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The scattering of electrons of kinetic energy up to 1000 eV by an atom is of special interest in the

understanding of extended x-ray absorption fine-structure (EXAFS) spectra. An important physical feature is

the reduction of the exchange and correlation potential as the kinetic energy of the electron increases. This is

taken into account by replacing the atom by an electron gas with spatially varying density and calculating the

self-energy using the plasmon pole approximation. This results in a set of complex phase shifts which is then

applied to the EXAFS problem. Comparison is made with phase shifts extracted from experimental EXAFS
spectra and excellent agreement is obtained. Direct comparison of the theoretical and experimental spectra

again shows excellent agreement in both the amplitude and the phase. We also analyze the EXAFS spectra by

a Fourier-transform technique which first removes the amplitude and phase shiA using the calculated result.

The importance of a proper choice of zero of energy Q is emphasized. We choose Q by the requirement that

the imaginary part and the absolute value of the Fourier transform should peak at the same distance, thus

assuring that the absolute phase is given correctly. Using this procedure the nearest-neighbor distances in Br,,
GeC1~, and crystalline germanium are determined. In all cases the results are within 0.01 A of the known

distances. Several shells in germanium are also determined, with accuracy of better than 1%. Application of
our method to crystalline copper indicates that the outer shells are more seriously affected by multiple-

scattering problems and our procedure permits us to discard peaks that are spurious or unreliable. The present

determination of the nearest-neighbor distance in copper is found to be in error by 0.014 A. Results of the

application of this method to the determination of the bond lengths of a variety of compounds are

summarized.

I. INTRODUCTION

The phenomenon of extended x-ray absorption
fine structure (EXAFS) refers to the oscillation of
the x-ray absorption coefficient as a function of
x-ray energy above threshold. It has long been
recognized that the physical origin of this phe-
nomenon is due to final-state interference, i.e.,
the final state is modified by the presence of the
surrounding atoms. ' Interest in EXAFS has been
revived in the past several years due to two devel-
opments. Firstly, it was pointed out by Sayers,
Stern, and Lytle' that EXAFS contains structural
information which can be extracted using Fourier-
transform techniques. It is clear that EXAFS can
become a particularly useful structural tool in
complex situations where x-ray diffraction is un-
available. Examples are biological molecules, '
solutions, ' amorphous materials, ' and catalysts. '
Recently a suggestion was made that EXAFS may
be used to determine surface structure of adsor-
bed atoms. ' Secondly important experimental
advances have been made with the availability of
synchrotron radiation. The greatly increased
intensity means that good quality spectra can be
obtained in a matter of minutes. ' It is clear that
interpretation of these data presents much greater
problems than the collection of the data itself.

The single-electron theory of EXAFS has been

placed on very firm formal footing by several re-
cent work. '" It has been argued that unlike low-
energy-electron diffraction (LEED), multiple
scattering is not a serious problem in most cases
in EXAFS.' The single-scattering theory of the
EXAFS oscillations normalized to the background
absorptions is given by

X(k) = —Q ' ,fm[Z(k, r,)-e"'"~e"'~"']

x e-27rge-2a)k

for excitation of an s state in a system in which
the orientation of the sample has been averaged
over Equation .(1.1) describes the modification of
the electron wave function at the origin due to
scattering by X& neighbor located at a distance xj
away. The backscattering is described by the
factor Z(k, r~) which can be calculated in terms of
scattering phase shifts and which in general de-
pends on the distance xz. However, explicit eval-
uation' has shown that this dependence is relatively
weak for moderate to high-electron momentum 0
and that it is possible to replace Z(k, r,)by the.
backscattering amplitude

f(e) -=A(k)e*'"'

1 Z. (2f+1)(e'"~ —1)( 1)',
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which is equivalent to approximating the spherical
nature of the outgoing wave by a plane wave. We

shall make this approximation in the rest of the

paper. Also included in Eg. (1.1) is the l= 1 phase
shift 5,' of the excited atom and factors y and o& to
account for inelastic losses and Debye-Wailer
smearing, respectively. Finally the photoelectron
momentum k is measured with respect to some
energy E,

where 0 is the photon energy. [We shall use
atomic unit (a.u.) throughout, K=e=m= l. The
unit of length is 0.529 A and the unit of energy is
2 Ry= 27.2 eV.]

It is clear that a knowledge of the k dependence
of the phase functions 5,' and 8 is essential before
the EXAFS expression Eq. (1.1) can be inverted
to provide information on the distances rz. One

approach to this problem is to perform a Fourier
transform of the data after conversion to k space. '
The peak in the Fourier transform occurs at a
distance which is shifted from the correct distance
by typically 0.2 to 0.3 A. By performing the Four-
ier transform first on systems with known dis-
tances, these shifts can be measured and then
used to predict distances in unknown systems.
The weakness of the approach is that since fhe
phase functions are not exactly linear, the shift
will depend on the weighting of the data before
Fourier transforming, the range in k space over
which data are available, and possibly on Debye-
W'aller factors. Furthermore the shift depends
on the choice of E,. Consequently while good re-
sults can be obtained in systems that are suffi-
ciently similar, generally the accuracy that can
be achieved by this technique is limited. A second
approach to the problem that has been very suc-
cessful for simple systems is the least-squares
fitting method. By parametrizing the phase-shift
function 25,'+ 8 by a linear and quadratic term,
for instance, Citrin, Eisenberger, and Kincaid"
have extracted the phase-shift functions by best
fitting the data directly. Furthermore these
authors have shown that the phase-shift functions
extracted from the same atomic pairs in different
chemical environments are in excellent agree-
ment with each other and that phase shifts ex-
tracted from one system can be used to predict
distances in another system with an accuracy of
0.01 to 0.02 k By working with a nonlinear phase-
shift function Citrin et al. avoid many of the diffi-
culties associated with the Fourier-transform
technique. However, the experimentally extracted
phase shifts still depend on the choice of E„and
the problem of a proper choice of E, when one is

going from systems in radically different environ-
ments (e.g. , from metal to molecules) has to be
faced.

It would clearly be desirable to be able to cal-
culate the phase-shift functions. While the phase
shifts can be determined empirically, it is possi-
ble only to determine the combinations 25,'+ 8 and

not the two contributions separately. That means
that a separate experiment is required for every
atom pair. On the other hand 25', (k) and 8(k) can
be calculated separately and one needs only to add

the appropriate pair to compare with experiments.
It is the goal of the present work to perform
ab initio calculations of these phase shifts and

to compare them with experiments. Furthermore
we address ourselves to the problem of the proper
choice of E,. We also address the problem of
data analysis and show that if the knowledge of the
phase-shift function is properly utilized, the
Fourier-transform technique can be used to ex-
tract distances with great accuracy even in com-
plex systems.

