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Short-range interatomic forces associated with the overlap of closed core shells in both simple and noble
metals have been investigated by means of the Heitler-London approach. The required overlap integrals were
evaluated numerically; core orbitals were represented by neutral-atom Hartree-Fock wave functions. The
calculated overlap interactions were found to vary exponentially with separation, as expected. For most simple
metals, the overlap interaction is small compared with the screened-Coulomb interaction, until separations
considerably smaller than the nearest-neighbor spacing are reached. In noble metals, on the other hand, the
overlap and screened-Coulomb potentials are comparable at the nearest-neighbor position. Some general
features of overlap potentials are discussed. The construction of a composite interatomic potential by
interpolation between low- and high-energy theories is investigated.

I. INTRODUCTION

The interatomic forces in simple metals arise
primarily from two separate effects: (a) a
screened-Coulomb interaction that includes the
Coulomb repulsion between bare ion cores as well
as conduction-electron screening; and (b) a core-
overlap interaction that accounts for the exchange
forces which occur when wave functions of adjacent
atomic cores overlap. It is assumed that one may
distinguish clearly between core electrons and
valence electrons. In simple metals, the valence
electrons occupy nearly-free-electron-like bands,
whereas the core-electron states are quite similar
to those in isolated atoms.

Numerous calculations of screened-Coulomb
interactions for simple metals exist in the litera-
ture. Most of these are based on the pseudopoten-
tial and pseudoatom models.! On the other hand,
few calculations exist of the core-overlap poten-
tial in metals, although core-overlap interactions
for rare gases and ionic crystals have been
studied extensively. In the present work, the
core-overlap interaction in simple metals is in-
vestigated by means of the Heitler-London (HL)
method. Using the HL approach, one may cal-
culate the interaction between a pair of closed-
shell ions in a simple quantum-mechanical varia-
tional approximation. This interaction is ex-
pressed in terms of overlap integrals involving the
core-electron wave functions. Employing neutral-
atom Hartree-Fock wave functions, we have
evaluated these integrals numerically for several
metals.

It is of interest to compare the core-overlap
interaction with the screened-Coulomb interac-
tion in a metal. Not surprisingly, it is found that,
for metals in which the outermost closed shell con-
tains only s and p electrons, the core-overlap

potential is negligible at normal lattice separa-
tions and begins to compete with the screened-
Coulomb potential only at considerably shorter
range. However, for several metals that contain
d electrons in the outermost closed shell, over-
lap effects are quite important even at the nearest-
neighbor spacing.

The interatomic potential has a strong bearing
on many static and dynamical properties of metals.
In particular, the interatomic potential at short
range is important to the description of phenomena
at high pressure, atomic collisions, and crystal
defects. In the present paper, we will comment
on some of the implications of the calculated poten-
tials for lattice dynamics as well as for point
defects and radiation damage. In the description
of certain radiation-damage phenomena, the scat-
tering cross sections that correspond to high-
energy small-impact-parameter collisions are
required. However, the theoretical techniques
mentioned thus far, i.e., the HL method and
pseudopotential theory, apply only to interaction
energies <1 eV. An alternative approach, in
which the energy is characterized as a functional
of the total electron density, has been employed
over a much wider energy range.? The Thomas-
Fermi and Thomas-Fermi-Dirac methods, for
example, fall within this category. Recently,
Hartree-Fock atomic wave functions, rather than
statistical charge densities, have been employed
in density-functional calculations of interatomic
interactions.** The density-functional methods
entail considerably less computational effort than
the fully quantum-mechanical approaches. Com-
parison will be made between the HL calculations
of the present work and density-functional cal-
culations of core-overlap interactions.

In Sec. II, the formulation of the HL method and
its application to the calculation of core-overlap
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interactions in metals are discussed. A review
is given of the use of pseudopotentials in the cal-
culation of screened-Coulomb interactions. The
results of calculations of core-overlap potentials
are presented and discussed in Sec. III. The s-p
electron core metals and d-electron core metals
are considered separately. In Sec. IV, an addi-
tional discussion is given of some of the approxi-
mations inherent in the HL approach. In Sec.V,
the construction of a composite interatomic poten-
tial by interpolation between low- and high-energy
theories is considered.

II. FORMULATION

The application of the HL method to calculate the
closed-shell repulsion between a pair of Ne atoms
was carried out by Bleick and Mayer.® The some-
what simpler problem of the interaction between
two He atoms has also been treated in the HL
framework.® The basic ingredients of HL may
be summarized as follows: (a) expression of the
wave function of a two-atom system as a Slater
determinant of Hartree-Fock atomic core orbitals;
(b) evaluation of the total energy as the expecta-
tion value of the Hamiltonian with respect to this
wave function; and (c) neglect of all but direct
and single exchange processes. Subtracting the
energy corresponding to infinite separation of the
atoms from the energy at separation R, one ob-
tains® an expression for the overlap potential &,
that has three types of contributions:

®,(R)=E_+E_+E, . 1)

The first of these is the Coulomb interaction be-
tween the cores, which accounts for direct pro-
cesses. The other two terms arise from the ex-
change of electrons between the two cores. E
may be interpreted’ as the interaction between a
positive “exchange charge” and the core charge
and E, as the self-energy of this exchange charge,
E. E.., and E__ are defined® in terms of two-
center overlap integrals.

