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Exchange-correlation energy of a metallic surface: Wave-vector analysis*
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The exchange-correlation energy of a jellium metal surface is analyzed in terms of the wavelength of the
fluctuations that contribute to it, using a three-dimensional scheme different from that used by other authors.
It is shown that with this scheme there exists an exact limiting form at long wavelengths which includes all

many-body correlations and which is independent of the surface density profile. The local-density

approximation is formulated as a function of wavelength, and it is shown to be exact at short wavelength. The
interpolation scheme between these limits, which was discussed previously, is formulated and checked more
completely and used to calculate surface energies.

I. INTRODUCTION

The metal surface, aside from its practical im-
portance, is an interesting example of an extreme-
ly inhomogeneous electron system. Its simplest
ground-state property is the surface energy (en-
ergy required to create a unit area of new surface).

The first calculation of metal surface energies
which attempted to treat exchange and correlation
effects realistically was performed by Lang and
Kohn, ' who divided the surface energy into two

pieces. The first piece is that associated with the
self-consistent jellium model, in which the ions
are replaced by a semi-infinite uniform positive
background; this piece is further subdivided into
kinetic, electrostatic, and exchange-correlation
energy contributions. The second piece includes
the classical cleavage energy of a neutralized lat-
tice and the ion pseudopotential contribution. The
results of Lang and Kohn are in quantitative or
semiquantitative agreement with measured surface
tensions for many simple metals.

The importance of exchange and correlation is
evident in the work of Lang and Kohn, since the
other contributions to the surface energy, while
they may be individually large, show some ten-
dency to cancel one another, leaving the total sur-
face energy roughly comparable in value to, or
smaller than, the exchange-correlation contri-
bution alone.

Lang and Kohn treat exchange and correlation
in the local-density approximation (LDA)

E„,= d xnxe„,nx),

where n(x) is the electron density and e„(n)is the
exchange-correlation energy per electron of a
homogeneous electron gas of density N. The LDA
is presumably valid when the spatial variation of
the density is slow compared with both the Fermi
wavelength and the screening length. ' This cri-
terion is not satisfied for a metal surface, and
consequently the validity of the Lang-Kohn cal-
culation has been open to challenge.

A very different approach to the surface energy
has been taken by Schmit and Lucas' and by
Graig. ' Although their approach is oversimplified,
and has been highly criticized, ' it clearly points to
a contribution from a shift in plasmon zero-point
energies which can be only poorly imitated by a
local approximation. Their work provided the im-
petus for a number of contributions ' which in
one way or another either treated the question of
how good the local approximation for exchange and
correlation was, or of the relative contributions"
of plasmon modes versus single-particle modes
to the surface energy. Instead of trying to make a
division between plasmon and particle-hole modes,
we have found it more fruitful to ask what are the
relative contributions of long versusshort wave-
length fluctuations. Schmit and Lucas clearly
point out that long-wavelength fluctuations may be
important. These are not included accurately in
the local density approximation. The questions
which we set out to investigate were therefore (i)
how good the local approximation was and (ii) could
it be improved by a more accurate inclusion of the
long-wavelength fluctuations? A summary of our
results has been presented earlier. "
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Here we derive in more detail the wave-vector
decomposition of the exchange-correlation energy
of an inhomogeneous system. This is different
from the two-dimensional decomposition sugges-
ted by Schmit and Lucas and followed by other
authors, since at small wave vector we show that
there is an exact limiting form which includes
all many-body effects and which is independent of
the surf ace-density profile. We next formulate the
local-density approximation as a function of wave
vector, and show that it makes an infinite error
at small wave vector, as compared with our ex-
act form. At large wave vector, on the other
hand, we show that this local approximation be-
comes exact. Thus we propose an interpolation
scheme between small and large wave-vector.
This scheme is tested and verified for the soluble
infinite barrier model in random-phase approxi-
mation (RPA), and then applied to self-consistent-
ly calculated density profiles. For these it is
found that the local-density approximation is ac-
curate to better than 10%%uo, for the exchange-cor-
relation energy. "

the wave vector k parallel to the surface. It is
tempting to follow the implicit suggestion of the
original work of Schmit and Lucas' which has been
used profitably for example by Griffin, Kranz and
Harris, "Wikborg and Inglesfield, ' and to decom-
pose E„,into a sum of such excitations. Such a
decomposition we found not to be useful for some
of our purposes, because as shown later such a
decomposition depends in an unknown (i.e., diffi-
cult to calculate) way on the details of the surface-
density profile. We therefore chose to return to
a three-dimensional wave vector K. Since the
component Q of K perpendicular to the surface
does not correspond to any conserved quantity,
it is not even obvious a Priori how to define this
wave-vector decomposition.

The Hamiltonian H we divide into two pieces
FI~+H„where P~ is the N-particle kinetic-energy

operator and H; is everything else. Since we an-
ticipate making the usual type of coupling-constant
integration, we let H& be a function of a dimension-
less coupling constant X which varies between 0
and 1 with A, =1 corresponding to the real physical
system:

II. "WAVE VECTOR" DECOMPOSITION OF
EXCHANGE-CORRELATION ENERGY H; =-,' d x d'x'Vz x-x' n(x) n x' —g x-x

Many years ago Nozi0res and Pines" showed it
useful in the calculation of the energy of an in-
finite (bulk) electron gas to decompose the cor-
relation energy into a sum over fluctuations of
different wave vectors, and to use one approxi-
mation for small wave vector and another for
large. Here we do the same thing for the surface
energy. There are several differences, however,
which we discuss below.

First, in the bulk the exchange energy can be
easily calculated exactly and is considerably lar-
ger in magnitude than the correlation energy.
This leads one to consider the correlation energy
alone. On the other hand the surface contribution
to the correlation and exchange energies are each
of the same order' and neither can be calculated
exactly. Therefore it is unprofitable (and in fact
turns out to be even counterproductive) to effect
an artificial separation of the two. Therefore we
consider mainly the sum of the two 5E„,which we
define precisely below.

The second difference is that in the bulk the wave
vector K of a fluctuation, as it corresponds to its
momentum, is a good quantum number. Thus one
in this case has a natural and unambiguous way in
which to make the desired decomposition as a sum
of the energies associated with the good quantum
number K. In the surface case, there is at least
for jellium an analogous good quantum number in

+ d'xvq x nx (2.1)

Here n(x) is the number density operator for the
electrons. Vz is the interelectronic interaction
which is taken to be linear in X: Ae'/(x-x'~. The
5-function term in (2.1) is an (infinite) self-inter-
action which depends only on the total number of
particles N and hence does not contribute to the
surface energy. For X =1, v~(x) is the potential
due to the uniform positive background filling the
region of space occupied by the sample. Just as
in the bulk case, we chose the A. dependence of v
such that the coupling constant integral can be done
at constant electronic density; thus v„(x)will de-
pend linearly on A. for x in the interior of the sam-
ple far from the surface, but near the surface this
dependence is unknown a Priori. Harris and
Jones' have proposed a somewhat different scheme
for the coupling-constant integration, where v& is
taken to be a linear function of A. everywhere. For
our purposes their scheme has not proved useful,
except for the infinite-barrier model where the
schemes coincide. The present method, which we
used in Ref. 13, has also been used by Qunnarsson
and Lundqvist. " We have that, letting Eq be the
ground-state energy of H for a given A. and ( ~ ~ )~
be the ground-state expectation value (for a given
z)
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E, —Eo= dA. " = dA.