There have been several earlier attempts at
ab initio calculations of EXAFS spectra using
Hartree-Fock or Hartree-Fock-Slater theory for
the scattering phase shifts. ' " These have met
with only qualitative success. The most serious
problem is that there appear to be systematic
errors which make the determination of distances
using these calculated phase shifts to be in error
by as much as 0.1 A out of 2.5 A in the case of
copper. The source of this difficulty has been
recognized by Beni, I ee, and Platzman" as being
caused by the inadequate treatment of correlation
effects. In particular they considered the excita-
tion of the d band in copper and showed that this
leads to important corrections to the Hartree-Fock
calculation in the direction of better agreement
with experiments. The main ingredient of this
theory is the construction of a complex potential
which depends on the photoelectron energy. How-
ever, the construction of this potential is quite
involved and some approximations in the numeri-
cal work had to be made. In the present paper we
propose an alternate scheme of constructing this
complex potential which has the advantage that it
is relatively simple to use. The resulting phase
shifts are tested in a variety of systems including
simple molecules and crystals like copper and
germanium. The problems that arise in trying to
extract distances from the data using calculated
phase shifts will be discussed in detail. It is
hoped that this work will clear up any confusion
that might exist concerning the Fourier-trans-
form method and lead to a better understanding
of the limits of accuracy of distances determine
using EXAFS.
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II. APPLICATION OF THE LOCAL-DENSITY

APPROXIMATION TO PHASE-SHIFT CALCULATIONS

As noted earlier the electron-atom-scattering
problem involves basically the construction of an
effective scattering potential that adequately ac-
counts for the exchange and correlation effects
caused by the electrons in the atom. To construct
this potential we use essentially a Thomas-Fermi
approach, in the sense that we describe the
atomic system solely in terms of its electronic
density. The inclusion of exchange in the Thomas-
Fermi theory is well known. A further generali-
zation of Thomas-Fermi theory to include corre-
lation effects in atoms has also been taken up by
a number of workers, "who proposed to add to
the Thomas-Fermi energy a term representing
the correlation energy as a function of density.
The basic idea behind obtaining this term is to
apply homogeneous electron-gas relations local-
ly. The simplest way of doing this is to assume
that each volume element of the atom responds
to the total field acting on it as if it were part of
an infinite homogeneous electron gas of the same
density. This assumption has been used for ex-
ample by Brandt and Lundqvist" to obtain a uni-
versal atomic photoabsorption cross section over
a wide frequency range. A more formal investiga-
tion of the propagation of a single-excited particle
in an electron gas with slowly varying density
has been made by Sham and Kohn" following the
earlier work of Hohenberg and Kohn' on the
ground-state properties of an inhomogeneous elec-
tron gas. The propagation of an electron from
r to r' at an energy v is described by the single-
particle Green's function G(r, r', ~) which satisfies
the Dyson equation

(- (o —-,' V')G(r, r', (o)

which satisfy the equation

[-E„(~)-k&'+ V,(r)]y(r, ~)

+ r'M~ r-r', (d —V, ro;n r, y r', & =0.
(2.4)

Furthermore if the electron density is slowly
varying on the scale of the local de Broglie wave-
length of the electron in question (which is gen-
erally shorter than A.F and therefore represents a
less severe condition than that already assumed)
one can go to a momentum representation of
M~(r r') loca—lly. The local momentum of the
electron is given by

-p(r)'+ M„(p, &o —V,(r,); n) = &o —V,(r,) (2.5)

and we can approximate Eq. (2.4) by a Schr5ding-
er-like equation

[-E„(~)--'~'+ V,(r}+U(r, ~)]X (r, u&) =0, (2.6)

where the effective potential is given by

U(r, a&) =M„(p+r, &o —V,(r); n(r)). (2 7)

It is worth noting that for an excitation at the
Fermi level &o= g, p(r) = kz(r) and from Eq. (2.5):

of each other over a distance greater than the
screening length. It then follows that if n(r} is
slowly varying on the scale of &~ and X», the
mass operator can be approximated as

M(r, r', ~ —V,(r,))=M„(r —r', ~ —V,(r,), n(r. )),

(2.2)

where M„ is the mass operator of a uniform elec-
tron gas of density n(r, ). The Green's function can
be written in terms of eigenstates

U(r, p) = p —V,(r) --,'kp = p„(n), (2.5)

where

Z (r, r', ru) = V Pr)5 (r —r') +M(r, r', ur —V,(r,))
and V(r, ) is the electrostatic potential at r, =&(r
+ r'). Sham and Kohn" and later Ma and Brueck-
ner" argued that the mass operator M depends
only on the density n(s) in the vicinity of r and
r' in the sense that (s-r~ -max(XF, X») where
&F and &» are the Fermi wavelength and the
Thomas-Fermi screening length, respectively.
Unlike the case of the ground-state energy, this
argument is not rigorous and is based on the
physically reasonable assumption" that elemen-
tary excitations which the electron couples to can
be defined locally and are relatively independent

where p„,(s) is the exchange and correlation cor-
rection to the chemical potential. If only exchange
is included, U(r, p) = —k r/v is the well-known —',

times the Slater p' ' approximation.
The above is a summary of the discussion by

Sham and Kohn. We now make the applications
to the electron-atom-scattering problem and fol-
low the prescription given by Eqs. (2.5)-(2.'I) to
construct the effective potential U(r, v). For an
atom the condition that the electron density be
slowly varying in comparison with XF or XT~ is at
best marginal. But numerous work has indicated
that the ground-state properties are well repro-
duced by the Kohn-Sham approximation. " Fur-
thermore near the Fermi leve1. the use of Eq.
(2.8} as a basis for treating exchange and correla-
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tion in band-structure calculations has been well
documented. " In the present work we extend the
use of the effective potential to higher electron
energy. It is clear that if the effective potential
works for electrons near the Fermi surface, it
should work even better for more energetic elec-
trons as the de Broglie wavelength gets shorter.

To implement Eqs. (2.5)-(2.7) for numerical
calculations one needs to make further approxima-
tions. First we compute the self-energy in the
plasmon pole approximation of Lundqvist"'"
which replaces the elementary excitations of an
electron gas by a single pole. These authors have
shown that the real part of the self-energy can be
written as a sum of two terms, the screened ex-
change and the Coulomb hole terms,

dq @re' f (k+ q)HeZ(k, (d)= —
( ) ( g g )

dq 4me' 1
(2r)' q' 2(o, (q)

where

1
&u, (q) —~+-,'(R+ q)' ' (2.9}

e(q, &u) '= 1+ ~~2/[uP —~(q)], (2.10)

(u,'(q) = &o,'+ er2[—', (q/kp)'+ (q/kr)'].

Here f (k) is the Fermi distribution function and

~~ is the plasma frequency. The q dependence of
&u, (q) has been adjusted so that the Thomas-Fermi
screening length is correctly reproduced in the
static small q li~it while &o, (q) approaches the free
particle limit &q' for large q. The imaginary part
of Z is given by

(2.»)

m~,' dq 4we'
2 (2r)' q'&o, (q)

x ff (k+ q) 5(-,' (k+ q)' —~,(q) —&)

+ [1 f(k+ q)] 5(2 (k+-'q) + ~g(q) —~))

(2.i2)
and corresponds to emission and absorption of
plasmons. The accuracy of the plasmon pole ap-
proximation in reproducing random-phase-approx-
imation results has been well documented and will
not be reviewed here. '

Next we have to obtain the local momentum from
Eq. (2.5). While the electrostatic potential V,(r)
can be obtained by solving Poisson's equation using
electron densities obtained from tabulated atomic
wave functions, these are not obtained as self-
consistent solutions of an inhomogeneous electron
gas. Thus the direct use of V,(r) in Eq. (2.5}
causes difficulty. For instance it may happen
that p(r) may become less than kr(r). To avoid

this difficulty we note that if the atom is treated
as an inhomogeneous electron gas, the electro-
chemical potential p must be independent of r.
Thus we can write

p, = V,(r)+-,'k'(r)+ p„,(n(r)).