In the case of He-He interactions, a useful ap-
proximation has been obtained’:

Eo~-2s%%/R, E_~-4s%?/R,

2

E, ~8s%?%/R, @
and therefore,

&, ~2s5%3/R , (3)

where
s= [ ary(FWE-R)

is the overlap integral for the He 1s wave func-
tion, and e is the electronic charge. The quantity

4s? is sometimes identified as the exchange
charge’ g,,, and one may then write

&, ~q.,2%/2R . (4)

As we describe later, relations somewhat anal-
ogous to Egs. (2) and (4) also apply to materials
more complex than He.

A necessary condition for the validity of the HL
approach is that the overlap parameter’ 8§ (equal
to one-half the exchange charge) be small relative
to unity. In the range of separations in which this
requirement is satisfied, one may in practice
restrict attention to overlap integrals that involve
only outer shell electrons. This greatly reduces
the required computational labor.

The above discussion refers to a two-atom sys-
tem. Unfortunately, the HL approach is not di-
rectly generalizable to many atom systems. When
clusters of many atoms are considered, 8§ be-
comes large, and multiple exchange processes
become important.® We do not deal with these
difficulties in the present work, restricting our
consideration here to two-body interactions.
Three- and four-body forces associated with core
overlap have been treated in a perturbation theory
framework by Lombardi and Jansen.?

The HL approach may be adapted to metals in
the following manner. The total potential is written

$=d,,+8, , %)

where &, the screened-Coulomb interaction,
comprises the bare interaction Z2¢?/R between
ions of valence Z, as well as the conduction-elec-
tron screening. Accordingly, the overlap poten- .
tial is redefined as

®,=E.+E _+E__, (6)

where the “residual” Coulomb interaction, given
by

E;,=E;-Z%*/R ,

would vanish the absence of core overlap.

The overlap potential for two metallic ions,
defined in Eq. (6), thus may be calculated exactly
analogously to the overlap potential for two rare
gas atoms, given in Eq. (1). It is important to
recognize, however, that the problem of the over-
lap interaction between two ions in free space is
not identical to that in a metallic environment. In
a metal, the valence electrons screen each ion;
this screening is manifested directly in &, and
also indirectly in &,;,. As a consequence of
screening, the core wave functions in a metal
are nearly identical to those in a free atom. On
the other hand, when two ions are brought close
to each other in free space, the cores are polar-
ized, and consequently a distortion of the core
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wave functions (relative to free-atom wave func-
tions) occurs. Now, the HLapproach, which does
not allow for wave-function distortion, would be
inappropriate for calculating the interaction be-
tween ions in free space; however, it should be
reasonably valid for treating interactions in
metals, at least when the separation is not too
small. At quite small separations, of course,
core-wave-function distortion does occur as the
interpenetration of the cores becomes greater and
the conduction-electron screening becomes less
effective.

Wave-function-distortion effects are included
in the molecular-orbital self-consistent-field
method,'® which goes beyond the HL approxima-
tion. Although the molecular-orbital self-con-
sistent-field method is superior to the HL. method
for calculating intramolecular interactions, the
latter would seem more appropriate for dealing
with the overlap interaction of ions in a metal in
the range of separations in which screening is ef-
fective.

Another source of interatomic interaction,
which is not taken into account in Eq. (5), is the
van der Waals or dispersion force. Normally,
this is assumed to be negligible for simple metals,
although little discussion of this point exists in the
literature. Recently, the van der Waals interac-
tion in noble metals has been calculated,'* with
screening effects included.

Equations (5) and (6) provide the basis for our
investigation of interatomic forces in the low-
energy (® <1 eV) regime. We have evaluated the
overlap integrals entering Eq. (6) numerically
for a number of metals, employing neutral atom
nonrelativistic Hartree-Fock wave functions cal-
culated by Mann.!? The difficult two-electron
overlap integrals occurring in E_ were calculated
by means of the spherical harmonic expansion
procedure developed by Kunimune.'® A detailed
description of the entire calculational procedure
will appear in a separate report.

For all materials studied in this work, the cal-
culated overlap potentials are well approximated
by the exponential Born-Mayer! form

@01=Ae-R/a ’ (7)

where A and p are constants characteristic of the
particular atomic cores being considered. The
results of least-squares fits of A and p to &, for
several metals are given in Table I.