1 d'x d'x'XV, (x —x')(n(x)[n(x') —5(x —x')])z + dA. — d'x[uz(x)(n(x))z]s
0 2A, ax

(2.2)

where we have used the independence of (n(x))~ on
& to pull the X derivative outside the brackets in
the last line. We now make the following defini-
tions (of T, E ~, and E„,respectively}:

NSq(K) =NSg(K}+N5Sg(K), (2.10)

Note that Eqs. (2.6) and (2.9) have both bulk and
surface contributions in the limit of a large sam-
ple, and, for example, we may write

E,=T+ d'xv, x nx

E „~=~ d x d x'Vx-x' nx nx'

(2.3)

+ d3xv x nx (2.4)

E—:E i = T + E00& + Exc, (2.5)

where the subscripts "I"and "0"imply A. = 1 and
X =0, respectively. Note that T is not the expec-
tation value of the kinetic-energy operator but
rather what the kinetic energy would be in a non-
interacting system with the same electronic den-
sity n(x}. The definition (2.5) of E„thus corre
sponds to precisely that which is customarily
used in density functional theory. Upon performing
the X integration and using (2.3)-(2.5) one gets

d K5E„=
( y

5E,~(K), (2.11)

where NS)((K) is of order of the volume of our
finite sample and is equal to S times the structure
factor for an electron density equal to that of the
interior. The quantity N5Sq(K) is the surface
correction to NSq(K) and is proportional to
the surface area of our sample. In writing
(2.10) and everywhere else in this paper we as-
sume that K»1/L, where L is a length charac-
terizing a linear dimension of the sample or the
curvature of any macroscopic part of it. We use
(2.10) to rewrite the total and surface components
of E„„respectivelyas

d KE„=
)s E„,(K),

E„=—, —„d'x d'x' Vz(x -x')g dA.

0

x [NS~(x, x') —(n(x})5(x —x')], (2 6)

E„,(K) =
~

—
~ 1V[Sg(K) —1),

0

' dX 4ne~X5E„(K)—= ~ ~ 2 N5Sg(K)s
0

(2.12)

where

NS„(x,x') =( [n(x) —(n(x))]

x [n(x') —(n(x'))] g . (2.7)

The factor N, the total number of electrons, is
included to make S coincide with the usual defi-
nitions.

We now introduce the wave vector K which is
basic to our decomposition and write

where 5E„,is the surface contribution to the ex-
change-correlation energy. Equation(2. 12)serves
as adefinition of E„(K}and 5E„(K)and hence of the
wavelength decomposition to be used extensively in
this paper (as it was in Ref. 13). Note that 5E„(K)
depends not only on K—= (K [ but also on the angle 8
between K and the surface normal. In order to ob-
tain a one-parameter measure of 5E„,as a func-
tion of fluctuation wave vector, it is convenient to
take a spherical average

E (I)-:-,'sf d(sin ss „(sKs) .
„

0
(2.13)

where

( sR')Rffsd -*""""*'s,-('-", x )

(2.9)

and Sg(K) =- Sy(K, K) .

Note that this is a definition and not an approxi-
mation, as the left-hand side of (2.13) can still be
used (exactly) in place of 5E„(K)in the right-hand
side of (2.11). The choice of a spherical average
(2.13) is arbitrary, but convenient because the
remaining (one dimensional) integral in (2.11) has
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5E„= 2 5E„(k),
d2k

(2.14)

where

5L„(k)= t — —5E„(K). (2.15)

In Sec. III we prove that the small K (but as al-
ways K» L=') limit of 5E„(K)is dominated by the
change in zero-point energies of plasmons, and
is independent of the details of the surface. On
the other hand we show that 5S„(k)is not domi-
nated by plasmons even as k-D and is sensitive
to surface details (Appendix C}.

We conclude this section by noting that the popu-
lar local-density approximation (LDA) to E„may
be decomposed into wave-vector components in
the same way, For example, in the LDA, Eq.
(2.8} becomes

0

x n(x)[S ~(K; n(x)) —1],

(2.16}
where S eq(K; n(x)} is the same functional form as
the bulk S),(K) at the uniform electron density n,
but with n replaced by the actual density profile
n(x). [We use the same symbol for the density
operator and its expectation value, except where
this could lead to confusion, as in Eq. (2.7}.
Here n(x) (n(x}).] S=ince we need only the sur-
face contribution, we have for the LDA to 5E„(K)

a simple weight factor 4sK'/(2v)'. We could equal-
ly well have chosen to average 5E„,(K) over some
other closed surface of characteristic linear di-
mension K (rather than a sphere), in which case
(2.13) would be modified by a dimensionless geo-
metrical factor (of order unity} which would can-
cel out in the final result (2.11).

We stress two points. First neither K nor K
represents the quantum number of a conserved
quantity, so that (2.11) does not represent the
sum of zero-point energies of modes, although on
the average our intuitive notions concerning "long
wavelength" versus "short wavelength" should
still hold. Second (2.11) is not the usual wave-
vector decomposition previously applied to the
surface-energy problem by Schmit and Lucas, '
Harris and Jones, Griffin, Kranz, and Harris, "
Wikborg and Inglesfield, ' and others. The latter
involves only the two-dimensional wave vector k
parallel to the surface, which is a conserved
quantity. The relationship between this latter de-
composition and (2.11) is, letting K = (k, Q),

fX, f, d'x. 4xx x

0

x [n(x}S ez (K; n(x)) —n, (x)S~(K; n, (x))],

(2.17)
where ( e

~ n, (x) is the charge density of the uniform
(where it is nonzero} jellium background. We note
that the approximation (2.17) to 5E„is already in-
dependent of the direction of K without spherical
averaging as in (2.13). In the same manner as
Eqs. (2.14) and (2.15) one can also define the LDA
to 5E„(k)

III. LONG-WAVELENGTH LIMIT

In this section" we derive the exact form of
5E„(K)at small K that was used in Ref. 13. We
shall show that our expression is independent of
the details of the surface, and is valid with all
many-body corrections included. In fact with no
further difficulty we derive limiting expressions
for the dynamic susceptibility (density response)
and form factor which may be useful in other con-
texts.

We show that in the limit of small three-dimen-
sional wave vector K, the component of the ex-
change-correLation energy 5E„,(K} is dominated
by plasmon zero-point energies. It is given by an
expression [Eq. (3.34)] reminiscent of that obtain-
ed by Schmit and Lucas' and Craig, 4 whose work
played an important role in motivating our early
thinking. Nevertheless, the expression given by
these authors involves the two-dimensional wave
vector k, and turns out not to be correct at small
k, as we show, because the limit of small two-
dimensional k is not dominated by shifts in the
zero-point energies of plasmons.

We define the susceptibility in the usual way, as
the linear density response 5n(x) to an external po-
tential Q,(x'):

() (x) fd' 'X(x, x', tx)(, (x'), (3.1)

where we assume that (t), and hence 5n are turned
on to adiabatically from t = —~, and are propor-
tional to e ' ' at finite times. [In this section we
for the most part suppress the coupling-constant
(X) dependence of all quantities. ] We define the
dynamic form factor S(x, x', &u) in the usual way as

S(x, x', &u} =
2

e' '([n(x, t) —(n(x, 0))]]~t

&&[n(x', 0) —(n(x', 0))]),
(3.2}

where n(x, t) is the Heisenberg density operator
[cf. Eq. (2.7)]. In terms of this we easily obtain
the static form factor
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Ns(x, x'}=I sa s(x, s', z}. (3.3}

Finally, after calculating X, we obtain S from the
zero temperature limit of the appropriate fluctua-
tion-dissipation theorem

S(x, x', (o) = —(1/x) Im X(x, x', u&)e((s}), (3 4)

where e((s})=1 for (s} &0 and zero otherwise.
For compactness we adopt a matrix notation for

three-dimensional space integrals so that for ex-
ample Eq. (3.1}becomes 5n=X()},. Upon defining
(t} as the tota/ potential (due to external and in-
duced charges}

f =(t}o+V5n, (3 5)

~n = X'4 (3.6)

Note well that X' is not the susceptibility of the
noninteracting system (except in the random-phase
approximation} and is defined diagrammatically
in Fig. 1. Equations (3.1), (3.5), and (3.6) imply
that

X =X'+X'VX, (3.7)

and it is this latter equation whose solution we
shall investigate.