Using Eqs. (2.5) and (2.8) we obtain

(2.is)

gp (r) = gk'+ gkr, (2.15)

where k is the momentum of the electron outside
the atom, i.e. , &o —p, =-,'k'. Equation (2.15) repre-
sents the Thomas-Fermi description of an atom.
Similarly we replace the frequency argument in
Eq. (2.V),

~ —V,(r) = —,'P'(r)+ U(r)

simply by &p'(r) and avoid solving the self-consis-
tency equation. Both of these approximations
should introduce only negligible errors as U(r)
« ~k'r(r) for the bulk of the atom.

To summarize our procedure is to first obtain
the spatial dependence of the charge density n(r)
from Hartree-Fock wave functions. From this we
obtain the local Fermi energy and the locaL mo-
mentum using Eq. (2.15). Then a complex poten-
tial is constructed which depends on the kinetic
energy of the incoming electron

(2.16)

and Z is obtained numerically from Eqs. (2.9) and
(2.12). This complex potential is added to the
electrostatic potential V,(r) and the complex phase
shifts calculated.

In Fig. 1 we show examples of the real and imag-
inary parts of r U(r) for a bromine atom as a func-
tion of incident electron momentum k. The impor-
tant feature is the expected switching off of the
real part of the exchange and correlation potential
as k increases. Furthermore for a given k, as
we go deeper inside the atom, P(r) = kr and the full
exchange and correlation potential is maintained.
For comparison we have also plotted the Xa po-
tential o.'-,'kr(r)/v with a choice of a=0.8. We see
that in the region of the valence electrons this
potential is very close to our calculated potential
for low-electron energy. Of course near the
atomic core r, «1 and our calculated potential
switches over to the purely exchange value of
—kF/v. We also remark that whereas significant
cancellations occur between the two terms in Eq.
(2.9}near the Fermi level, the screened exchange
term turns off very rapidly with increasing k and
the Coulomb hole term becomes dominant. In

~p'(r)= ur —p+ ~k2r+ U(r, p} —U(r, &o). (2.14)

Noting that U is a relatively small correction to
the Fermi energy we shall simply approximate
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ically to excitations of various atomic bound
states but a precise connection is not apparent
within the inhomogeneous electron-gas treatment
of the atom.

It is not possible to compare the real part of the
potential U computed here with the complex effec-
tive potential of Beni et al." This is because the
exchange process is included in the former poten-
tial but not in the latter. However, we can com-
pare the phase shifts calculated using the two
schemes as we do in Fig. 2. The real part gen-
erally shows similar trends compared with the
Hartree-Fock theory and is in good agreement
with each other. The imaginary part is found to
be smaller in the present scheme by about a fac-
tor of 3. This discrepancy is also apparent on
comparing the imaginary part of the potential.
Beni et cl. have already discussed the possibility
of overestimation due to approximations made in
their computation. On the other hand, the excita-

-0 I-
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—-02-
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2 3
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FIG. 1. (a) Plot of rReU(r) vs r on a logarithmic
scale for a bromine atom with electron momentum k
= 0.5, 4, and 8 a.u. Dashed line is the Xn approxima-
tion to rBeU(r) =I n(a)hI, (r)/w with n= 0.8. Note that
for r 21 this approximates the k =0.5 curve whereas for
r & 0.1 the Kohn-Sham value of e = 3 is a good approxi-
mation. (b) Plot of rImU(r) vs r for a bromine atom
with k = 3, 5, and 7 a.u. Atomic wave function has been
truncated at r = 3.24 a.u. resulting in the discontinuity
at this radius.

O.S-

p

Fig. 1(b) the imaginary part of U(r) is also plotted.
The sharp cutoff at small r is due to the plasmon
pole approximation which implies a definite
threshold for inelastic processes that increases
with decreasing radius and increasing Fermi ener-
gy. The inelastic process must correspond phys-

3 4
4 (ATOMIC UNITS)

FIG. 2. Comparison of the present theory for 6) with
the calculation of Beni, ~e, and platzman for copper.
Wave functions have been truncated and renormalized in-
side the atomic radius for these calculations.
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FIG. 3. Phase of the backscattering amplitude vs k
for a number of atoms.

tion of bound d states is certainly more physically
appea xng n1' tha the excitation of local plasmons in
an atom. The ultimate test of the reliability of
the present scheme must lie in the comparison
with experiments.

We have applied the above scheme to calculate
a variety of electron atom phase shifts. Our main
interests are the computation of the central atom
phase shift 5'(k) and the backscattering amplitude
f(v)=A(k)e' ". Figures 3 and 4 show the back-
scattering amplitude. The starting point is the
Hartree-Fock wave functions tabulated by Clemen-
ti and Roetti." The wave functions are truncated
t 1 5 t' es the atomic radius and a uniform

litcharge density added to preserve charge neutra x y
within this radius. A complex effective potential
is then constructed and the radial Schrodinger
equation integrated up to the chosen radius to
produce a set of complex phase shifts. For l~ 10
we find that the phase shifts are generally small
-0.1 so that we may use first-order perturbation
theory. This is particularly useful as direct inte-
gration becomes increasingly difficult numerically
owing to the strong centrifugal potential. The
perturbation method enables us to include 25 or
more phase shifts which is the number required
for convergence in f (v) at k = 8 a.u. (870 eV).

The phase 8(k) is rather slowly varying a,s a
function of k and changes systematically with in-
creasing atomic number Z. The amplitude A gen-
erally peaks at low k for the lighter atom. When
the electron exceeds the binding energy of the
deepest shell, the electron is sampling mostly the
nuclear potential and this explains the structure-
less tail for the lighter atoms like carbon and oxy-

2.5

2.0

0.5

o
I.5 2 4 5 6

It ( ATOMIC UNI TS)

FIG. 4. Absolute value of the backscattering ampli-
tude vs k for a number of atoms.

gen. The heavier atoms like iron and germanium
generally show a peak around k= 4, which moves
toward higher k with increasing Z. This peak is
associated with the ~2 crossings of the l = 1 and

l = 2 phase shifts as dictated by Levinson's theo-
rem. The small k behavior (k& 1.5) is dominated

t d wave resonance in these cases and
ulti lehas not been shown. In this region a full m ip e

tt theory (or band-structure calculation)
is clearly required and is of no interes or e
presen purpt purpose. The qualitative behavior of the
amplitude shown in Fig. 4 generally agrees wx

the trends observed in EXAFS amplitudes. We
also remark that A(k) has a minimum near k ~ 2

for the heavy atoms like Fe or Br. When A(k) is
small, 8 can be more rapidly varying and this is
reflected in the downturn of e(k) in the same region
in k. This feature is insensitive to the details of
the potential.