As mentioned earlier, the screened-Coulomb
potential &, has been studied by means of pseudo-
potential techniques.! In general, the interaction
is expressed in terms of the Fourier transform
of the normalized energy wave-number charac-
teristic Fy(q),

$,c(R)=

*2,2 ©

222 [T 1P ieR)da @
where Z* is the effective charge (slightly larger
than the valence Z,), and j,(x) is the zero-order
spherical Bessel function sinx/x. Unfortunately,
the energy wave-number characteristic Fy(g) is
not uniquely defined for a given material; it varies
with specific assumptions of the pseudopotential
model. For a linearly screened local pseudopo-
tential, one obtains!

Fylg)= (%Zq_e:)-z[wb(q)]z< ﬂ(‘i(%l) ’

where Q is the atomic volume, w,(q) is the form
factor for the bare ionic pseudopotential, €,(q)
is the Hartree dielectric function, and

(@) =1+[e4(@) -1][1-G@)] ,

with G(g) a correction for exchange and correla-
tion. An important feature of the pseudopotential
model is that the pair interaction ¢ ., is meaning-
ful only in considering rearrangements of atoms
at constant total volume. If the over-all volume
is changed, volume-dependent contributions to
the energy must be taken into account.' Experi-
ence has shown that & (R) is quite sensitive to
the exact form of Fy(g), which depends on factors
such as (a) whether the chosen pseudopotential is
local or nonlocal'®!é; (b) the choice of G(g), which
corrects the dielectric function for exchange and
correlation'?; (c) the treatment of conduction-
electron-core-electron exchange'™; (d) the
treatment of the orthogonalization hole'?; (e)
effective-mass corrections!®; and (f) nonlinear
corrections to the conduction-electron screening
of the ions.?® The sensitivity of &, to the above-
mentioned factors increases with the valence. For

TABLE I. Born-Mayer parameters fitted by least
squares to calculated overlap potentials for the materi-
als discussed. The final column refers to the range over
which the fit was performed.

Materials A (eV) p A) Range A)
Ne 6300 0.206 1.58-2.12
Na 22200 0.168 1.32-2.12
Mg 52 500 0.140 1.32-2.12
Al 115000 0.118 1.32-1.85
Cu 3390 0.246 2.15-2.55
Ag 9120 0.260 2.48-2.88
Au 9160 0.276 2.48-2.88
Zn 5130 0.221 2.26-2.66
Ga 18500 0.181 2.04-2.44
K 41100 0.231 2.12-2.91
Rb 52200 0.258 2.38-3.18
Cd 27400 0.229 2.07-2.97
Pb 213000 0.191 1.99-2.39
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FIG. 1. Core-overlap and screened-Coulomb potentials
for Na and empirical Born-Mayer potential for NaCl.
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alkali metals, virtually all calculations give rise
to a screened-Coulomb interaction that has a
minimum and is negative in the vicinity of the
nearest-neighbor position. In the case of Al, on
the other hand, some calculations show such a
minimum near the first-neighbor position, where-
as others exhibit no minimum in this range.'®:!72
This sensitivity occurs because the value of &,
is a small difference between large numbers;

its magnitude is generally of the order of or less
than 1% of the bare Coulomb interaction until
quite small separations are reached. The extent
of the cancellation is enhanced with increasing
valence.

In the present work, we are interested in com-
paring &, with &,, to ascertain in what range of
R they become competitive and to assess their
relative importance. Because of uncertainties in
the calculations of both quantities, one should
perhaps not regard either as being known to much
better than a factor of 2. Despite this reserva-
tion, we shall see that a number of meaningful,
and in some cases quantitative, comparisons can
be made.

III. RESULTS

When discussing the core-overlap potential &),
it is useful to distinguish between metals that con-
tain only s and p electrons (referred to as s-p core
metals) and those containing d electrons (referred
to as d-core metals) in their outermost closed
shells. The former will be considered first.

A. s-p core metals

In this section we compare calculated core-over-
lap and screened-Coulomb potentials for some
§-p core metals and discuss their relationship to
to certain properties. Various general aspects of
the overlap potential and its calculation are also

discussed.

Figure 1 shows the overlap potential calculated
for Na. For comparison, an empirically deter-
mined Born-Mayer potential for NaCl,?* and a
screened-Coulomb potential?* &, for Na, based
on the optimized model pseudopotential of Shaw,??
are also shown. In early calculations*?2 of the
phonon spectrum of Na, the overlap contribution
was estimated from the Born-Mayer interaction
of NaCl; at that time no calculation of &, ap-
propriate to Na metal was available.?*? It was
later pointed out by Vosko® that, because of the
large atomic radius of the C1™ ion, such a pro-
cedure grossly overestimates the effect of over-
lap. Assuming the NaCl Born-Mayer interaction
were appropriate, one would obtain a roughly 10%
contribution to the nearest-neighbor Born-von
Kiarman force constants of Na due to overlap.??
However, on the basis of the present overlap in-
teraction for Na metal, one calculates overlap
contributions about two orders of magnitude
smaller. Therefore, if overlap is neglected in
calculating the Na force constants, the error in-
curred is < 1%, which substantiates Vosko’s re-
marks.?