%e now introduce the cosine transform repre-
sentation mentioned in Appendix A for variation
perpendicular to the surface. For this purpose we
introduce an artificial infinite barrier at the ori-
gin (in the y-z plane} to rigorously confine the
electrons to the right-hand half space. Since we
let the jellium background begin at a point x xo,
where x, is larger than the surface healing length,
the error in this artificial procedure can be made
exponentially small. The double cosine transform
of the Coulomb interaction

where V is (the matrix representation of) the Cou-
lomb interaction, we let X' be the density response
to this potential

in (3.9). The quantity C,(x) is equal (as in Appen-
dix A) to 2 cosqx. Note that the length of the lei-
lium background is —,'I. —xo. Finally the quantity

1,. is the unit matrix in our cosine transform
space as defined in Appendix A.

The second term has 2 factors of v, which is
singular for small A and q, and this suggests
treating them differently. Hence we le t V= V '
+ V(') where

(3.11)

It is now a matter only of algebraic manipulation
(see Appendix B) to show that X„the double co-
sine transform of X is given by

Q
Xaa' —Xaa' (Xaa Va }D (Va'Wa'a'} s

J

where

(3.12)

D =1+a gv, AX„~
ea'

(3.13)

and where the summation goes over non-negative
q as defined in Appendix A, and which for most
purposes can be thought of as (2v} ' J,

"
dq. The

quantity X„.must be obtained by solving the in-
tegral equation

FIG. 1. (a) Typical diagrams for X . Here the solid
line represents the full electron propagator and the wavy
line is the fully screened Coulomb interaction Vjc
= V/(1- Vy ). (b) The integral equation for g in terms
of y . The dashed line is the bare Coulomb interaction V.

l./2 2@gV„.-=dx dx'C, (x)C&(x'} e 'I* *
0 0

o M o
Xq4t'=Xq '+~ Xoq VqXyq'~ (3.14)

can be written

(3.6} where X,', . is the double cosine transform of X'
and where

V, =4}(e'/(q'+k') =av,
Vqq& = Qvq lqtf' —QV4f V

where

(3.9)

(3.10a)

v, = 2k/(k'+ q'), (3.10b)

where k is the Fourier-transform variable paral-
lel to the surface and is common to all the factors

is simply the three-dimensional exponential
Fourier transform of the Coulomb interaction V.
Note that the quantities X',~, X„.and X„eare also
functions of k, the wave vector parallel to the
surface, and the frequency ~.

It is now convenient to separate (3.14) into
"bulk" and "surface" terms. For this purpose
we introduce the bulk dielectric function e(K, (a)
of a uniform electron gas with the same constant
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electron density as our bounded gas has in its
interior far from the surface. We note the fol-
lowing definitions:

e(K, u&) —= e ((k'+ q')' ', &o}—= e, =—1 —V, X,', (3.15)

hence defining the bulk density response X,
' to a

self-consistent potential with wave vector K
= (q, %). Hence we let

o8
Xqq' —X q 1qq'+ gqq '

y (3.16}

X«. =(X,' /e, )1«i+/«i/c, e, . (3.17)

thus defining the deviation functions g,', and f„.
Then Eq. (3.14) becomes

(3.18)

This equation now involves quantities which in
real space are localized near the surface.

Note that the neglect of g' and P constitutes the
semiclassical infinite-barrier model' ' (SCIBM)
with x, = 0. We will show that this approximation
is exact in the limit of small (Q, R) or (q, k),
where Q is an exponential transform variable and q
is a cosine transform variable. Formulas relating the
cosine transform variable. Formulas relating the
cosine transform to the exponential transform in
the limit of small Q are given in Appendix A. For
the moment we concentrate on the cosine trans-
forms and assume both q and % are small in
(3.12)-(3.18).

To investigate the long-wavelength behavior of
X, we need the long-wavelength behavior of X and
hence X'. We begin with X' and from it derive the
properties of X and hence X. We assume through-
out the discussion that the frequency co is nonzero;
the differences which arise in the zero-frequency
case are discussed later.

Consider first the double exponential transform
of g' denoted by gQQ. , which is implicitly a func-
tion of k. At small Q, Q', and k, P' must vary as

PQQi =Ak~+BQQ'+ ~ ~ ~ (3.19)

where A and B are constant numbers which are
properties of each material. Since g' is a piece of
the physical response function X' which, for ex-
ample, gives the polarization of the sample as a
response to the true electric field, the leading
terms must be analyIic. The terms given above
are the leading analytic terms consistent with the
assumed symmetry, plus the fact that

lim p+Q. =0 . (3.20)0 o. ~ o Q' 0, 4 O

Equation (3.20) follows from charge conserva-
tion —a localized disturbance cannot change the to-
tal number of electrons [unless one waits an in-

y„.~ k' +f (q, q'} + ~ ~ ~,
where

f(q q) I f(q q) 0
0 q q&~0

(3.21)

(3.22)

so that specifically f/q ' is integrable at small q.
(Note that our notation is not meant to imply that
the function f is the same for g as it is for g'. )

finite time for more electrons to come from the
thermal bath at ~; we therefore exclude the (d =0
case where (3.20} does not hold]. Finally we note
that the constants A and B are simply proportional
to pieces of the polarization induced by a constant
(in space} eleetrie field. This polarization is of
course a constant finite (when scaled by the sam-
ple dimension) number. Any approximation to g'
therefore that produces a nonanalytic term of low-
er order (i.e. , larger} than QQ' or k' must be
physically incorrect, as it would imply that a fin-
ite electric field could produce an infinite polari-
zation in a finite sample.

We note however that the total response function
X does not represent the response to the true elec-
tric field, and is not analytic at small K in that the
leading term is proportional to k = (k (

= (k', + k', )'~'.
This nonanalyticity arises specifically because one
piece of the potential V ' [see (3.11)] has this non-
analyticity at k-0, and by parallel momentum
conservation V ' is evaluated at this nonanalytic
point in every diagram in Fig. 1(b). It is clear by
inspection, however, that the diagrams of Fig. 1(b)
are the only ones that have this property.

We eventually want to establish a limiting form
for the double exponential transform XQQ at small
K, where K = (Q, %), so that we always consider Q
and k to be of the same order of smallness. Al-
though the form (3.19) for g' was for the exponen-
tial transform, all our intermediate equations in-
volve cosine transforms. To make the connection
we shall generally use the fact that within a con-
stant factor the two transforms are identical at
small Q as discussed in Appendix A, although this
must be applied with care because we are not al-
mays dealing with localized functions. We note im-
mediately, however, that (3.19} implies that the
cosine transform gqq~ goes to zero as k' when q or
q' is zero, and that it goes to zero faster than qq'
when k is zero; the latter occurs because the B
term in (3.19}obviously cannot appear in the co-
sine transform. Thus (3.18) implies that the co-
sine transform P„hasthese same limiting pro-
perties at small k, q, and q'. Note that g' goes to
zero just fast enough to prevent any trouble from
the singular potential factor V, ~ (k'+q') '. Thus
me have that g and g' have the long-wavelength
form
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X o ~0 4aa

k+q 27T (k + q)ee (3.24)

D =1+8m'' dq kya
2' k +g

(3.25 }

Now the bulk susceptibility X, goes as k2+ q' for
small k and q so that the first term in (3.24) goes
as a constant. However, it is obvious from the
limiting forms (3.21) and (3.22) that the second
term in (3.24) goes to zero as k and q go to zero.
Similarly, the factor k/(k'+q') forces q to be
small when k is in (3.25) so that the first term in
(3.24) can be used for y; in (3.25) as well.