We have also calculated the l ~ 1 phase shift for
the central atom. The treatment of the central
atom is considerably complicated by the presence
of the 1s hole and the related question of relax&, tion
of the surrounding electrons. In the Appendix we
ar e that the other electrons in the atom will re-argue a e
1 inwards in response to the creation Of e cthe coreax inw
hole and that the relaxed ion is well approx&mate
by the Z+ 1 atom with an outer electron missing.
We have calculated 5,' using the Z+ 1 atomic wave
function and remove one outer shell electron.
The Coulomb field is cut off at a radius chosen to
be a typical bond length. We recognize that strict-
ly speaking we should use a screened S+ 1 atom
(completely relaxed case) for low kinetic energy
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8 I P= ak'+ bk+ c was assumed for the fitting in the
case of Br-Br, Ge-Ge, and Ge-C shown in Fig.
6. It has to be emphasized that these experimen-
tally determined phase shifts are unique only if
the choice of E, is specified. In particular it is
obvious from Eqs. (1.1) and (1.3) that if E, is
changed to E,'=E,+ ~E„ then the momentum is
redefined as

k'=(k'-2~E )» (3.2)

z o
5
K

hl

4 5 6
It ( ATOMIC UNITS)

and the phase shift function is modified as

P'(k') = Q(k) —2r(k' —k) = P(k)+ 2r&E,(k (3.3)

for 2~Ep «k All quantities are in atomic units
and x is the distance to the neighbor involved. As
expected P(k) is more sensitive to a change in E,
at small k than at large k.

Citrin et al. chose Ep to correspond to the vacu-
um level. This is in turn chosen by assuming that
the sharp bound state observed in the absorption
edge corresponds to the promotion of the 1s elec-
tron to the unfilled shell. In the case of bromine
this must be the 4p shell and Kincaid and Eisen-
berger' calculated this binding energy to be 13 eV.

FIG. 5. Central atom phase shift 2I5& vs k for a num-
ber of atoms.

and an unscreened Z ion (completely unrelaxed)
for asymptotically high kinetic energy. The un-
screened Z+1 ion is chosen as a reasonable com-
promise. The difference between different extreme
cases have been studied and roughly speaking can
be compensated for by a change in the background
potential E, by several eV. As we shall see in
Sec. III there are other uncertainties in the choice
of E, of the same order of magnitude.

Figure 5 shows the central atom phase shift for
l=1 for a variety of atoms. We immediately see
that it is a much stronger function of k and again
vary systematically for increasing Z. In particular
the potential is more attractive for increasing Z
and we expect on general grounds that the phase
shift should increase as is indeed the case.

Z
O
K

-IO

III. APPLICATION TO EXAFS IN SIMPLE MOLECULES -l2

4=2~~+ 8 (3.1)

as a function of k. A quadratic k dependence of

Recently Citrin, Eisenberger, and Kincaid"
have studied EXAFS from a number of simple
molecules. Since a single distance is invoj. ved in
these cases the EXAFS is approximately sinus-
oidal. By a least-squares fitting procedure these
authors have been able to extract the phase shift

4 5 6
k (ATOMIC UNITS )

FIG. 6. Companson of the total phase shaft p vs k
for a number of atomic pairs, with Qe-C denoting Ge
as a central atom and C the scatterer. For Br-Br the
Hartree- Fock theory and the Hartree- Fock-Slater
theory are also shown. Experimental results for Br-
Br, Ge-Ge, and Ge-C are from Ref. 11 and the Ge-Cl
result is from the analysis of GeC14 by B. M. Kincaid
(unpublished) .



15 NEW METHOD FOR THE CALCVLATION OF ATOMIC PHASE. ~ . 2869

Hence E, is chosen as 13 eV above the bound state.
Alternately one could observe that the binding
energy is well approximated by the ionization po-
tential of the Z+ 1 atom, which yields 14 eV for
Br." This choice of E, obviously ignored any
chemical bonding effect which is of the order of
2or 3eV.

In Fig. 5 we compare out calculated phase shifts
with the experimentally determined ones for a
number of molecules. By simply adding the cen-
tral atom phase shift and backscattering phase
shift we are in effect overlapping the muffin-tin
potentials. In reality the potential experienced by
the electron in between the two Br atoms in Br,
is undoubtedly not muffin-tin like. It is our hope
that by overlapping the muffin-tin potentials the
attractive potential in between the atoms is suffi-
ciently quell represented and we are in error by
not more than a few eV. There are four uncer-
tainties that we have discussed so far: (i) approx-
imation of the spherical wave by a plane wave,
(ii) approximatetreatmentof the relaxation of the
central atom, (iii) approximate treatment of the
molecular potential, (iv) the determination of the
vacuum level from the experimental data. All of
the above lead to larger errors in the phase shift
function Q at small k than at large k. W'e then ex-
pect that the calculated phase shifts should agree
with the measured ones at large k. Furthermore
it should be possible to remove most of the dis-
crepancy at lower k by adjusting E, by several
eV. From Fig. 6 it is apparent that the agreement
is excellent over a wide range of k for all of the
atom pairs. Part of the discrepancy in Br, at low
k, where the theoretical phase shift shows the
downturn discussed earlier, is probably due to the
assumed quadratic form of the experimentally
determined phase shift. In any event it is clear
from Eq. (3.3) and the uncertainties concerning
E, that discrepancies at small k are much less
serious than those at large k. If we turn the prob-
lem around and use the calculated phase shift to
determine the distances, an error of +0.02 radians
at k= 5 implies an error of +0.01 A in the distance
determination. It is therefore hopeful that if (i)
only data at large k are used, or (ii) Eo is allowed
to be adjustable, that we should be able to deter-
mine distances to +0.01 A.

In Fig. 6 we also show the theoretical phase
shifts of Br, if we use the Hartree-Fock theory
or the p' ' approximation for exchange and corre-
lation. For the latter we have used the U(r) com-
puted at low energy (E= 0.5 in this particular case)
for all values of k. The Hartree-Fock theory is
clearly in serious error. However, the error
decreases with increasing k and it is apparent that
a change of E, by 10 to 15 eV might bring the

Hartree-Fock theory in rough agreement with ex-
periment. On the other hand, the p' ' approxima-
tion differs from the measured ft) by roughly a
constant shift. Therefore a k-dependent E, shift
is required to bring this theory into agreement
with experiment. This is indeed the case for
LEED calculations, as we shall discuss in greater
detail in Sec. IV. Incidentally, Br has a large
number of loosely bound electrons (3d, 4s, 4p) and
the energy dependence of exchange and correlation
is particularly important in this case.

We next use the calculated amplitude and phase
curves to obtain a fit to the data and also to ex-
tract the distances. Figure 7(a) shows the com-
parison of theory and experiment for Br,. A
Debye-Wailer factor 2o'2= 0.0144 a.u. ' has been
used. ' Use of the complex phase shift already
included inelastic losses in the neighboring atom
and no addition damping factor y has been used.
We find that it is necessary to multiply the theory
by a factor of 0.62 to fit the overall magnitude.
This has two physical origins. The first is the
relaxation of the core hole which implies that only
a fraction of the photoelectrons has been excited
elastically. In the Appendix we estimate this frac-
tion to be 74%. Secondly, inelastic processes in
the central atom give rise to a complex 5,'. The
imaginary part of 5,'=0.144, 0.133, 0.099, 0.084
at k= 2, 4, 6, 8, respectively. The average value
of exp(- 2Im5,') = 0.75. We must recognize that
these two inelastic effects involve the same final
states, i.e. , a photoelectron plus an excited atom
or ion, and we must add the amplitudes and not
simply add the probabilities. Indeed the 74/0 es-
timate for the core hole relaxation contribution
is for asymptotically high-energy electrons, when
Im5,' becomes negligibly small.