Referring to Fig. 1, one also notes that the
screened-Coulomb interaction &,, dominates the
overlap interaction ®,, for separations greater
than about half the nearest-neighbor spacing
(7.01 a.u.). This is plausible in view of the small
empirical ionic radius of Na,?® R;=1.85. The
crossover between ¢, and &,, occurs roughly at
2R;.

Interatomic potentials for Al are illustrated in
Fig. 2. Values for ¢ . were again taken from Ref.
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FIG. 2. Core-overlap and screened-Coulomb potentials
for Al.
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22. Because of its large nuclear charge, this
metal has an even smaller core than Na. There-
fore, core-overlap effects are insignificant until
rather high energies are reached. Even a self-
interstitial atom, which probes the interatomic
potential at separations considerably smaller
than the nearest-neighbor spacing (5.4 a.u.), is
governed almost entirely by &,.. Recent work®
has shown that self-interstitials in Al occur in
the [100] split dumbbell configuration, and the
separation of the split pair is ~4.5 a.u. One ob-
serves in Fig. 2 that &, is still quite small at this
separation. Extrapolating the curves to higher
energies (cf. the dashed lines in the figure), one
would predict that &, becomes competitive with
&, at energies of the order of the displacement
threshold,® E,=16 eV.

Recently, Friedli and Asheroft® have calculated
the lattice parameter as a function of pressure up
to 3 Mbar for Al. At 3 Mbar they obtain a nearest-
neighbor spacing of 4.2 a.u. Even at this pressure
the overlap interaction is quite small.

We have seen that for Na and Al the overlap
interaction is considerably smaller than the
screened-Coulomb interaction at the nearest-
neighbor separation. This is generally true for
simple metals. It is, therefore, somewhat diffi-
cult to find a direct experimental test of the cal-
culated overlap interactions. Overlap interac-
tions are, however, more accessible in the case
of ionic crystals such as the alkali halides. Gil-
bert®® has postulated certain combining rules that
would allow one to extract Born-Mayer param-
eters for the individual ions from empirical data
on ionic crystals. He tested these rules for a set
of alkali halides that consist of combinations of
five alkali and four halide ions for which accurate
spectroscopic data were available. Consistent
“soft-sphere radii” and “softnesses” were found
for the nine ions in question. It is interesting to
compare Gilbert’s Born-Mayer parameters with
HL calculations of alkali-metal interactions. In
Table II such a comparison is made for Na, K,
and Rb. As one may observe, the agreement is
excellent in the case of Na, although somewhat

TABLE II. Born-Mayer parameters calculated in the
present work are compared with those obtained by
Gilbert from an application of combining rules to alkali
halides.

A (10% eV) p (A)
Present Present
work Gilbert work Gilbert
Na 2.22 1.86 0.168 0.158
K 4.11 1.92 0.231 0.211
Rb 5.22 2.52 0.258 0.229
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FIG. 3. Core-overlap potentials for third period ele-
ments Ne through Al.

less satisfactory for K and Rb.

In the remainder of this section some general
features of the calculated overlap potentials are
discussed.

In Fig. 3 overlap interactions for the elements
Ne through Al are plotted. As the nuclear charge
increases with a given row of the Periodic Table,
the core size decreases and hence the overlap
potential decreases. The slope 1/p of a given
exponential potential [ cf. Eq. (7)] may be referred
to as its “hardness.” The hardness is seen in
Fig. 3 to increase with atomic number. This be-
havior is readily understood in terms of the core-
electron properties. The wavefunction of a core
electron may be roughly represented as
~exp(-2V§ 7) at large 7, where & is the binding
energy. The overlap integrals for such wavefunc-
tions vary exponentially with V& and therefore
p~1/V& . The extent to which this simple scaling
relation is obeyed may be seen in Fig. 4, where
pV& is plotted for the elements Ne through Al
and Cu through Ga. The binding energies were
taken from the calculations of Mann.!? One ob-
serves that the plotted quantity is roughly constant.

According to Eq. (2), E., E_, and E_, are
mutually proportional in the case of He-He inter-
actions. In view of the exponential behavior of the
overlap integral s, it follows that one obtains es-
sentially straight parallel lines when these quan-
tities are plotted as functions of R on a semilog
scale. This proportionality was also found to be
obeyed for the third period elements studied in the
present work. Figure 5 illustrates the results for
Al. One observes that the curves for E,, E,,,
and E, are nearlyparallel, but the relative mag-
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FIG. 4. The product of the softness p and the square

root of the binding energy & of outermost closed-shell

electrons. The latter is taken from the atomic HF cal-
culations of Mann.

nitudes are somewhat different than for He. The
ratios E,,/E ., and E ,,/E . for a given material
depend particularly on the nuclear charge Z, as
is shown in Fig. 6. As Z becomes larger, the
relative magnitude of E_, increases.