We see, therefore, that the final term in (3.23)
is of order k at long wavelength and according to
(AV) its exponential transform will be of order K.
Similarly using (3.21), (3.22}, and (AV) on the
middle term )()«./e, e, in (3.23) we find that it is
of order K' and hence negligible by comparison.
We now use (AV) to restore the Fourier exponen-
tial transform to the last term in (3.23). The
first term in (3.23) is not localized so (AV) can-
not be used. However, it is of the form (AS), so
that it may be evaluated at long wavelength ac-
cording to (A13}. Putting the pieces together, we
have for the diagonal elements of the double ex-
ponential transform of X

To see clearly which terms in X are important
at long wavelengths we substitute (3.17) into (3.12)
and (3.13}, and rewrite the resulting equation in
a way that exhibits all the 0 and q dependence ex-
plicitly:

~«. =X, ~1, +g,~/e, e, —(See'/D)ky, y, ~, (3.23)

where Xe =- X', /e, is the susceptibility of a bulk

system of the same asymptotic electron density,
and where

~XQQe & (3.26)

where A is the area of the surface, we have,
after substituting 4xe')( /K' =e '(K, &u) —1 and
using the fact that K-0 by assumption, and after
performing the integral in (3.27) and substituting
in (3.26), that

g(K, K, &u)

(3.29)

where V =Ag (2 is the length of the sample) is the
volume of the system, and ~ is the zero wave-
vector bulk dielectric function

to the order we are working, and from now we

neglect it. [The alert reader may worry about
our obtaining a result (3.26) which depends on x,.
One can easily show, however, that to the extent
that the point x, is outside the charge distribution,
the term x, XQ is exactly cancelled by a contribu-
tion from the second term in (3.23).]

As mentioned earlier, the limiting forms given
earlier hold only for finite frequency. For ex-
ample, gQQ no longer goes to zero as k, Q, and
Q' go to zero, because there is now an infinite
time for charge to come in from infinity. Never-
theless, the final conclusion that (3.26) and (3.27)
are the limiting forms of XQQ still holds. This is
because the bulk dielectric function no longer goes
as a constant but rather 1/e, ~k'+q'. Inspection
of Eqs. (3.16), (3.23}, (3.24), and (3.25) shows
that this factor of 1/e occurs in all the places
necessary to make the previous arguments go
through at least as strongly as before.

If we now define

x)r, R', )= f&**f&'*' '" """"x(, ',')

QQQ QL Zq —2re'k(Xq/K 'P/D (3.26) e = e(0, &u) =1 —(v~2/(&u+f q)2, (3.30)

kXoD =1+sxe2
2e (k'+q')' (3.27)

The corrections to (3.26) and (3.27) are of order
K'. Note that the first term of (3.26} is also for-
mally of order K' but is also proportional to L
which is of order of the sample dimension. We
are supposing K to be small with respect to all
microscopic inverse lengths, but nevertheless
KL»1; therefore this first term remains for
the time being, but will eventually be subtracted
off when we look at the surface term alone. The
difference between —,'L, and the actual length of the
sample (equal to L —x,) is of course negligible

where q is a positive infinitesimal and ra~ is the
bulk plasma frequency of an infinite electron gas
of the same asymptotic density (e)', =4wne'/m),
and 8 is the angle between K and the surface nor-
mal. We emphasize that (3.29} is exact in the
limit of small K, but with KL»1. The first term
is just the usual bulk term with a pole at the bulk
plasma frequency given by e =0; the second, or
surface term has in addition a pole at the surface
plasmon frequency given by a+1=0. Thus, Eqs.
(3.29) and (3.30) constitute a microscopic proof
of the fact, usually and most simply derived from
macroscopic considerations, that the surface
plasmon frequency is &u~/M2 at zero wave vector
We leave it as an exercise for the reader to show
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that (3.29} can also be derived directly from the
semiclassical model Hamiltonians used for ex-
ample by several authors. " Since the derivation
of these model Hamiltonians assumes a Priori
that plasmons are the only excitation, (3.29) can
be regarded as a proof that g(K, K, e) and hence
the surface energy is dominated by plasmons in
this long-wave length limit. Using the same a
Priori assumption, one can also obtain (3.31) and
hence (3.30) from sum rules. " In Appendix C we
show that plasmons are not the dominant excitation
at large mavelengths in the two-dimensional wave-
vector decomposition used by previous authors
treating the surface energy problem. Finally we
point out that previous work using simple classical
image charge arguments mould have met mith mix-
ed success in obtaining (3.29). Of course the
image charge arguments which provide one method
of deriving the semiclassical infinite-barrier mo-
del (SCIBM} give the correct answer, as (3.26)
and (3.27) are the SCIBM results (with the true
bulk value of X' instead of the RPA value usually
used), which we have therefore proved to be ex-
act as K-0. However, Craig's' method seems to
give [cf. his Eq. (3.10)] the wrong angular factor
in that the sin8/K in (3.29) is replaced by a factor
5(K s in 8).

We now use (3.4) to calculate the dynamic form
factor 8, and after subtracting off the bulk part
[the term ~ V in (3.29)] we find

5S(K, K, &u) = (AK sin8/4we')

x [(d 5(ld (d ) 2(d 5((d 4l )]

This is indeed one contribution to the two-dimen-
sional decomposition 5E„„butit is not exact even
in the long-wavelength limit k-0. As we show in

Appendix C, this latter long-wavelength limit is
not dominated by plasmons. Nevertheless, the
physics of shifting plasmon zero-point energies
is the sole contribution to our form (3.34) at small
K.

IV. LOCAI DENSITY APPROXIMATION,

THE SHORT-WAVELENGTH LIMIT,

AND THE INTERPOLATION SCHEME

In this section we will argue that the local-den-
sity approximation (2.16) is correct for E„(K)at
large K, and propose a method of interpolation
for the surface contribution 5E„(K)between the
exact limit (3.34} at small K and the LDA at large
K.

Since the LDA is based upon calculations of E„,
for a homogeneous electron gas, it will be helpful
to review the results of such calculations: the
wave-vector decomposition of the exchange energy
is

2 3 1 1 K
Ee(K) = NB(2k —K}we' ——+ ————

x F K2 2 Kk 8

(4 1)

The total exchange energy is simply N3kF/4-w

In RPA or Hubbard-like approximations, which
ignore the frequency and coupling-constant de-
pendence of local-field corrections, the correla-
tion energy has a wave-vector decomposition

(3.31)
where we have used (3.30}plus the definition
u, =a~/v 2 . Therefore

N5S(K} = (AK sin8/4we'}(u, —2uq ) .

E'(K) = 1
2w[1- G(K)]

x dQ [lna(K, iQ)+1- a(K, i Q)],
0

(4.2)

Restoring the coupling-constant dependence ex-
plicitly by letting e -e'X in (3.32) (noting that
&u, ~ &o~~e) and performing the coupling constant
integration (2.12) gives

5E„(K)= (A sin8/K)(u&, ——,~~}. (3.33)

Finally, on performing the angular average (2.13)
we find

5E„{K)=(wA/4K){u, ——,&v~). (3.34)

This is the desired exact small-K for which we
used in Ref. 13.

To show the relationship between this and the
Schmit-Lucas' form we substitute (3.33) into
(2.15}and perform the Q integration. Remember-
ing that K = (Q, k) we find

where

a(K, cu) = 1 —(4we'/K') [1-G(K)] g„,„(K,&u) . (4.3)

K2
lim Sq(K) =

2m(u, (xn} ' (4.4}

y„,„(K,~} is the susceptibility of a noninter-
acting homogeneous electron gas, and G(K) is the
local-field correction [ G(K}=0 in RPA]. In Ap-
pendix E we present a more detailed discussion
of bulk correlation-energy calculations and a com-
parison of numerical results for the total corre-
lation energy in the RPA, Hubbard, "Wigner, '4

Nozihres-Pines, "and Singwi- Tosi-Land-Sjolan-
der ' (STLS) approximations.