Next we would like to extract the Br-Br distance
in Br, pretending that it is not known. One ap-
proach is to use r as an adjustable parameter and
try to obtain a best fit with emphasis on the large
k value where the theory should be most accurate
and also insensitive to changes in E,. Already
from the phase shift curves and the quality of the
fit shown in Fig. 7(a), particularly for k& 5, it is
clear that we will get the correct distance to bet-
ter than 0.01 A using the formula &r= &$/2k. A
more flexible method, however, is that of Fourier
transform because that can in principle also
handle systems with more than one distance. That
method has been widely used by Sayers, Stern,
and Lytle. ' What these authors do is to Fourier
transform the data multiplied by k or k' and pick
out peaks in the absolute magnitude of the trans-
form. The peak position is typically shifted from
the true distance by —0.2 to —0.3 A due to the
average slope of the P(k) curve. These shifts are
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FIG. 7. (a) Comparison
of theory (solid line) with
the normalized experimen-
tal EXAFS spectrum
(circles linked by solid
line) for Br&. Eo has been
chosen to be 13 eV above
the bound state. Theore-
tical curve stops at k =8.
Theory curve has been re-
duced by a factor of 0.62
to fit the overall magnitude.
(b) Fourier transform of
the EXAFS data as defined
by Eq. (3.4). Solid line is
the imaginary part and
dashed line the absolute
value of the transform.
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accuracy that can be achieved. Now that we have

a calculation of the phase shift curve it should be
possible to eliminate these difficulties. Speci-
fically we can remove the phase shift as well as
the amplitude dependence on k before we Fourier
transform, i.e. ,

dk 8-52k''
F(r) J(

e
e ie -&a)

2'

(3.4)

where y. „„(k(E,}) is the experimental data with

the background removed and g(k) is a window func-
tion which selects out a range of the data. The
window function can be a square window if care is
taken to choose the cutoffs to be where X, , is
small, or in our case we have chosen a smooth
window,

~{1—cos[v (k —k, )/8] j, k, &k&k, +D,

k, +D&k&k, -D,
k -D&k&k,

otherwise.

(3.5)

—cos2k, (r -r,} cos2k, (r -r, )
r —r 1 r —r j,

(3.7)

which vanishes at r=r, The pe. ak of ImF(r)
should coincide with the peak of the absolute value
of the Fourier transform ~F(r) ~. This latter con-
dition is a very sensitive check on whether the
calculated phase shifts in fact fits the data well.

In Fig. 7(b) we show ImF(r} together with ~F(r) ~.
We see that ImF(r) is fairly symmetric about its
peak which is close to the peak in ~F(r) ~. The
peak of ImF(r} is located at 4.34 a.u. while the
peak of ~F(r)

~
is about 4.27 a.u. Compared with

the known distance of 4.316+0.01 a.u. this is a
rather satisfactory result.

Our next step is to recognize that the particular
choice of E, to be 13 eV above the bound state is
nothing sacred, and that this choice is itself sub-
ject to uncertainties of several eV due to the ne-

We have chosen k, = 2 and k, = 8 for our range of
analysis and D=0.05. If X, , is we11 described
by Eq. (1.1), it is easy to show that

sin2k, (r -r, ) sin2k, (r -r, )
r —r1 r —r I

for a square window function ranging from k, to
k, . If k, » k, the first term dominates for r near
r, and it is clear that ImF(r) is a symmetric func-
tion peaked at r =r, . Similarly

gleet of the chemistry of the bonding. Furthermore
we have already discussed that the theory contains
uncertainties which are equivalent to uncertainties
in E,. It is then natural to allow Eo to be a free
parameter and demand that the peaks of ImF and

~F
~

coincide. This is done in Fig. 8. The fit
achieved in Fig. 8(a) is excellent. The peak posi-
tion of ImF(r) is 4.310 a.u.

The very good agreement of the determined dis-
tance with the known distance is at first surpris-
ing. The following argument may help convince
the rightfully skeptical reader that such accuracy
indeed is possible. Let us suppose that there exist
uncertainties in the calculated phase shift due to an
error in the potential of 10eV. 'The difference in
phase due to this error can be estimated by making a
change in E, of 10 eV which implies an uncertainty
in P(k = 8) of only 0.2 radians using Eq. (3.3}. Thus
if we use only the data at k= 8 to extract a dis-
tance, that distance is uncertain only to within
hr =0.2/2k=0. 012 a.u. or 0.006 A. Now the
Fourier-transform is an average over all k

values between 2 and 8 and it is evident from Fig.
5 that P(k} does not have the accuracy of 0.2 radi-
ans over that range. However, by allowing E, to
vary we can move P(k) around according to Eq.
(3.3) until a fit that is good to 0.02 radians on the
average is obtained. The important point is by
adjusting E, it is not possible to produce an arti-
ficially good fit with the wrong distance, provided
that the phase shift is accurate for large k. This
is because changes in E, produce a change in (t}

that decreases like 1/k according to Eq. (3.3) which
is exactly opposite to a shift in distance which
causes a change in Q that increases linearly with
k.

Figures 9(a) and (b) show the same analysis of
the GeC1, data allowing E, to vary. Electron dif-
fraction measurements" have obtained a distance
of 3.994~ 0.006 a.u. as well as a Debye-Wailer
factor of 2o'=0. 0145 a.u. ' In Fig. 9(a) this Debye-
Waller factor and an overall factor of 0.43 have
been used. The coincidence of the peak of ImF
and ~F

~

is achieved by the choice of E, to be 12
eV above the bound state. This is not too different
from the 10 eV suggested by Kincaid et al.' The
peaks of ImF and

~

F
~

are at 3.981 and 3.990 a.u. ,
respectively. Comparison with the distance deter-
mined by electron diffraction is again very satis-
factory.

IV. APPLICATION TO EXAFS IN CRYSTALS

We next investigate the application of the cal-
culated phase shifts to the analysis of EXAFS in
two crystals: germanium and copper. Good qual-
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ity data taken at the synchrotron at Stanford at
= 100'K for both systems have been made available
to us. Germanium is a particularly favorable
case as the diamond structure is relatively open
so that multiple scattering effects are minimized.
This is the case we shall examine first.

Figure 10(a) shows the theoretical spectrum
generated using Eq. (1.1) and the amplitude and
phase functions calculated as described earlier.
The known nearest-neighbor distance 4.631 a.u. is
used as an input. An imaginary self-energy
I'= 6 eV is assumed in between atomic sites, i.e. ,
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a damping factor of exp[- 2y(r, -r,}]is used,
where y ~ Im(k'+ 2fT }t~s = f'/k and the nearest-
neighbor distance r, has been subtracted from
the total traversed distance because damping by
the scattering atom and the central atom has been
included in the amplitude factor A(k} and the

previously discussed overall factor which we now
choose to be 0.7. A Debye-Wailer factor of 2o'
= 0.022 a.u. ' has been used for all the shells except
the first shell, for which 2p'= 0.011 has been used.
It is known that in a covalent material like ger-
manium the nearest neighbor is directly bonded

R=- 3.994 a.u.

