(-, —,'0)

Majority spin

—i.1890(i)
-0.7043 (25')

o.voc3(2s')
-0 ~ 7043 (2 5')
-0.6222 (12)
-0.6222 (12)

-0.8632 (1)
—0.8311(3)
-0.5689 (2)

o.sse 1(s)
o.ssei (5)

-0.3616(4')

-0.8108 (2')
-o.vsci(3)

o.vsci(3)
-0.6269(1)

o.ssei(1')
0.0320 (3)

-0.8855(1)
o.vosi(3)
o.vos i(3)

-o.se89(3)
-0.5689{3)

o.s62o(2')

o.8166(1)
—0.8031(1)
-0.6831(3)

o.eioe(4)
—0.5753 (2)

o.1151(3)

-1.1923(1)
-0.6643 (25')
-0.6643(25')
—0.6643 (25')
—0.5818(12)
—0.5818(12)

Minority spin

-0.8382 (1) -0.7849 (2')
-0.7976(3) -0.7222 (3)
-0.5264(2) -0.7222(3)
—0.5098(5) -0.5881(1)
-0.5098(5) -0.5098 (1')
-0.3640(4') 0.0420(3)

Ez = -0.5342

-0.8630(1)
-O.66V 3(3)
-0.6673(3)

o.ses9{2')
-o.s2cs(3)

o.524s(3)

—0.7896(1)
o.vv2s(1)
o.esov(3)

-0.5706(4)
-0.5298 (2)

o.io3v(3)
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TABLE III. Contact charge densities. "Band" refers to the sum of contribution from the
occupied states above the core (including s-d hybridization). All quantities are in atomic units

(ao ). The net spin density is equivalent to an effective hyperfine field of —69.7 kG for the KSG
potential and -57.6 kG for the vBH potential.

I e»(o) I'
I y»(o& I'

I tl»(o) I'+
I y»(o) l'

I y, ,(o) l'
I &, ,(o& I'

Kohn-Sham is
Kohn-Sham 2s
Kohn-Sham 3s
Kohn-Sham band
Kohn-Sham total

vBH i s
vBH 2s
vBH 3s
vBH band
vBH total

6491.881
602.540
88.312
2.986

7185.719

6463.165
601.109
88.057
2.948

7155.280

6491.918
602.782
88.091
3.061

7185.852

6463.189
601.321
87.878
3.002

7155.390

12 983.799
1205.322
176.403

6.047
14 371.571

12 926.354
1202.430
175.935

5.950
f4 310.670

-0.037
—0.242

0.221
—0.075
-0.133

—0.024
-0.212

0.179
—0.053
—O. f 10

shift of peak positions in the density of states as
will be shown subsequently. A precise experimen-
tal value for a typical exchange splitting is not

known, however, our previous analysis of the opti-
cal conductivity suggests 0.5 eV for this quantity. '

Better agreement with the experimentally measured
magneton number" (0.56) is also found with vBH
potential (0.58) than the KSG potential (0.65). The
difference between the latter value and our pre-
vious result' (0.62) is principally due to the use of

TABLE IV. Spin-density form factor.

Wave vector
aK/27t

Present
KSG

Present
vBH

Wakoh and
Yama shita
(Ref. 14)

Expt.
(Ref. 15)

(0, 0, 0)
(1, 1, 1)
(2, 0, 0)
(2, 2, 0)
(3, 1, 1)

(2, 2, 2)
(4, 0, 0)
(3, 3, 1)
(4, 2, 0)
(4, 2, 2)

(3, 3, 3)
(5, 1, 1)
(4, 4, 0)
(5, 3, 1)
(4, 4, 2)

(6, 0, 0)
(6, 2, 0)
(5, 3, 3)
(6, 2, 2)
(4, 4, 4)

(5, 5, 1)
(7, 1, 1)
(6, 4, 0)
(6, 4, 2)
(5, 5, 3)

(7, 3, f)
(8, 0, 0)
(7, 3, 3)

1.000
0.790
0.697
0.440
0.309

0.295
0.160
0.153
0.123
0.095

0.086
0.042
0.045
0.027
0.038

-0.013
-0.008

0.019
—0.005

0.018

0.002
—0.033
-0.006
—0.004

0.003

—0.022
—0.045
—0.015

1.000
0.762
0.669
0.423
0.297

0.285
0.152
0.149
0.118
0.092

0.085
0.039
0.045
0.026
0.038

-0.014
—0.009

0.019
—0.005

0.0f 9

0.003
-0.034
-0.006
-0.003

0.004

—0.022
—0.045
—0.014

0.766
0.665
0.419
0.296

0.287
0.154
0.151
0.121
0.096

0.089
0.045
0.049
0.032
0.042

-0.005
0.001
0.024
0.001
0.023

0.008
—0.025

0.000
0.002
0.008

0.015
—0.036
—0.008

0.793 + 0.009
0.703 +0.008
0.447 + 0.005
0.321 +0.005

0.311+0.004
0.157 +0.003
0.168 +0.003
0.132 + 0.003
0.108 +0.004

0.109 +0.003
0.036 +0.004
0.058+0.004
0.032 + 0.004
0.052 6 0.004

—0.025 +0.003
0.009+0.004
0.036 + 0.004
0.006 +0.004
0.037 +0.004

0.009 + 0.004
—0.047 +0.004
-0.001 +0.004

0.00f +0.004
0.012+0.004

—0.027 +0.004
—0.063 +0.004
—0.017 +0.004
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improved methods of k-space integration.
Charge and spin densities at a nuclear site have