The K-0 behavior of E„(K)is determined by the
condition"

5E'„,(k) =-,'A(u&, ——,'(u~) . (3.35) where &o~(n) = (4wne /m)' 2. Thus
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K2 2n
lim E (K) =N ——,+2 re' tc, (n)

At large K a direct expansion of (4.2}gives the
asymptotic behavior

lim E„e(K)= —[1-G(~)] N8v'me'
K o K (4.6)

A similar result can be obtained directly by sec-
ond-order perturbation theory, with the quantity
in square brackets replaced by —,

' (which is also
the value it takes in the Hubbard" approximation).
Since second-order perturbation theory is exact
in this limit, we have, at least with respect to
(4.6), that G(~) =-,' exactly.

The qualitative features of these homogeneous
electron gas calculations are revealed in Fig. 2,
where we plot the exchange-only form factor

So(K) —1 ccKaE, (K)

and compare it with

1

did Sg(K) —1 ccK E„(K).
0

The areas under these curves are, apart from a
constant factor, just E„andE„,, respectively.
It is interesting to note that the inclusion of cor-
relation smooths out the structure factor in K
space and increases the relative weight of the
large-K fluctuations. This smoothing of the struc-
ture factor in K space corresponds to a reduction
in the range of the correlation hole (in real
space) around each electron.

This reduction in range is of course just the
usual screening effect which occurs for the exact
correlation function but not the Hartree-Fock ap-
proximation to it. It is another reason why we in-

sist on treating E„,as a single entity, particularly
with respect to making the local-density approxi-
mation, for which we need a short-ranged corre-
lation function for it to make sense. Note also
that according to (4.5) and (4.1), it is only E„,(K)
for which the leading density-dependent term is
the plasmon zero-point energy. The leading term
in E, (K) alone is a plasmon self-energy term
whose divergent K ' contribution is exactly can-
celled by the K ' term of (4.1). [The 1/K' term
in (4.5) is density profile independent, and is
therefore irrelevant to the surface problem —it
represents the subtraction of the interaction of
each electron with itself and is the same for all
N-electron systems. ] We also know after the fact
from our earlier work" and from that of Lang and
Sham" that the LDA is much better for E„,than
for E, alone.

We now consider the LDA (2.16}for inhomo-
geneous systems. We first show that LDA fails
badly for 6E„,(K), the surface contribution to the
exchange-correlation energy, at small K. From
(4.5}we find

lim 5E„",n "(K)= a A dx [u&~(n(x)) —&u~(nc)e(x —x,)] .
K~0 ~ oo

(4 7)

This is K independent and n(x) dependent, in
marked contrast to the exact limit (3.34}, which
diverges as K-0. Note that both (4.'f) and (3.34)
are dominated by shifting plasmon zero point ener-
gies.

On the other hand, as we show in Appendix D, the
LDA for 5E„(K)is exact in the limit of large K,
l.e. )

x dx[n'(x) —n', e(x —x,)] . (4 8)

I

(/)

~ —0.5
O

—I.O
I i i t Q I I I I

0.5 ].0 l.5
K/2kF

From (4.6), we see that (4.8) is just lim 5E„",n"(K)
as K-~, with G(~) =-,'. This confirms our in-
tuition that as the wavelength of the fluctuation
becomes small, in comparison to other lengths,
then the local approximation to its energy must
become exact. The actual form (4.8), however,
is only numerically valid at very large wave vec-
tors and so it was not used in our calculations
except as a check. Instead, in those parts of the
calculation relying on the LDA, we use the full
expression (2.1V).

The interpolation method is now easily described.
We define

FIG. 2. Structure factor f&'dXS„(K)—1 for a homo-
geneous electron gas (rs= 4.08). Solid curve: exchange
only. Dashed curve: RPA.

y(K}= 2I're[4vK'/(2v)']5E„(K)/A (4.9)

so that the exchange-correlation part of the sur-
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1.0

rection by + or less. )
The result of the interpolation is to pick up a

small positive contribution (beyond the LDA) to
the surface exchange-correlation energy (namely
the hatched areas in Figs. 3 and 4} from the re-
gion of small K.

V. RESULTS AND DISCUSSION

0.5

K/2kF
].0 ].5

As a proving ground for the interpolation scheme
proposed in Sec. IV, we consider the infinite-bar-
rier model (IBM) of a metal surface, in which the
single-particle wave functions [associated with the
noninterac ting Hamiltonian

FIG. 3. Wave-vector analysis of the surface energy
BE~=A fd(K/ k2z)y(K) .in the RPA using density pro-
files for the infinite-barrier model. Solid curve:
LDA; dash-dotted line: exact asymptote (4.11);dashed
arc: interpolation. (r, = 4. For r, = 2.07 and 6, see
Ref. 13.) Here pm~=291 erg/cm .

face energy is just

A d yK. (4.10)

[Note that y(K) is, apart from a K-independent
factor, just the spherical average of f', d& 6S(K).]
From the exact limit (3.34) we find

lim y (K) = ((u, ——,
'

(u~) .
K~p 4m

(4.11)

We compute y"n"(K) by (2.16), and then interpo-
late.

The interpolation scheme we have used is an
arbitrary but well-defined procedure which re-
produces more or less the results of "interpola-
tion by eye": we define y to be the maximum
value of y"n"(K}, and plot y"n"(K) vs K/2k~ on a
"normalized" scale such that the points (K/2k~= 1,
y"n"=0) and (K/2k+=0, y"n"=y ) are equidistant
from the origin. We also plot the straight line cor-
responding to the initial slope of y(K) from (4.11},
and interpolate between the two curves via the arc
of that circle which is tangent to the straight line
at K=0 and to y"n"(K) at some larger value of K.
The construction is shown in Figs. 3 and 4.

(In Ref. 13 we used the same interpolation
scheme, except that we did not worry about the
precise "normalization" of the vertical axis,
which has been introduced here only to make the
scheme mathematically well defined. The small
differences between the numbers here and in Ref.
13 are due mainly to numerical refinements and
not to the change in "normalization. " Doubling
the "normalization" changes the interpolation cor-

T+ xvp xn x

].0
x

0.5

0.5

K/2kF
I,Q ].5

FIG. 4. Wave-vector analysis of the surface energy
in the Hubbard approximation using Lang-Kohn density
profiles. Solid curve: LDA; dash-dotted line: exact
asymptote (4.11);dashed arc: interpolation. (r~= 4.
For r, =2 and 6, see Ref. 13.) Here y~=450
erg/cm2.

of Sec. II] take a particularly simple form. Harris
and Jones' have evaluated the surface exchange en-
ergy for this (non-self-consistent) model, and
Wikborg and Inglesfield' have calculated the sur-
face correlation energy within RPA.