15 2 25
I

3 3.5
I I I I

4 45 5 55
k (atomic units)

6 5
I

75

FIG. 9. (a)-(b) Com-
parison of theory and ex-
periment for GeC14. In
Fig. 9(a) the theory has
been reduced by a factor
of 0.43 to fit the overall
magnitude. Eo has been
chosen to be 12 eV above
the bound state to make
ImF and (F) match, as
shown in Fig. 9(b).

tQ/ ~ ' ' l
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FIG. 10. (a)-(b) Com-
parison of experiment for
germanium crystal {cir-
cles joined by solid line)
with theory (solid line)
calculated using fI5 =26&+ g.
Ep is chosen to be 5 eV
above the peak in the ab-
sorption edge to make ImF
and ~P~ match for the first
shell as shown in Fig.
10(b). Note that the other
shells are out of phase.
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resulting in strong correlation and a reduced
Debye-Wailer factor. Efforts to extract these
shell-dependent Debye-Wailer factors have been
made by Sayers" by studying the temperature de-
pendence of EXAFS. For our present purpose we
simply chose these values of o' because they give
reasonable agreement with the data. No attempts

have been made to best fit the value of o2 or I' and
hence these parameters should not be viewed as
determined.

In Fig. 10 E, has been varied until the ImF and
IE~ peaks for the first shell match up. The best
E, is found to be 5 eV above the peak in the ab-
sorption edge. The distance corresponding to the



peak in ImE f, fo
which is in exce a

~u,
in greement w'th t

th oth h 11

is complet 1

elsare ins
o p nces

A for the
c y is mmediatel

' e potential by t e

unacceptable for the
structurere calculation

emanded in

)

in band-

level by m
e muffin-' -tinzeroisb

is adequate for our

th 10

, f„d
neighb

o change E
imation and

ors further aw
' ra

is missin
r away this attra

tl dd't'~

ctive ot

e have ov ercome t '
u y

in o account

h

al is const
tth '5 '

t
h

'
1 average of the ov

then
it

n rom the avera eeraged charge d
en ial and

ensit .
th d

constitute
ge electro

th verlappin ' - inp g muffin-tin

e relative to the

the pote t' 1

e smal
at exists

h
Th g' yp

en into

1

o g
g g

ocl f 1
ea part is's shown i F'

Th xtractedpo
ments i N also

ith '

e theory. It '

th t lf- o
e muffin-t'

is ency calcul
—m zero upw d

.u. . ' Th
wards b

th

Th
ble agreem

ute magnitud

t fth
Po ort-range

o ential as welle . How-

2875

-O. I

-0.2 "

K
-0.3-

04

-0.4 a(
CP

Q -05-
O
I

g -06-

Ni FROM OKNUTH
MARCUS AHO JEPSEN

-0.7

-0.8 I

10 12

(ATOMIC UNITITS, 2Ry)

I4 I6 18

F/G. 11. ThThe muffin-tin
f

MT

~ 7 0

rmanium. Dar . shed line

ever , we are cont
tion a bf h Il

n ent to use
w ch mpl'es th

counted twi
of the po-

is by allowin Eis b g to dj t
s c is Figs.

e peak at the ab

where
o ed in k' space

k' = [k' —2VMr(k)j' =(0 —2[E + V

gain

—2 Eo+ VMr(k)]}'~2.

A w e perform a
ink' s

a Fourier tra
irs multiplying th at data b

tf' r shell, the p

s relativel
a properl a '

t
y

sca ng
remains w th'

bs before and the

thf th
third

erence of th1 th d'ff p

ea y goin
ion is ess ' e

g to apply EXAFS to unknow

The muffin-tin

F nown sys-

ic can be further
t'nti 1

a le results

potential
asa dabett

However
er central-

, it has th
as to be performed

shown in Fi

h

igs. 3 and 5
functionss, as

e . This is the

NEW ME TH «R THE

r

CALCULAT

the first shell

ION OF ATOMIC P

llent
el, is 4.619 a

C PHASE. . .



2S76 A. LEE AND G. BF gg

nt R= 4.631 a.u.

l I I

15 2 Z5 3 35 4 45 5 55 6 65
k (atomic units)

I I I I I

7 75 8 85 9 95

FIG. 12. (a) Compari-
son of the EXAFS spec-
trum for Ge with theory
calculated using the non-

overlapping muffin-tin po-
tential. The X axis is k'
is given by Eq. (4.1). (b)
Shows the Fourier trans-
form.
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motivation behind the second method that we try.
e i ea is simply to construct a phase shift f

tion frorom the function P obtained from Fig. 3,
s unc-

which has the zero of energy not at the vacuum
but at the muffin-tin zero. Furthermore since we
know that the fa e unction Q(k) works for nearest

neighbors we shall demand th t th'a i.s property be
preserved by the new phase shift function Q. It is
easy to see that Q is simply given by

$(k') = Q(k) —2r, (k' —k),

when k' is given by Eq. (4.1). In Fig. 13, $(k) is
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FIG. 13. Comparison of the phase shift functions Lt),

/MT, and Lt) for germanium.

compared with P(k) and P„r(k). It is clear that
Q(k) is very close to P„T. We now multiply
)(„z(k') by e '~'~» as before and Fourier transform
in k' space, again allowing E, to vary until the
first shell has the proper phase behavior. The
result is shown in Fig. 14 and is very satisfactory.
The results of our analysis for germanium are
summarized in Table I.

We next turn our attention to copper. Multiple
scattering is a much more serious problem for a
close-packed metal than for germanium, but as

we argued before, ' that should have no effect on

the first shell. The most spectacular mult;iple-
scattering effect shows up as the shadowing of the
fourth shell by the first shell and this has been
analyzed previously. '" The copper data shown in

Fig. 15(a) are compared with the theory using the
phase shift P as discussed earlier and the param-
eters 2/=0. 022 and I'= 6 eV. The major features
of the spectrum are reproduced by the agreement
is poor compared with the case for germanium.
The reasons are apparent from the Fourier trans-
form shown in Fig. 15(b). The first shell is still
satisfactory and peaks at 4.795 a.u. which is 0.025
a.u. shorter than the known distance. " The second
shell in copper is weak and the phase distorted,
probably by some multiple-scattering path. The
third shell is in reasonable shape, with ImF and

~F
~

peaking at 8.30 and 8.48 a.u. , respectively.
The difference between these two numbers indi-
cates that our confidence level cannot be better
than 0.2 a.u. in this case. This result is to be
compared with the known distance of 8.35 a.u.
The fifth shell is also within I/o of the known dis-
tance. The fourth shell shows the shadowing effect
noted earlier, namely, its magnitude is larger
than the third shell even though it contains 12
atoms, compared with the third shell's 24 atoms.
Furthermore IrnF shows severe distortion. The
exact amount of the phase shift is difficult to as-

TABLE I. Distances determined by Fourier transform of EXAFS.