been obtained, and are given in Table III. The ef-
fectivee

hyperf inc fields due to spin polarization,
-69.7 kG for KSG and -57.6 kG for vBH potentials,
are in rather good agreement with the experimental
value of -76+ 1 kG." Our results include the modi-
fication of the core wave functions in the crystal
environment but neglect all relativistic corrections
(including a possible orbital field resulting from
spin-orbit coupling). The use of Gaussian orbitals
makes it more difficult to obtain accurate value
for [g(0) ~' than if Slater orbitals are employed. On
the basis of comparison of free-atom wave func-
tions we estimate the uncertainty in ig(0)~' due to
use of Gaussian rather than Slater orbitals is less
than 4/0 for all states. The difference between
majority and minority spin densities should not be
significantly affected by this. The spin densities
along three principal directions are compared in
Fig. 2. An overall reduction of the difference in
spin densities due to electron correlation is found.
Corresponding results for the normalized spin den-
sity form factor are given in Table IV. These are
computed with (a) g= 2 and (b) no allowance for an
orbital contribution. The core-electron contribu-
tion is included. Both the departure of g from 2

and the orbital moment are results of spin-orbit
coupling and are neglected here. Our results are
compared with the previous calculation of Wakoh
and Yamashita, "and the experimental results of
Mook." The form factor from the KSG potential
agrees better with the experimental values than
that from the vBH potential for small K. All cal-
culated points tend to fall consistently below ex-

periment for larger K. Also, the anisotropy, which
can be studied by comparing values of the form
factor for two different vectors with equal values
of ~K~, is too smaQ.

We have also calculated the charge density form
factor p(K). These quantities can be measured in
x-ray diffraction experiments. Our results are
given in Table V where they are compared with
other theoretical values and with experiment.
There are evidently substantial disagreements be-
tween the results of different experimental groups.

The density of states has been calculated using
the linear analytic tetrahedron method. " The com-
bined density of states for both spins according to
the KSG and vBH potential is shown in Figs. 3 and

4, respectively. Numerical values of the density
of states at the Fermi energy are 22.92/(atom Ry)
(KSG) 25.45/(atom Ry) (vBH). Both are much
smaller than the value obtained from the electron
specific heat, "2.97/(atom eV) which is equivalent
to 40.41/(atomRy). This discrepancy probably in-
dicates the presence of a large renormalization
effect due to the electron-phonon interaction. The
main majority spin peak in the density of states is
0.7 e V below the Fermi energy for the KSG poten-
tial and 0.5 eV below for the vBH potential.

In addition, we have investigated Fermi-surface
cross sections in some symmetry planes. Since
our calculations do not include spin-orbit coupling,
we do not see here the hybridization of majority and
minority spin sheets, and the consequent avoided
crossings. ' However, except near crossings our
Fermi surface should be reliable. Spin-orbit cou-
pling is a small effect except where degeneracies
are removed. Our cross sections in (100) and(110)

TABLE V. Charge-density form factor.

Wave Wakoh and Diana, Mazzone, Hoyoswa and
vector Present Present Yamashita and DeMarco Fukumachi
a K/2r KSG vBH (Ref. 14) (Ref. 16) (Ref. 17)

Arii et aL
(Ref. 18)

(0, 0, 0)
(1, 1, 1)
(2, 0, 0)
(2, 2, 0)
(3, 1, 1)
(2, 2, 2)
(4, 0, 0)
(3, 3, 1)
(4, 2, 0)
(4, 2, 2)
(3, 3, 3)
(5, 1, 1)
(4, 4, 0)
(5, 3, 1)
(6, 0, 0)
(4, 4, 2)

28.00
20.39
19.05
15.39
13.57
13.06
11.47
10.52
10.28
9.40
8.88
8.92
8.23
7.93
7.87
7.82

28.00
20.43
19.08
15.40
13.58
13.07
11.47
10.52
10.28
9.40
8.88
8.93
8.24
7.93
7.87
7.82

28.00
20.28
19.05
15.35
13.47
12.96
11.35
10.47
10.21

20.10 + 0.16
18.55 +0.16
15.34 +0.12

11.18 +0.11

8.74 +0.09
8.73 +0.09

20.78
19.29
15.60
13.63
13.09
11.49
10.61
10.31

19.17 +0.17
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FIG. 3. Combined density of states {both spins) ac-
cording to KSG exchange potential.