The proportionality of E.,, E_ ., and E__ has a
counterpart in the density-functional approach?
mentioned earlier and we digress briefly to dis-
cuss this. In the density-functional approach, the
total energy of a given system is written in the form

E=f$(n(F)) asr,

where & is a functional of the total electron density

Al
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FIG. 5. Individual terms contributing to core-overlap
potential in the HL formulation; H . is an estimate of
the contribution of core-core correlation to the poten-
tial (see Sec. IV).
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FIG. 6. The ratios E,,/E,, and E,/E,, obtained for
elements Ne through Al. Averaged values were taken
since these quantities vary slightly with the internuclear
separation.

n(T). The form of this functional is determined

from a consideration of the energetics of a free-
electron gas.? If one considers a two-atom (a, b)
system characterized by electron density #,,( F),
then the pair interaction potential may be written

8= [ F[n,) - Fln,) - Fln,] d%r ©)

where n,,(;) and n,,(;) are, respectively, the elec-
tron densities associated with isolated atoms a and
b. Now, J is commonly divided into four parts:
F=F o+ F o+ Foou + Feorry corresponding to kinetic,
exchange, Coulomb, and correlation energies, re-
spectively. Substituting this relation into Eq. (9),
one may decompose the pair interaction in a
similar manner

®=H,+H+ Hoou + Heopy - (10)

It is interesting to compare Eq. (10) with Eq. (1).
Roughly speaking, E corresponds to Hg,,,, E,,
toH,, and E_ to H,,. (H_,, has no counterpart in
the HL approach.) When a detailed numerical
comparison is made, based, for example, on the
results for Ar-Ar interactions presented by Gordon
and Kim,* one finds that H, and H,, are somewhat
smaller in absolute magnitude thanE__ and E_,
respectively. (E. and H,,, are formally identical.)
The slopes of the logarithm of E_(R), E_(R), and
Hy(R) are rather similar, whereas that of H(R)

is somewhat smaller. The over-all core-overlap
interaction &,, for the alkali metals and for Ne
specified in Table I may be compared with results
given for these materials by Gordon and Kim .34
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The density-functional results are uniformly
smaller than the HL values; for Ne the difference
is only (10-20)%, but for K, for example, the re-
sults differ by roughly a factor of 4. Gordon and
Kim employed different wave functions from those
used in the present work, but this would not ac-
count for such a large discrepancy. At present
there is no clear cut criterion to establish which
approach, HL or the density-functional method,
gives better results for core-overlap interactions
in metals.

We return now to our discussion of the HL cal-
culations. The terms E_, and E_, constitute the
largest contributions to &,,, E ., being somewhat
smaller. E, and E_, may be thought of as arising
from exchange charge interactions, as discussed
in Sec. II. It is somewhat appealing, therefore,
to attempt to express the overlap interaction ap-
proximately in terms of a pointlike exchange
charge.”3? This charge is located between the
atoms and is of magnitude

qex=4z; lsaﬂ ]2 ’
Oy

where

sa8=fd37¢a(;)zbs(;-ﬁ) )

a refers to a core orbital on atom a and B refers
to a core orbital on atom ». In an attempt to gen-
eralize Egs. (2) and (3), Dick and Overhauser’
suggested the form

@01=‘)’q“62/R ’ (11)

where vy is a constant for each pair of atoms con-
sidered; in the case of He-He interactions, y
=31, Fitting Eq. (11) to the exponential Born-
Mayer form, Eq. (4), for several metals, we ob-
tain softness parameters p rather close to those
corresponding to the full HL calculation (given
in Table I). Unfortunately, at present no reliable
prescription exists for determining the constant
v, other than performing the full HL calculation
according to Eq. (3).

B. d core metals

For metals with d electrons in their outermost
closed shells, the atomic cores are relatively
larger, and core-overlap effects are more pro-
nounced than in the simple metals. For example,
core-overlap effects constitute the major con-
tribution to the shear elastic constants of Cu,3?
whereas they contribute negligibly to the elastic
constants of metals we have been considering. In
d core metals, however, a complicating feature
exists that is not present in the simple metals,

namely, the hybridization of the d electrons and
the valence electrons. Because of hybridization,
some question exists as to the applicability of the
methods described in Sec. II. It was assumed
there that core and valence electrons were clear-
ly distinguishable or, in the framework of band
theory, they are separated by a large energy gap
and the core electrons occupy essentially flat
bands. In the noble metals, on the other hand,
the d-electron bands overlap and mix with the
valence band. We now argue that this does not
necessarily invalidate the model described in Sec.
II. Because of symmetry considerations, only one
of the five d bands in Cu hybridizes appreciably.*
The others are relatively flat. Therefore, in cal-
culating properties, such as ¢, which average
over all the d electrons, the neglect of hybridiza-
tion is probably a reasonable approximation. On
the other hand, hybridization definitely has an
appreciable effect on &,.. This occurs because
of the delicate balance between the bare Coulomb
interaction and the valence electron screening,
which was discussed in Sec. II; even a small
modification in the screening can produce a large
relative change in & .