System {eV) Known distance {a.u. )

Br2
Ge C14

Ge
1st shell c

1st shell d

2nd shell'
2nd shell d

3rd shell
3rd shell
4th shell
4th shell
5th shell
5th shell
Cu
1st shell
2nd shell"
3rd shell
4th shell
5th shell

7'
12

2b
7b

3b

4.308
3.990

4.605
4.632
7.574
7.556
8.866
8.869

10.064
10.087
11.762
11.601

4.794
7.077'
8.477
9.452

10.648

4.310
3.981

4.626
4.628
7.499
7.524
8.754
8.785
9.944
9.956

11 593
11.635

4.795
~ ~ ~

8.303
~ o ~

10.730

4.316+0.01
3,994 + 0.006

4.631

7.563

8.868

10.695

11.655

4.820
6.817
8.349
9.641

10.779

~Measured from the bound state.
Measured from the peak at the absorption edge.
Phase shift determined using muffin-tin potential.

~Phase shift /using Eq. {4.2) is used.
'Peak is too distorted to make this distance determination meaningful.
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FIG. 14. (a) Cornpari-
son of the EXAFS spec-
trum for Ge with theory
calculated using P as
given by Eq. (4.2). (b)
Shows the Fourier trans-
form.
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certain and we can only state that the theoretical
result" of an additional &r phase shift is not in-
consistent with the experimental result.

We have also performed a nonoverlapping muffin-
tin calculation for copper. The result is not too
different from that using $. It is amusing to note

that the real part of the phase shifts 5, for the
energy-gy-dependent muffin-tin potential that we

t dgenerate is quite close to the phase shift genera e
using an energy-independent Xn-type muffin poten-
tial of the type used in LEED analysis. Apparently
the use of an energy-dependent inner potential
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determined empirically as shown in Fig. 11 takes
care of a good deal of the switching off of the ex-
change and correlation potential at energies below
200 eV. This explains why LEED calculations are
getting good agreement for metals. It will be of
great interest to use the complex phase shifts

generated using the present scheme for LEED
analysis, the advantages being (i} the energy de-
pendence of the inner potential as well as the
damping coefficient are calculated instead of being
adjusted by hand, and (ii) even though the real
part of the phase shifts is similar, the use of

R= 4.820 o.u

5 6

k (atomic units)
10

FIG. 15. (a) Compari-
son of the EXAFS spec-
trum for copper with the-
ory using p as given by
Eq. (4.2). (b) Shows the
Fourier trans form.
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FIG. 16. The scattering amplitude ~f(e) ~
vs 8 for the

real and complex phase shift of an electron momentum
of k =3 a.u.

complex phase shifts means that the scattering
amplitude f (8) can be quite different. In particu-
lar, in the forward direction f (8) is enhanced by
inelastic processes (a consequence of the optical
theorem} whereas the use of real phase shift plus
damping reduces f (8) at all angles. This is illus-
trated in Fig. 16. Unlike EXAFS, which requires
only f (s}, LEED will provide a test for the entire
f(8).

V. CONCLUSION

We have calculated the amplitude and phase shift
that enters into the EXAFS expression using a
relatively straightforward procedure which we
feel contains the essential physics of the problem.
These phase shifts are compared with those ex-
tracted from experiments and generally the agree-
ment is as good as that among phase shifts of the
same atom pairs extracted from experiments on
different molecules. We also use these phase
shifts to predict distances in both simple molecu-
lar systems and crystalline solids. We emphasize
that the choice of E, is intimately related to the
phase-shift curves. We then recommend a speci-
fic procedure whereby E, can be chosen and a dis-
tance determined. The results of the distance
determination are summarized in Table I. We
see that in all cases the nearest-neighbor dis-
tances are in excellent agreement. The worst
discrepancy is 0.014 A in the case of copper. For
Ge multiple scattering is less important and we
obtain distances to within 1/0 for four of the five
shells. In copper multiple-scattering effects are
much more serious and we can only obtain the
distance to the third shell and the fifth shell with
a confidence level of about 1'Po. An objection that

has often been raised concerning previous use of
Fourier transform in the analysis of crystalline
data is that the identification of a particular peak
as a shell distance appears rather subjective. Our
criterion that the peaks of ImF and ~F

~

have tO

line up can be used to eliminate spurious peaks
as well as provide information on the confidence
level of a particular identification. It is with
this criterion that we reject the second and fourth
shell in copper and the fourth shell in germanium
as being contaminated by background noise or
multiple-scattering effects. Such information is
not available if one studies only ~F(r)

~

as is done
traditionally. We also emphasize that our method
of distance determination relies on the knowledge
of the absolute value of the phase Q(k) for large
k and not on the average slope of the phase func-
tion, the latter being much more sensitive to un-
certainties in the zero of energy E,.

It remains to discuss the errors that should be
assigned to the distances determined. There are
two sources of error. The first is the intrinsic
accuracy of the calculated phase-shift functions
themselves. We have argued that this error is
partly offset by allowing E, to vary. Clearly the
only way to assess this error is to compare with
experiments on as large a variety of systems as
possible. In Table II we summarize the results for all
the systems we have studied to date using the present
method. The data have been made available to us
by our colleagues at Bell Laboratories and some
of the data have not been published. We see that
for scattering atoms that vary from carbon to
bromine, the distance determination is in error
by less than 0.02 A in all cases. The second
source of error is more accurately described as
an assessment of the level confidence, i.e., given
that the phase shift is accurate, what is the range
of distances that gives a satisfactory fit to the
experiment? This question we can answer for
simple molecules as the quality of the fit shown
in Figs. 8(a) and 9(a) allows us to state that a
change in the distance by 0.01 A will lead to in-
ferior comparison with experiments. For the
shells beyond the first one in crystals, we also
have an indication in the difference in the peak
position in ImF and

~

F
~
. However, for more com-

plicated systems like copper, for instance, the
quality of the agreement in the experimental and
theoretical spectrum shown in Fig. 15(a) is poor
due to multiple-scattering effects. In this case
we are unable to assign an error bar. More gen-
erally, in complex systems it is difficult to ob-
tain a fit to the spectra without varying a large
number of parameters such as the Debye-Wailer
factor, etc. This makes the assignment of error
bars a difficult problem. Recently Brian Kincaid
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TABLE II. Bond lengths determined by EXAFS.

Bond Compound
Predicted

(A} Known Difference

Br-Br
Ge-Ge
Cu-Cu
Ge-Cl
Rh-Cl
Fe-S

Rh-P
Br-0

Ge-0
Fe-C

Br2
Ge
Cu
GeCl4
RhC13
rubredoxin ~

model
Rh(DPPE), b

Br03
solution

Ge02
Fe(CSH5)2

2.279
2.449
2.536
2.108
2.337
2.343

2.288
1.66

1.727
2.037

2.283 + 0.005
2.450
2.550
2.113+ 0.003

?
2.356

2.305

1.739
2.045

-0.004
—0.001
-0.014
-0.005

-0.012

-0.017

-0.012
-0.008

Fe(S2 —o —xyl )2 . DP PF„diphenylphosphinoethane.

has used a Fourier-filtering technique to extract
a phase-shift curve from isolated shells and has
been able to assign error bars based on a least-
squares fitting technique.