planes are shown in Figs. 5 and 6. Dotted lines
represent results from the KSG potential; dashed
lines, the vBH potential. The unpublished experi-
mental results of Stark' for the large portions of
the Fermi surface and the results of Tsui" con-
cerning the hole pocket at Xare also included for
comparison. There is very littletdifference between
the curves from different potentials in regard to the
minority spin X, hole pocket (g) and the 1 center
sp square (e). The vBH potential agrees with ex-
periments better than KSG potential for the ma-
jority spin 1 centered sp square (d) and the neck
around L2 but the situation is reversed in the large
minority spin I' centered d sheet in the (110) plane.
Both potential predict an extra X2& hole pocket
which has not been observed experimentally. The
partial inclusion of electron correlations in the
vBH potential lead to a reduction of the separation

between X» and Fermi energy by about 0.002 Ry
and hence slightly reduced the area of the unob-
served hole pocket.

The persistence of this piece of Fermi surface
may indicate the inadequacy of neglecting the den-
sity gradient term in the density functional formal-
ism. We speculate that an inhomogeneity correc-
tion involving second-order terms in Vp might
push X»(t„symmetry) and X»(e symmetry) apart
so that the latter would be below the Fermi energy,
and thus eliminate the unobserved X2& hole pocket.
The opposite displacement of X, would enlarge the
light hole pocket which would also improve agree-
ment with experiment.

The discrepancy observed in the anisotropy of
the magnetic form factor; that the theoretical an-
isotropy is too small, can be interpreted in a re-
lated manner. gneiss and Freeman have shown that
the Fourier transform of the charge density of
spin-g Bd electrons in a cubic field can be approxi-
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FIG. 4. Combined density of states according to the
vBH potential.

FIG. 5. Cross sections of the Fermi surface in the
(100) plane. The dashed lines represent the results from
the KSG potential, the solid lines those of the vBH po-
tential. The circles, triangles, and squares are the
experimental results of Stark; the dotted line, the
experimental results of Tsui, The surfaces are desig-
nated by letters: a is the X5& hole pocket; b, the X2~
hole pocket; c, the major d ) hole surface; d, the sp t

surface; e, the mph surface.



si'ty. We argue that pt 0.4 since the ma)ority
spin d band is occupied, and y~& 0.4 since most of
the d& holes are t&. y& would be further increased
if the minority spin X,(e,) level were pushed below
the Fermi energy by an inhornogenity coxrection.
The net effect Would then be an increase in the di-
reCtional anisoti opy of the spin form factor.

K

Flo. 6. Cross sections of the Fermi surface in the
(110) plane. The notation is the same as in Fig. 5.

where (j,), involves the spherical part of the dis-
tribution and (j,) the aspherical part. The aver-
ages are taken over the distribution of electrons
of spin 0'. The quantity p~ ls the fraction of 3d
electrons of spin o which have e symmetry. The
angular dependence is described by

g +E,' +K,' —3(IP„E„+Z~ +R,SP„

(fP„+fP, +Z',)'
(8)

I et us consider the difference between the form
fact,ox's fox'

R= [333] and K=[311]

as an example. If we neglect the spin dependence
of (j,&, it is straightforward to show that for the
net spin-density form factor,

f„(333)-f (511)=-1.31V(-,'y„)(j,&.

The quantity y„ in (9) should be interpreted as
y& —y&., the difference between the fxaction of e
character in the majority and minority spin den-

IV. CONCLUSIONS

We have compared the results of two band calcu-
lations fox' nickel that are identical except for the
choice of exchange (or exchange-correlation) po-
tential. The standard KSG potential (Xn with o. = q)
yields a rathel' good Fermi surface, except that
there is an "extra" hole pocket (X2~). The magneton
number is, howevex, significantly too large, and
the exchange splitting of the 4-band states also ap-
pears to be considerably too laxge, although there
is no accurately known experimental value. %'ave-
function properties (hyperfine field, charge, and

spin form factors) appear to be fairly good. They
are, however, subject to still uncalculated cor-
rections for spin-orbit coupling and othe." rela-
tivistic effects. There are interesting indications
that the failure of the calculations to produce
eQough anlsotlopy ln the spin form factor may be
correlated withthe ex rors in the band structure,
and possibly imply that inhomogeneity corrections
to the potentials may be irriportant.

The vBH potential leads to a significant improve-
ment in the magnetic moment and the exchange
splitting. The magnetic moment is quite close to
the experimental value, but the calculated spin
splitting may stiQ be too large. Furthex' experi-
mental work on this question is urgently required.
Elsewhere, we have suggested that precise mea-
surements of optical propel'ties in the 0.5-eV re-
gion would be particularly desirable. ' The Fermi
surface resulting from the vBH potential shows
relatively minor differences from the KSG poten-
tial. There is probably an overall improvement,
although it is not clear just what is the precision
of the incompletely published experimental mea-
surements. Values of wave-function properties
move away from experimental results slightly;
however, no particular conclusions can be drawn
from this since relativistic effects are not in-
cluded.
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