Figure 7 shows the separate contributions to the
interatomic potential of Cu in the vicinity of the
nearest-neighbor site. The overlap potential &,
was calculated on the basis of Eq. (6). The 3d
electrons were treated as tightly bound core
states. The screened-Coulomb interaction &,
was calculated from the energy wave-number
characteristic Fy(g) obtained by Moriarty.>® The
work of Moriarty, based on a generalized pseudo-
potential developed by Harrison®® represents the
most ambitious attempt to include hybridization

o.020-
Cu
o.onsr
ook CORE
—~ 000 OVERLAP
5
)
e
0.005r
SCREENED
Rz
ol
g
~0.005 L A 1 1
3 4 6 7

5
Rla.u.)

FIG. 7. Contributions to the interatomic potential of
Cu associated with the core-overlap, screened-Cou-
lomb, and van der Waals interactions, respectively.
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TABLE III. Born-von Kirmin force constants for the
two nearest neighbors in Cu. The first two rows give the
contributions associated with the core-overlap and the
screened-Coulomb interactions, respectively. The sum
of these terms appears in the third row. The bottom row
is taken from Ref. 38.2

1= {110 1=(200)
Category Drx (o3 bry D by
Overlap 1.22  -0.24 1.46 0.04 0.00
Screened 0.82 -0.05 0.87 -0.37 0.03
Coulomb
Total 2.04 -0.29 2.33 -0.33 0.03

Experiment 1.314 -0.123 1.498 0.006 —0.011

ayUnits: 10! dyn/cm.

in a calculation of the total energy of a d-electron
metal.®” The van der Waals interactions &, was
taken from the work of Rehr et al.!® One observes
in the figure that the overlap potential becomes
dominant at separations just below the nearest-
neighbor spacing. The van der Waals interaction
is small but not entirely negligible.

It is interesting to compare the Born-von
Karman force constants predicted from these
potentials with those obtained by fitting to ob-
served phonon spectra. Such a comparison is
made in Table I for the first two nearest neigh-
bors. The fitted force constants are taken from
the work of Svensson et al.?® The results shown
in the table indicate that the overlap and the
screened-Coulomb interactions make contributions
of roughly the same magnitude to the nearest-
neighbor force constants. The sum of these con-
tributions is somewhat higher than the experi-
mentally determined force constants.

Force constants calculated for Ag and Au are
compared with fitted force constants in Tables IV
and V, respectively. The discrepancy between

TABLE IV. Born-von Kirmin force constants for the
two nearest neighbors in Ag. The first two rows give
the contributions associated with the core-overlap and
the screened-Coulomb interactions, respectively. The
sum of these terms appears in the third row.?® The
bottom row is taken from W. A. Kamitakahara and B. N.
Brockhouse [Phys. Lett. 29, A639 (1969)].

1=(110) 1= (200)
Category Dy (o Dy Gux byy
Overlap 1.54 -0.31 1.84 0.03 0.00

Screened 0.75 -0.03 0.78 -0.31 0.03
Coulomb

Total 2.29 -0.3¢ 2.62 -0.28 0.03

Experiment 1.071 -0.175 1.232 0.006 -0.023

2Units: 10 dyn/cm.

TABLE V. Born-von Kirmin force constants for the
two nearest neighbors in Au. The first two rows give
the contributions associated with the core-overlap and
the screened-Coulomb interactions, respectively. The
sum of these terms appears in the third row. The bottom
row is taken from Ref. 39.2

1=(110) 1= (200
Category ‘pn ¢zx ¢xy ¢xz ¢w
Overlap 2.58 -0.55 3.13 0.08 —0.01
Screened 1.00 -0.08 1.08 -0.41 0.04
Coulomb
Total 3.58 -0.63 4.21 -0.33 0.03

Experiment 1.643 -0.654 1.993 0.404 -0.127

2ynits: 10* dyn/cm.

theory and experiment is somewhat larger for
these metals than for Cu. Two factors that may
contribute to this are: (i) the use of nonrelativistic
wavefunctions in the calculations of &,,; and (ii)
the neglect of many-body (i.e., nonpairwise)
forces. For heavy metals, relativistic effects

on the outer-shell wave functions may be signifi-
cant and will tend to reduce &,,. Analysis of the
phonon spectra of Au has shown®® that a pairwise
central force (axially symmetric model) is not
capable of giving a good fit to the data. This is in
contrast to the situation for Cu and Ag, the phonon
spectra of which can be fit reasonably well under
the assumption of axial symmetry.

It is interesting to compare the overlap poten-
tial for noble metals calculated in the present
work with semiempirically fitted Born-Mayer
potentials. The latter have been determined by
fitting the parameters A and p to various experi-
mental data. [Actually it is more common to
specify A’ =A exp(-R,/p), where R, is the nearest
neighbor separation, than A.] In Table VI we list
Born-Mayer parameters for Cu obtained by a num-
ber of authors.** The large diversity of values
is a consequence of the fact that different proper-
ties were selected to be fit and of the differing as-
sumptions adopted regarding the valence-electron
contribution to those properties. In general,
hybridization is not taken into account. It may
be noted that the softness p obtained in the present
calculation is somewhat larger than that of any of
the semiempirical potentials. It is possible that,
in neglecting hybridization, the semiempirical fits
have systematically underestimated electronic ef-
fects and overestimated overlap effects.