Numerical results for the IBM are presented in
Table I and Fig. 3. Note that the LDA gives a sur-
face exchange energy about 5(Pp larger than the ex-
act value, and a surface exchange-correlation en-
ergy about I(@ smaller than the exact value. (A
similar comparison between LDA and exact re-
sults for the IBM has been performed by Lang and
Sham, "who however compared the Wigner approx-
imation for the LDA calculation with the RPA for
the exact solution. ) Thus the LDA is better for
exchange and correlation than for exchange alone,
as anticipated by the argument of Sec. IV. More-
over the results of the interpolation scheme are
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TABLE I. Exchange-correlation contribution to the
surface energy (erg/cm ) in 'the infinite-barrier model.
x, exchange; xc, exchange+correlation.

rs = 2.07

RPA LDA
RPA interpolation
RPA exact

1107

700

1241
1365
1388

rs=4
RPA LDA
RPA interpolation
RPA exact 100

184
204
203

RPA LDA
RPA interpolation
RPA exact

45

30

58
64
63

within 2% of the exact values, and so can be re-
garded as essentially exact. (The figures quoted
as "RPA exact" are based on a private communi-
cation from J.E. Inglesfield of a refined calculation of
the integrations from k =0 to 2k~, to which we
have added the "tail area" above 2k~ as given by
the LDA [see Eq. (2.15)].}

A possible objection to our IBM test of the in-
terpolation method is that the IBM density profile
varies more rapidly in space than do the more
physical profiles obtained from self-consistent
calculations. In order to meet this objection we
have made a numerical comparison of the inter-
polation correction with the first gradient cor-
rection" to the exchange-correlation energy for a
class of density profiles which vary so slowly that
the accuracy of the gradient expansion cannot be

doubted. We have found good agreement between
the two methods in this limit; details will be pub-
lished elsewhere. "

Now, armed with some confidence in the cor-
rectness of the interpolation scheme, we proceed
to the more realistic surface-density profiles cal-
culated by Lang and Kohn' for the self-consistent
jellium model. Numerical results are presented
in Tables II and III and Fig. 4. For the interpola-
tion scheme we have used the Hubbard" approxi-
mation, the most realistic approximation for which
we have a simple wave-vector decomposition
Z, (E). Note that at r, =6 the LDA is again 10'fo too
small, while at r, =2, where the density profile
varies more slowly on the scale of ~„the LDA is,
as expected, much closer to the "exact" value
found by interpolation. Table II also shows a com-
parison of 6E„,as calculated in the LDA using the
RPA, Hubbard, Wigner, and STLS approxima-
tions.

We note that our results for 6E„,are not quite
self-consistent, in that the Lang-Kohn density pro-
files are calculated with an effective exchange-
correlation potential

(5 1)

which assumes the validity of the LDA (and the
Wigner approximation). While our interpolation
scheme does define a nonlocal density functional
for E„,the evaluation of its functional derivative
(5.1) is impossible. It is, of course, possible to
adopt a variational form for the density n(x) or
equivalently for the effective one-electron poten-
tial v, (x), and so minimize the total energy, in-
cluding nonlocal exchange and correlation. We
have done this" and found that corrections to the
LDA density profile are negligible, as we antici-
pated in Ref. 13, because the "extra area" intro-
duced by interpolation is small azd the exact K-0

TABLE II. Exchange-correlation energy of the jellium surface (erg/cm ). The column
marked xc shows the value of the indicated density functional for E~[n(x)] with the density
profiles n(x) equal to those given by Lang and Kohn (Ref. 1). The column marked xc-sc shows
the fully self-consistent value of E~[n(x)j, with the density profile n(x) calculated by minimiza-
tion of the functional being evaluated, except that, as discussed in the text, the interpolation
correction is calculated using the Hubbard-LDA profile. (The RPA and Hubbard approximations
have been parametrized in the xc-sc calculations. )

Functional xc
s 2

xc-sc
rs =4

xc-sc
rs —-6

xc-sc

Exchange only LDA
Wigner LDA
RPA LDA
STLS LDA
Hubbard LDA
Hubbard interpolation

3070
3250
3435
3400
3380
3555

3250
3390

3345
3520

225
260
272
268
264
284

260
266

262
282

44
55
57
54
54
59

55
54

54
59
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TABLE III. LDA and interpolation correction to the
exchange-correlation energy of the jellium surface
(erglcm ) as a function of r~. (Parametrized Hubbard

approximation. )

C,(x) = (e'~+ e '~)e(x) = (2 cosqx)e(x), (Al)

where as usual K=(q, k), and where in particular
q= (2x/L)n; n=0, +1, +2, . . . . We define the cosine
transform therefore of the function F(x} as

2
2.5
3
4
5
6

LDA

3345
i490
762
262
iii
54

Correction

i73
87
49
20
i0

5

Fc
a

I /2
dx C,(x)F(x), (A2a)

F(x)= g C,(x)F'„ (A2b)

where the sum over q is defined to mean

with the inverse transformation given (for x) 0) by

1Qf r.=f. +Zf ( ). . *
a n=l

(Asa)

limit of 6E„(K)depends only on the bulk density
and not on the density profile.

When the wave-vector interpolation method for
the exchange-correlation part of the surface ener-
gy is combined with a nonperturbative treatment
of the short-range part of the ionic potential, "the
resulting calculated surface energies for simple
metals are in good agreement with experiment.
(Details will be published later. )

In conclusion, the local-density approximation
for E„(butnot for E, alone) is surprisingly good
even for the strong inhomogeneity associated with

a metal surface. Under a decomposition of F-„,in-
to contributions E„(K)from fluctuations of differ-
ent wave vector K, we find that LDA is correct at
large E and fails badly at small K, but this failure
is rather unimportant because of the phase-space
factor 4mK3. Moreover, for the surface problem
we have derived the exact behavior (including all
many-body effects) of 6E„(K)[and also
X (K, ~), S(K, &u)] at small K, and have proposed an
interpolation scheme for 6E„(K)which, when
tested against RPA calculations for the infinite-
barrier model, proves to be essentially exact.
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APPENDIX A; DEFINITIONS OF TRANSFORMS AND SOME

LIMITING CASES

In general we adopt as our complete set of
functions (for expanding wave functions, potentials,
etc. ) the usual imaginary exponentials e'" *,
where K is quantized with periodic boundary con-
ditions on an almost infinite cube of side L, cen-
tered about the origin. For the variations per-
perdicular to the physical surface [which we take
to be in the vicinity of x=x„where x=(x, y, x)] it
will be more convenient to work with the linear
combinations

We will almost never make use of the discrete
nature of the sum, which in the limit of large I.
may be replaced by an integral in the usual way

P f,= f,+ O(L ') .
q 0

We note that

g C,(x)C,(x') = 6(x x }e(x)e(x'),

(Asb)

(A4a}

Z l.eGe~= Z G.v4~=G.~ (A&)

for an arbitrary double cosine transform G,&.
We now go on to derive a few properties. First

we need the relationship between the cosine trans-
form and the ordinary exponential transform

I, /2

F,=- dxe '~F x
-S/2

(A6)

at small q (but still q»L '). This is trivially given
by

F =-,'F'-i dxsinqxF x =-,'F'+0 q, A7

where we have assumed that F is localized near
the surface, so that one can extend the integral
limits to ~ and then expand for small q, and we
have further assumed that F = 0 for x &0.

We will also need the expression for the small-
Q form of the double exponential transform Gz
of a function G(x, x') whose double cosine trans-
form is

G„,=LP,(6,,+ 6~ ~)=6'~1 ~,
where F, is the exponential transform of an even

(A8)

L/2
dx C,(x)C~(x) = L(6. ..+ 6, .~) = 1,~, (A4b)

0

where 5, z= 1 for q = q' and zero otherwise. The
combination 1,~= L(6, ~+ 6—. ..) acts as the unit
matrix in this space as it has the property that
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L /2 L/2
G =- dx dx' e 'o""'~G(x, x') . (A10)

-I, /2 -L /2

However, the notation of (A2) and (A6) will still
be used for single transforms: 5, and 5+ are both
exponential transforms while 5', and Sq are both
cosine transforms.

