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We present the results of extensive numerical experiments designed to test the ability of the localMensity

theory of electronic exchange and correlation to describe binding in both simple and transition metals.

Predicted nuclear separations, cohesive energies, and bulk moduli for 26 third- and fourth-row metals exhibit

remarkable agreement with experiment. The only input to these calculations is the atomic number.

Owing to its simplicity and universal applicabil-
ity, the local-density approximation" to the den-
sity-functional theory of electronic exchange
and correlation is being applied widely in diverse
problems of electronic structure. The theory
requires the repeated solution of systems of par-
tial differential equations, a very difficult sub-
problem unless the system in question possesses
great symmetry. As a result, the content of the
theory has been accurately exhibited only for a
few atoms, ' very small mol. ecules, ' and a few
isolated solids. ' The motivation for the present
work is that, while chemical. trends with atomic
number are often even more important than re-
sults for specific systems, no quantitative study
of how well local-density theory describes such
trends has previously been made. Here, we com-
pare with experiment the equilibrium nucl. ear
separations, the cohesive energies and the bulk
moduli implied by the theory for the metals in
the third and fourth rows of the Periodic Tabl. e.
The varying degree of agreement we obtain con-
veys, better than any other way we are aware
of, the confidence we should place in local. -density
theory as we proceed to appl. ieations to more
complex systems.

As atoms condense to form a solid or liquid
several effects occur. ' The discrete levels of
the atom (i) broaden into bands, (ii) shift in ener-
gy, (iii) interact (hybridize), and as a result (iv)
change their occupation. Finally, (v) the less
restricted electronic motion in the condensed
phase changes the way in which the motion of the
different electrons is correlated. Most previous
studies of metallic binding focus on the subset
of these effects which appears to dominate the
trend with atomic number in a particular group
of metals. Thus, for example, several calcula-
tions' have shown that the kinetic energy saved
by the partial occupation of the broadened d level
[effect (i)] is primarily responsible for the large
and roughly parabolic (in atomic number) cohesive
energy in the transition series. Similarly, in
the alkalis effects (ii)-(iv) are not important and

the quantum-defect method' together with an elec-
tron-gas screening theory provides an accurate
semiempirical description of the binding. Pseudo-
potential methods permit the extension of this
type of analysis to the polyvalent simple metals. "
Such calculations, by dealing with these effects
separately, ' provide valuable insight into their
relative importance.

Our work provides a different kind of informa-
tion. We have treated effects (i)-(iv) collectively.
But, by means of elaborate numerical calculations,
we have treated these effects essential. ly without
approximation. " The comparison of our results
with experiment, therefore, focuses on our treat-
ment of exchange and correlation [effect (v)]. For
the latter we have used the local-density theory
of Kohn and Sham' and Hedin and Lundqvist' for
all the electrons —core, valence, s, 4, atomic,
and metallic. "(For the magnetic atoms we used
the local-spin-density formalism, of von Bar th
and Hedin". ) This treatment has the advantage
over alternatives such as Hartree-Fock and its
renormalized-atom modification, '4 of being ap-
plicable in a calculational. ly straightforward way
to the vast majority of atomic, molecular, and
condensed systems. Our systematic application
of local-density theory to the third- and fourth-
row metals exhibits the important trends both
within and between the rows. (Similar calculations
for isolated materials using both local density the-
ory' and the Xa formalism" "have been reported. )
Fur thermore, since we compute both exclusively
solid proper ties (nuclear separation and bulk modu-
lus) and the cohesive energy, which compares the
solid with the atom, we can shed light on the
relative accuracy of the theory in the two cases.

Our results consist of three aspects of the bind-
ing curve (the total energy of the solid, minus
that of the atom, as a function of nuclear separa-
tion): the position and depth of the minimum and
the curvature near the minimum. The top row
of Fig. 1 shows the variation of the minimum po-
sition (equilibrium nuclear separation) with atomic
number. Not only is the trend with atomic num-
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FIG. i. Cohesive properties versus atomic number. Top row —equilibrium nuclear separation in terms of Wigner-
Seitz radius. Middle row —cohesive energy in Ry per atom. Bottom row —bulk modulus in kilobars. The atomic num-
ber increases in steps of one from i9 to 3i in the left-hand column and from 37 to 49 in the right-hand column. Mea
sured values (low temperature where available) are indicated by crosses (Ref. 19).

ber correctly described, but the absolute nuclear
separations are predicted to within a few percent.
The middle row of Fig. 1 compares the calculated
depth of the minimum (cohesive energy) with
measured values. The trend with atomic number
is once again reproduced showing, in particular,
the rapid increase in cohesion in both transition
series as the bonding d states are occupied.

The fact that our atomic calculations allow for
spin polarization"' permits us to make two in-
teresting inferences. First, it is the gain in
atomic exchange energy resulting from the Hund's
rule splitting of the d level which is responsible

for the loss in cohesion near the center of both
transition series. " Second, because our atomic
calculations assume the electron density to be
spherically symmetric, they are particularly
appropriate to atoms such as K and Mn, where
individual members of the ground-state multiplet
(the M, = —,

' member of the 'S muitipiet in Mn, e.g.}
can be described by a single product wave function
corresponding to a spherically symmetric electron
density. " The fact that the cohesive energy error
for Mn is not smaller than those for Cr, Fe, Co,
and Ni, where our calculations provide only an
average over several. multiplet energies, suggests,
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therefore that these errors stem from correlations
involving configuration changes (spin flip, e.g. )

rather than the angular correlations responsible
for multiplet structure. Note that the inclusion
of spin polarization in the solid cal.culation would

only lower the solid total energy, thereby in-
creasing the discrepancies. The sharp increase in

cohesion of Ga over Zn and In over Cd is also
an atomic effect, stemming in this case from the

required occupation of the relatively high lying

3P level in Ga (4P in In).
The quantitative agreement between the mea-

sured and calculated cohesive energies should
not be interpreted as the accuracy with which

total energies, as opposed to total energy dif-
ferences, can be calculated. We use the identical
theory of exchange and correlation for both the
atom and the solid thereby profiting from the
cancellation of errors of several rydbergs. ' (The
fractional error is very small; the total energies
for the elements considered here range from
1200 to 12000 Ry. )

The bottom row of Fig. 1 compares the cal-
culated curvature of the binding curve (bulk modu-

lus) with measured values. With the exception
of four 3d transition elements possessing strong

magnetic effects, the agreement is truly remark-
able. There is in fact considerable change (with

nuclear separation) in the curvature of the binding

curve for these elements; the curvature at the

measured separation is much closer to the ex-
perimental value. Spin-polar iz ed cal.culations for
Fe and Ni (see Ref. 23) confirm the sensitivity
of the nuclear separation and bulk modulus to
magnetic ordering.

The principal implication of our work, par-
ticularly when taken together with similar cal-
culations for small molecules' and rare-gas sol-
ids, ""is that the local-density approximation
to exchange and correlation effects accurately
describes binding in a wide variety of systems,
providing the required one-electron analysis is
carefully done. This should prove to be of sub-
stantial practical importance in research areas,
such as surface and molecular physics, where
nuclear separations, bond energies, and vibra-
tional frequencies are often difficult to determine.
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