We mentioned previously that the neglect of
hybridization may be a questionable feature of the
present calculations of overlap potentials for
noble metals. For the multivalent metals to the
right of the noble metals in the Periodic Table,
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TABLE VI. Born-Mayer parameters for Cu obtained
by semiempirical fitting procedures. R;=2.55 Ais
nearest-neighbor spacing.

Aexp(~R/p) (V) p (A) Authors
0.032 0.150 Huntington and Seitz
0.051 0.200 Dienes
0.053 0.183 Huntington
0.038 0.148
0.073 0.201 Hiki, Thomas, and Granato
0.096 0.186 Collins
0.139 0.219 Jaswal and Girifalco
0.096 0.191
0.051 0.196 Gibson et al.

0.017 0.106 Sinha

0.045 0.196 Thompson

0.045 0.159 Daniels and Smith
0.063 0.171 Thomas

0.011 0.095 Mann and Seeger
0.041 0.154

0.077 0.188

0.075 0.203

0.091 0.211

0.108 0.217

0.075 0.175

0.078 0.193

0.129 0.234

0.044 0.167

0.016 0.105

0.046 0.155

0.082 0.186

0.120 0.221 Toya

0.185 0.222  White

0.181 0.241 Duvall and Koehler
0.107 0.246 Present work

hybridization is less significant. In the case of
Zn, for example, the 3d bands lie about 0.5 Ry
below the valence bands and are quite narrow.*
Pseudopotential calculations of the phonon spectra
for this metal were found*? to be insensitive to
hybridization. We believe that the neglect of
hybridization in calculating the overlap potential
is well justified for Zn.

Overlap and screened-Coulomb?? potentials for
Zn are plotted in Fig. 8. As expected, the im-
portance of overlap for this metal is somewhat
less than for Cu. Nevertheless, overlap should
be taken into account, for example, in ab initio
calculations of elastic constants and phonon spec-
tra for Zn. It has been customary to neglect the
overlap interaction in such calculations,*® how-
ever.

Figure 9 exhibits the overlap interactions of Cu,
Zn, and Ga. This figure illustrates trends similar
to those shown in Fig. 3; with an increase in
valence the hardness increases and the net over-
lap interaction decreases.

Zn

T TTTTm

L1011

T
1

T I|Illw

SCREENED

Ll

E COuLOMB
=
o1~  CORE OVERLAP ]
F  (PRESENT WORK) 3
- ]
— -
- 7]
00! 1 il
1.4 2.0 26
o
R(A)

FIG. 8. Core-overlap and screened-Coulomb (Ref. 21)
potentials for Zn. The nearest-neighbor spacing, R,
=2.66 A, is indicated.

IV. APPROXIMATIONS

We now discuss two of the approximations in-
herent in the HL approach, namely the neglect of
(a) core-core correlation and (b) wave-function
distortion. Correlation refers to effects that go
beyond an exact Hartree-Fock calculation. (The
HL method may be viewed as an approximation
to Hartree-Fock.) A rough calculation of the cor-
relation energy may be performed via the density-
functional approach. When Wigner’s interpola-
tion function**

_ 0.887(r)
corr™ = 0.62[n()] 173+ 7.8
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FIG. 9. Core-overlap potentials for Cu, Zn, and Ga.
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is substituted into Eq. (9), the correlation con-
tribution to the pair interaction is estimated. The
curve labeled H,,., in Fig. 5 shows the result for
Al. This quantity varies more slowly with R than
the other contributions to the potential. It is
relatively unimportant until large separations are
reached.. At large separations the over-all poten-
tial is dominated by & ., in any case. These
features were found to apply to all materials
treated in the present work. Therefore the neglect
of correlation seems well justified.

Wave-function distortion refers to the fact that
core wave functions are somewhat different in a
metallic environment than in isolated atoms. (Re-
call that neutral atom wave functions were used
in the present calculations.) This difference
arises from hybridization, crystal-field effects,
and because the valence electron density in the
core region is less in a solid metal than in an
isolated atom. To obtain some idea of the sensi-
tivity of the overlap integrals to this effect, sepa-
rate calculations were performed for Ag, based
on neutral atom!? and on Ag* wave functions.*> The
overlap potential &,, calculated for ions was ~30%
smaller than that for neutral atoms, owing to the
slightly more compact cores of the ions. We
believe that neutral atom wave functions rather
than ionic wave functions are a better representa-
tion of the core states in a metal. However, since
®,, is extremely sensitive to the assumed wave
functions, the wave-function distortion effect is
possibly one of the main sources of error in the
present approach.