Since the function G(x, x') corresponding to (A8)
is not localized in both x and x' together, we can-
not use (Av) to find the desired limiting form. In-
serting (A8) in the inverse transform of (A9) we
easily find, however,

G(x, x') =[&(x -x')+8'(x+x'))e(x)e(x'), (All)

where e(x) = 1 for x &0 and zero otherwise. Now
we insert (A11) in (A10) with Q =Q', and after
straightforward algebraic manipulation which
makes use of the fact that F(x) = 8:(-x), we find

I/2 I /2
Goo=g dx dx e **'8'( xx }-I /a -s /2

r /2 I /2
+ 2 dx dx'singxsingx'5 x+x' .

0 0

(A12)

Since F is taken to be a localized function of its
argument, we now have Gz~ in a form where the
large L limit can easily be performed: The first
term becomes &LF~; while the second term re-
mains unchanged except that the upper limits of
both integrals now go to . Therefore, at small
Q we have

Goo - ~I 5o+ O(Q')

which is the desired limiting form.

(A13)

function $ (x). Equation (A8) illustrates a feature
of our notation in that the superscript "c"will
generally be omitted for a double cosine trans-
form; it is distinguished from the exponential
transform by the use of lower case indices, i.e.,

I /2 I /2
G„,=— dx dx'C, (x)C,,(x')G(x, x') (A9)

0 0

where V"' and V"' are given by (3.11). Equation
(Bl) can be written symbolically as

x=f(1 -x'v"') 'x'](1+ v"'x&. (B2)

Defining y to be the quantity in square brackets
in (B2) leads to

X = X'+ X'~"'X (B3)

which is the same as Eq. (3.14) in matrix nota-
tion. Writing (B2) in terms of x gives

x= x+ x~"'x (B4)

Because V"' is a factorizable interaction (B4) may
be solved exactly if X is given. In Dirac notation
we write V"' as —Iv) a&vI where Iv) and (vI are
the respective column and row vectors that have
the elements v,. Then (B4) becomes

x= x-xlv& o(&v I x (B8)

This is solved in the usual way by multiplying
by Iv) yielding

XIv)=XIv& -xIv&a&vIxIv&, (B6)

which is now a set of uncoupled algebraic equa-
tions for each element of XIv&. We have trivially

x I v& = x I v&/D, (B'I)

where

D= 1+ n&vI x Iv&. (B8)

Upon substitution of (Bl) back in (B5) we find

x=x -xIv&((r/&)&vIx ~ (B9)

Equations (B8) and (B9) are the respective matrix
versions of Eqs. (3.13) and (3.12).

APPENDIX C: TWO-DIMENSIONAL WAVE-VECTOR
DECOMPOSITION

Here we consider the exchange-correlation en-
ergy as a function of the takeo-dimensional wave
vector. From (2.16), (2.12), and (3.4) we have that
this quantity is given by

x= x'(1+ v"'x&+ x'v"'x, (Bl)

APPENDIX B: REDUCTION OF INTEGRAL
EQUATION FOR x

Here we use (3.7}along with the definition
(3.8)-(3.11) to derive Eqs. (3.12)-(3.14). We write
(3.7) as

(CI)
where V,z is given by (3.9), X,& by (3.12), and (r
by (3.10a). Making these latter substitutions and
using (3.13) gives

E,(&)=
2

(-2)lm —
2 Q av,x„-g -v, x„v,x„v~+—-1

0 -e eP
(c2)
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where D is given by (3.13).
Now consider the small-k limit. First, we can

use the same arguments as in Sec. GI to show that

D, and hence (1/D —1), can be evaluated using
just the first term of (3.16), so that D is given by
(3.27) which becomes independent of the surface
profile as k-0. Similarly, the second term in

(C2) can be shown to be independent of the density
profile as k -0. To show this we begin by writing
(3.17) as

(c3)

where y~ is the bulk susceptibility y', /e, and

p„,=p,~/&, e~ .We now count powers of k, noting
that n ~ k ' and v, ~ k. We see that this expres-
sion is formally of order k and hence is nonvan-
ishing at k-0 only if the integrals are sufficiently
singular at q =0. By referring to the forms of

and (t),„(andhence ys and (t)„,) we see that this
happens only when both factors of X are propor-
tional to 1,&, thus only the profile-independent
first term of (C3) comes into play in the limit.
Finally the first term in (C2) is of order k'. Thus
even in the k =0 limit the profile dependent f„,
term survives. In particular the first term of
(C2) becomes in the large-L limit

"d~ 'dX 1 "dq
(-2) im ——L QBEXE + E(rvoX() + p avEQEE

Q
7f , x

Using the identity L = 2(8+ x,), where Z is the length of the sample, and subtracting the "volume" contri-
bution to the large parentheses in (C4},

2 «,X'.B
2m

gives (since Xs and u, are even functions of q)

J (-2)I ——*, a,x. ~ —.a .x. ~ 5 .5..}.dc' d~ 1 dg

0 2'
Therefore the total contribution to 6E„(k)is

220 'dA. 1 OO

5E (5)= f „(-2)If ——*,f —av, a, + P a ',5„)~ 5E„'"(5),

where

5E (5)= (-2) Im ———5 I — —5'5' ' + ——I)-act)EM d(2)
' dX 1 1 2) dQ 2 E (X, ) 12g, y 2 2

(cs)

(c6)

(CV)

(cs)

is the value obtained in the semiclassical infinite-
barrier model, and which is independent of the
surface-density profile. Note the presence of
the manifestly profile dependent term in the large
parentheses of (CV) which survives the k-0 limit.
We thus see quite clearly that semiclassical mod-
el is not exact in this k -0 limit, even though it
gives D and hence the plasmon frequencies exactly.

APPENDIX D: LARGE-K LIMIT FOR THE SURFACE
PROBLEM

In this section we evaluate 6E„(K)[see E(I.
(2.13)] for the surface problem, in the limit of
large K, and show that in this limit the local-
density approximation is correct.

We begin by considering the susceptibility y,
since through E(ls. (3.4) and (2.12) we can express
E„(K)in terms of this. It is given in matrix no-
tation by E(I. (3.V). We note that except for a neg-
ligible region of K space, large K implies large

% [K= (Q, k}]so that there is necessarily a large
momentum transfer through the Coulomb interac-
tion in the iterative expansion, which means that
V is small, and so it suffices to take the leading
term.

X = X'+ X'VX' (Dl)

x = x"'+ x"'~x"'+ ~x (D2)

Similarly, the average momentum transfer through
V in the internal structure of y' [see Fig. 1(b)]
is also small. Therefore to first order in V we
may take y'= y"' in the second term of (Dl), where
g"" is the susceptibility of a noninteracting sys-
tem with the same density profile as the true one,
and is given by the first diagram on the right-hand
side of Fig. 1(a). In the first term in (Dl) we
must expand X' and hence keep the first two terms
of Fig. 1(a), where now the wiggly line can be re-
placed by a bare Coulomb interaction. Thus we
write"
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where 5g is this second term of Fig. 1(a), and

whose contribution to the energy is known as the
second-order exchange term. The second term
in (D2) makes a contribution to the energy known

as the second-order direct term, while the first
term gives the Hartree-Fock term or exchange
energy.

It is most convenient to work in a representation
in which functions are Fourier transformed parall-

el to the surface, i.e.,

Ee(ee'), f=d x e*'„2 d "E(x'x),

for an arbitrary function I . %e have therefore
for the Coulomb potential

V, (», x') = (2«e'/k) e (D4)

1 1

e2, K,+PC+ Cl. «1 + +
&2 4+&

where (t),(») is the "perpendicular part" of the single-particle wave functions g, that is,

P,f(x) = P,(»)e'"'"/A' '

and z;„is the single-particle energy which to zeroth order" in U is given by

e,f = (k'+ q')/2m .
Note that k is always parallel to the surface and A is the surface area.