In summary, we have shown that the calculated
phase shifts can be used to obtain distances to the
same accuracy as the use of empirically deter-
mined phase shifts. " Use of theoretical phase
shifts has the obvious advantage that the central
atom part and the scattering part are calculated
separately and can be put together in any combina-
tion, whereas empirical phase shifts must be
determined separately for every atom pair. The
intrinsic uncertainty is on the 0.01 A level for
nearest-neighbor-distance determination. Clearly
we need to accumulate more experience in the
analysis of more complicated systems, but it is
our belief that the accurate determination of ab-
solute distances in unknown systems should now
be possible.
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APPENDIX

When a photon is absorbed by an atom, a core
hole is created to which the other electrons in the
atom will respond. In this Appendix we shall dis-
cuss the implications of the core hole relaxation
processes for EXAFS. In particular we shall dis-
cuss two aspects of the problem: (i) the effect of
shake-up and shake-off processes on the absolute

magnitude of EXAFS, and (ii) the proper potential
that we should use for the calculation of the cen-
tral-atom phase shift.

The problem of core relaxation and the associa-
ted shake-off and shake-up processes have been
studied extensively in photoemission. A detailed
analysis has been made by Meldner and Perez29
for photoemission on Ne. The energy distribution
of the photoelectron shows a main peak correspon-
ding to leaving the atom in its completely relaxed
ground state. The relative weight of that peak is
74%%uo. At lower photoelectron energy there are
shake-up peaks corresponding to leaving the Ne'
ion in an excited state. However, these peaks
carry a combined weight of only about 6%%uo. The
rest of the weight is distributed in a broad con-
tinuum that extends from 40 to over 140 eV
below the main peak. These are shake-off pro-
cesses where an electron is ejected into the can-
tinuum. The physical picture is that the ejection
of the photoelectron suddenly creates an additional
potential to which the rest of the electrons have to
adjust. The wave functions |t),- of the atom then has
components corresponding to excited states P of
the ions. If the potential change takes place in
time 7', then the sudden approximation is valid
provided that the wave function is not changed
during v', i.e.,

(Ai)

where e, and e are the energy of the states P,. and
Within the sudden approximation the proba-

bility of finding an electron originally in state g,. to
be in the state P is given by
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Pq = Q~f] d (A2)

Calculations based on this formula have been car-
ried out by Carlson and Krause" and are in excel-
lent agreement with experiment. Carlson and
Krause also examined the relation of the time
scale w to the transit time of the photoelectron out
of the atom. They have performed experiments
with a variety of x-ray sources, thereby varying
the photoelectron velocity. They have found that
the shake-off probability initially increases with
increasing photoelectron energy and saturates for
photoelectron energy greater than 150 eV. More
recent work and references can be found in
Schmidt et al. '

The above picture suggests that the main feature
in the EXAFS spectrum arises only from the frac-
tion of the electrons ejected at the main peak.
Electrons ejected with shake-up give rise to
EXAFS also, but these will be shifted downward
in energy by an amount equal to the excitation
energy of the ion which is typically 10 to 30 eV.
The shake-up peaks for Ne have a combined
strength of only 6%. Such a small shifted spec-
trum will be difficult to detect experimentally.
The shake-off peak contains more weight but it is
distributed over such a wide energy range (of
order 100 eV) that any EXAFS feature will be
smeared out. We conclude on the basis of these
considerations that calculated EXAFS spectra
should be multiplied by the relative weight in the
main peak in photoemission for energy greater
than 150 eV above threshold before comparison
is made with experiment.

The next question is how this relative weight
can be determined experimentally. To obtain this
information from photoemission requires detailed
analysis as performed by Meldner and Perez for
neon. The weight of the shake-off peak is too
broad to be measured directly and has been mea-
sured by detecting the distribtuion of the number
of charges on the ions, "'"making use of the fact
that shake-off processes leave the ions in a multi-
ply charged state. This method is limited to the
rare gases and has been performed only for He,
Ne, and Ar. Another method is to study electron
emission in P decay. It has long been recognized
that an analogous physical process operates for
photoemission and p decay where the nuclear
charge is suddenly increased by one. ' Shake-off
processes will leave the ions with a charge greater
than or equal to two. Most of the shake-up pro-
cesses will leave the iona with charge plus one,
except the few processes which leave behind a
deep vacancy so that further Auger processes are
energetically possible. A measurement of the

fraction of ions with charge plus one thus provides
information on the fractional weight of the main
peak and the shake-up lines. Such data are avail-
able for Ne, Ar, Kr, and Xe." The fraction of
plus one ion is 79.1, 82, 79.2, and 80%%uo, respec-
tively. This fraction is relatively insensitive to
atomic number, at least for rare-gas atoms.
From these numbers we subtract approximately
6% to account for the shake-up processes, a num-
ber obtained for neon. In the solid most of the
shake-up peaks are replaced by collective plasmon
processes and this estimate of 6%%uo is of course only
approximate. We thus conclude that the fractional
weight of the main peak is approximately 74%%u().

The calculated EXAFS spectra should be reduced
by this amount for energy = 150 eV above threshold
before comparison is made with experiment.

We next consider the problem of the proper
choice of the potential for the central atom. This
potential is a time-dependent one as the wave
function evolves from a completely unrelaxed state
immediately after the excitation (the sudden ap-
proximation) to the completely relaxed state a
long time afterward. The relaxation rate of each
level is roughly given by its binding energy. To
compare with these rates we need the time scale
at which the central-atom potential enters into
the EXAFS formula. We shall argue that this
time scale is given by the transit time for the
photoelectron to travel to the neighbor and back
to the central atom. To see this we review the
d erivation of the EXAFS formula from the point
of view of angular resolved photoemission. ' The
probability of emission into a given direction k
is given by

P, (k)= ~~, (k)~', (A3)

where

(A4)

This equation describes the interference of the
direct beam with the beamthat is first directed
toward the neighbor located at r, and then scat-
tered in the 0 direction, the angle 6) being that
between k and r",. It can be shown' that integration
of P,(k) over all solid angles gives the EXAFS
formula with the exception that the central atom

I
term e'"& is missing. This is because the direct
beam and the scattered beam are phase shifted
by the same amount and the central atom phase
shift must cancel to this order of approximation.
It turns out that it is necessary to include the
second-order process whereby the electron is
backscattered by the neighbor at r, toward the
origin and is then scattered into the k direction
by the central atom
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~ ~ r eallngf (&)f (& 8)
2 2 (As)

It can be shown' that the integration of this term
over all 5 supplies precisely the missing central-
atom phase-shift term in the EXAFS formula.
Thus even though the photoelectron eventually
propagates to infinity, it is physically correct
to think of it as going out to the neighbor and is
scattered back to the origin as far as the e'~&

term is concerned. Thus to evaluate this term
we should use the central-atom potential at a
time scale equal to the transit time

r '= v/2r, = k/2mr„ (A6)

where v is the photoelectron velocity. In atomic
units, r= 4 a.u. and for 0= 8 a.u. we have v ' = 1
a.u. or 27.2 eV. Thus it is safe to assume that all

the states bound more deeply than this energy
have relaxed. The proper treatment of the valence
electrons and the conduction-electron screening
in the case of metals is more problematic. How-
ever, we shall argue that the errors made are of
the same order as the change in the potential due
to the chemical environment and we shall roughly
account for all these effects by allowing E, to be
an adjustable parameter.

Finally we point out that it is easy to construct
a potential appropriate to a completely relaxed
state in the presence of a core hole. %'e simply
use the wave function for the next atom in the
periodic table and remove one valence electron.
The Coulomb potential due to the extra nuclear
charge is canceled by one of the two 1s electrons
so that the potential seen by the other electrons
is the same as that in the presence of a core hole.
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