V. CONSTRUCTION OF COMPOSITE INTERATOMIC
POTENTIAL BY INTERPOLATION

The validity of the methods described for cal-
culating overlap and screened-Coulomb interac-
tions is restricted to energies <1 eV. On the
other hand, at considerably higher energies at
which core overlap is quite extensive, density-
functional methods should be accurate. The pos-
sibility of constructing a “complete” interatomic
potential by interpolating between the high- and
the low-energy theories is suggested. Such a
potential would be useful, for example, in the
study of radiation-damage phenomena that occur
in the range 1-100 eV.

In Fig. 10, a composite interatomic potential for
Zn is constructed by interpolation. The high-
energy segment was calculated from the Thomas-
Fermi formula obtained by Firsov*®

&= (22e2/R) x[ (22* 22 3R/C] ,

where x is the Thomas-Fermi screening function,
and C=0.468 A. The low-energy segment con-

sists of the sum of the overlap and screened-
Coulomb potentials shown in Fig. 8. The dashed
line interpolates smoothly between these two seg-
ments. The entire curve has remarkably little
structure, considering more than five decades of
energy are spanned. For example, one might
expect “bumps” to appear in the potential curves
when discrete atomic shells of two overlapping
atoms come into contact. Indeed such structure
would be detected if the potential were capable
of being measured on a very fine scale, but, for
most purposes, it should be of minor importance.
It is interesting at this point to make reference
to the studies of the anisotropy of the threshold
energy for Frenkel-pair production in hexagonal
metals by Maury and co-workers.*” These
authors have measured the resistivity increments
due to defect production by electron irradiation in
several crystallographic directions. They analyze
their data in terms of a simple geometrical model
of the displacement mechanism. They suggest
three sets of Born-Mayer parameters for Zn that
are more or less consistent with their results.
These are shown in Fig. 11 along with a linear
approximation to the composite Zn potential ap-
pearing in Fig. 10. According to a simple model,*’
the region of critical importance for threshold
events in Zn lies roughly from 1.5 to 2 A. In this
region, the magnitude of the composite potential
is fairly close to that of the empirical potentials.
However, the hardness of the composite potential
is approximately twice that of the others. This
discrepancy appears large, but it may be partially
due to the somewhat indirect nature of the analysis
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FIG. 10. Composite interatomic potential for Zn.



2912 ROY BENEDEK 15

Zn

COMPOSITE
POTENTIAL

@ (ev)
[

[l 1 1
ol [ 15
R(3)
FIG. 11, Composite potential for Zn is compared with
Born-Mayer potentials for this metal suggested in Ref.
47.
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required to derive an interatomic potential from

the experimental damage curves. Many assump-
tions are necessary to make this analysis tracta-
ble, and if some of these were altered, different
potentials, perhaps closer to the present theory,

might be obtained.

VL. SUMMARY

We have investigated core-overlap interactions
in both simple and noble metals by means of a
modification of the Heitler-London method. The
calculated overlap potentials were found to follow
closely the exponential form (7) proposed by Born
and Mayer.'* These overlap potentials were com-
pared with screened-Coulomb potentials calculated
by means of pseudopotential methods.

In metals that have only s and p electrons in
their outer closed shells, the core-overlap inter-
action is typically small compared with the
screened-Coulomb interaction at normal lattice
separations. In the case of Al, for example, the
core-overlap interaction becomes comparable to
the screened-Coulomb interaction at R ~1 A (the
nearest-neighbor spacing is 2.84 A). For such
metals, core overlap has a negligible effect on
most properties. Core-overlap effects become

significant only at energies of the order of the
displacement damage threshold energy. An in-
direct check on the calculated core-overlap poten-
tials for s-p core metals is given by means of a
comparison with the semiempirical Born-Mayer
parameters obtained by Gilbert!® from an applica-
tion of certain combining relations to alkali halide
data. The agreement was found to be reasonable
for the alkali metals Na, K, and Rb (cf. Table II).

The relationship between the HL and density
functional approaches was explored. In general,
the former seems to give somewhat larger core-
overlap interactions.

For metals with d electrons in their outer core
shells, core overlap is quite pronounced. In the
noble metals and even in the divalent metals Zn,
Cd, and Hg, overlap effects are significant to
distances of the order of nearest-neighbor separa-
tion. Some doubt may exist, however, regarding
the applicability of the Heitler-London method to
the noble metals because of the effect of hybridiza-
tion. Calculated Born-von Kidrman force constants
for the noble metals, including both screened-
Coulomb and overlap interactions, are somewhat
higher than those obtained from experiment, par-
ticularly in the cases of Ag and Au. The neglect of
nonpairwise forces may be one source of this
discrepancy. Semiempirical Born-Mayer poten-
tials for Cu, which were derived with hybridiza-
tion neglected, were found to be somewhat harder
than the present calculated overlap potential.

The HL approach is restricted to relatively small
overlaps and energies (¢, <1 eV). A more com-
plete potential may be constructed by interpolation
between high-energy (e.g., Thomas-Fermi) and
low-energy theories. This procedure was illus-
trated for the case of Zn and a smooth potential
covering the range 0.1-10° eV was obtained.
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