Consider now the contribution to the exchange energy, which is

E(R)=A f, de d*'e'2" ''-,'V(e, *')( 2
[-22 2',"(*,x', )[ —( (x))ll(2 —2'))

(D5)

(D8)

(D8)

We note that for k& 2k& the factor l-f, ;,l in

(D5) may be replaced by unity. After doing the
integral indicated in (D8) one sees that the only
dependence on the dummy variable q, left in (D5)
is in (j), (x) and g (x'), so that the completeness
relation

p y,*,(«)@„(»)= 5(» —«')
fI(2

may be used to perform the q, sum, and we are
left with

(De)

.( )= J **' (**) Q f.,, ;, l
(*)2[*- (2))

alfie

=0. (Dlo)

Thus there is no exchange contribution at large K,
and we turn next to the second-order contributions.

To do this we again replace the factor (1
f, I-, ,~) in the parentheses of (D5) by unity, and

also neglect q', /2m in the energy denominators
because it gets compared to 4' which is large.
Note however that q,'/2m cannot be neglected, be-
cause its range is unrestricted by the Fermi fac-
tors and is likely to be just as large as k'/2m.
Equation (D5) for 1"' can thus be written

where

x [G...(Q~)+ G„„,(Q~)], (Dl1)

(D12)
(~) ~ @..(»)44(»')

n —q,'/2m

is just the Green's function for the reduced one-
dimensional single-particle eigenvalue problem
perpendicular to the surface and where

&,'=+((d+ fry) —k2/2m. (Dls)

Note that q', /2m, and k, k/m have been dropped,
because they are much smaller by assumption
than k'/2m We now. note that large k means large
Q on the average. Finally in large-0 limit the
Green's function (D12) becomes simply the free-
particle Green's function, which is

(2-(1/gl( 2) ol 2[x x I (D14)

We cannot simply replace (D14) by a sort of 5
function, even though it is high peaked at x-x'
for large 0, because in the evaluation of the sec-
ond-order exchange energy it gets multiplied by
other similarly singular factors. %e can, how-
ever, set x=x' in other slowly varying terms that
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multiply it, such as (t),* (x)(f), (x'} in (D11); this is
necessarily slowly varying because of the Fermi
factor f, -„.Making this replacement, and noting
that the particle density n(x) is given by

we have

yi"(x, x') -n[ E (x+ x')][G„,(Q~)+ G,„,(Qq)], (D15)

with (t}, (x) in G,„replaced by free-particle func-
tions ~e"2".

We now evaluate the second-order direct term
which arises from the second term in (D2}. This
is

E, (K)= —A f d d ' e 2( '
) (2 2')(-2)1 J d f dd 2('d 2)V (22')2 (2' 2'), (Dld)

0

E(1(}=,—„,, A f dd '(2}
«d)0

(D17}

8m'me'
5E, (2„,(K) = —

(2 24 d [x(s)x- s()(x)]
m (20

(D18)
whe~e as before

~

e inD(x) is the charge distribution
of the uniform jellium background. Note that no
spherical averaging [Eq. (2.13)] was necessary,
since (D1V) i.s spherically symmetric already.

where we have used (D2), (2.12), and (3.4}. The
over-all factor of —,

' comes from the coupling-con-
stant integration, which as usual is carried out
in the presence of an external potential so that the
wave functions Q remain independent of coupling
constant. We now substitute (D15) into (D16) and
evaluate. In doing so, we note that according to
(D4} the potential V, is sharply peaked around
x-x', just as G,„,is. Thus in evaluating (D16)
it becomes irrelevant at sufficiently large k
whether we evaluate the prefactor n in (D15) at
x, x', x, or x', and we use this flexibility and find
after some algebra that

We are now left with the evaluation of the sec-
ond-order exchange term which comes from the
last term in (D2). This is done with exactly the
same arguments which we just used to produce
(D18). Thus we give only the final result

6E,„,(K)= ——5E, „,(k).

Thus we have that 5E„,is given by

(D19)

APPENDIX E: CORRELATION ENERGY OF A

HOMOGENEOUS ELECTRON GAS

From (2.6}, (3.3), and (3.4) we have

E,= dK 1 dX4
0

dd (E) =—„,A f dd [2'(2) —,'(2)} . (D2D)

This is manifestly a local function of the density.
According to Eq. (4.6} it is also precisely what is
predicted by the LDA [noting that G(~) =-,].

TABLE IV. Correlation energy (Ry/electron) of the homogeneous electron gas in various
approximations.

RPA Hubbard Nozieres-Pines (Ref. 17) Wigner STLS

0.001
0.01
0.1

1

2

3
4
5
6

10
20

—0.57
—0.43
-0.29
-0-158
-0.124
-0.106
—0.094
-0.085
-0.078
-0.061
—0.043

-O. 131
-O. 102
-0.087
-0.077
-0.069
-0.064
-0.051
-0.035

-0.33
—0.26
-0.19
-0.115
-0.094
-0.081
-0.072
-0.065
-0.059
-0.044
-0 ~ 022

-0.11
-0.11
-0.11
—0.100
-0.090
-0.081
-0.075
-0.069
-0.064
-0.049
-0.032

-0.124
—0.092
-0.075
-0.064
-0.056
-0.050
-0.036
-0.022
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0

!

-0.02-

-0.04

0 -0.06

(P
-0.08

K

of (E3) along the real &o axis permits one to separ
ate out plasmon and particle-hole contributions.
However, the numerical integration is more easily
performed along the imaginary & axis as discussed
by Pines, "with the result (4.2}. Note that

a(K, iA) = 1+ (4[1 —G(K)]/vk x'}[—+ w(x, y)], (E4)

y'+ [&(&+2}]'
K(x, y —

15 (y + x — ) [ ( 2)]

-OjO

-O. I2

~
2%+x

~
2x-g——tan ' +tan '

4x y y
(E5)

-O.l4 'i

0 0.2. 0.4 0.6 0.8

kF (a.u. )

l0

FIG. 5. Correlation energy per electron of a homo-
geneous electron gas. RPA, Wigner (%V), Hubbard (P),
and STLS approximations. X is the exchange energy
per electron, for comparison.

where X, is the noninteraeting susceptibility. In

RPA or Hubbard-like" theories

Xgog'X~ &) (E2)1-~(4ve'/K*)[1 -G(K)]q,(K, ~) '

x dz lm[lna(K, s))+ 1 —a(K, (o)], (E3)

with a(K, +) given by (4.3). The direct integration

with the X and ~ dependence of the local-field cor-
rection G(K} igonored [RPA G(K) = 0, Hubbard

G(K) =-,'K /(Km+a~}]. The coupling-constant integra-
tion is trivially performed, with the result

&'K
(2r}' 2/1-G(K)]

where x=K/kr and y=&/~kr.
Numerical results for the correlation energy in

various approximations are presented in Table IV
and Fig. 5.

Table II shows a comparison of 5E„,as cal-
culated in the I.DA using the RPA, Hubbard, "
Wigner, "and STLS" approximations. Note that
at r, = 2 the Wigner value is somewhat lower than
the other values. This can be understood by in-
spection of Fig. 5. The LDA calculation of 6E„,
samples the difference between nc„,(n) at the bulk
density n and at the local density n(x). This samp-
ling is primarily toward lower densities (i.e.,
toward smaller values of k~). The Wigner approxi-
mation for a„,vs k~ shows a somewhat flatter be-
havior at large k~ than do the other approxima-
tions, and so yields a smaller value of 5E„,.

An anaiytic parametrization of the RPA correla-
tion energy has been given by von Barth and Hed-
in." A comparable fit to the Hubbard correlation
energy (for k~, ~ 1) can be obtained with the same
functional form, but with C~ = 0.0411 Ry/electron.
These parametrizations have been used in the self-
consistent LDA calculations of Tables II and III.
The other RPA and Hubbard calculations in this
paper involve a numerical evaluation of (El)-
(E5).
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