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A mean-field model of a one-dimensional conductor is shown in the presence of a fixed total current to

exhibit a dynamic chargeMensity-wave (CD%) solution which can propagate without Landau damping at a

temperature higher than T„ the transition temperature for the static instability. However, the free energy of
the moving CDW state becomes less than that of the undistorted state with the same current at a temperature

only below T,. The phase transition at this lower temperature is first-order. There exists a critical current

above which the free energy of the CD%' state is always higher than that of the undistorted state.

I. INTRODUCTION

It has been well established that, within mean-
field theory, one-dimensional conductors exhibit
a second-order phase transition (the Peierls in-
stability) characterised by a lattice distortion of
wave vector 2k~. Frdhlich' investigated the prop-
erties of the coupled electron-phonon system at
zero temperature and showed that, in addition
to the static distortion, there exist solutions to
the equations of. motion which represent moving
waves. In these moving charge-density waves
(CDW's) the motion of each ion is oscillation
about its average position, but the electrons are
free to move through the lattice in such a way
that the average vel.ocity of the electrons is equal
to that of the CD%. Thus the moving CD% states
are current carrying. Fr5hlich's model was ex-
tended to finite temperature by Kuper' who cal-
culated the critical temperature T,(0) of the static
CD% instability and demonstrated that the tran-
sition was second order. More recently Rice
and Strassler' showed that in a one-dimensional
conductor the giant Kohn anomaly can be the pre-
cursor of the static CDW state. The phase tran-
sition to the current-carrying CD% state has been
discussed by Hopfield' who found that the critical
temperature of the moving CD% state is higher
than that of the static CD%.

The purpose of this pa,per is to demonstrate
that the temperature T* at which the dynamical
equations of motion first allow a CD% solution
is higher for a moving wave than for a static wave.
T*(e) is the temperature at which a sinusoidal
lattice distortion of wave vector 2k~ and frequency
co can first propagate with no Landau damping.
However, the free energy of the moving CDW
state first becomes less than that of the undis-
torted state (with the same total current) at a
temperature lower than T,(0). Thus the critical
temperature for the CD% state with frequency

(d is actually less than that for the static wave,
that is, T,(|d)& T,(0) for cvx0. At T,(&u) the CDW
comes in with finite amplitude and the transition
is first order. This is contrary to the result of
Hopfield' who found that at T*(u&) the free energy
of the moving CD% becomes less than that of the
undistorted state with the same current. The
reason for this difference is discussed in the
Appendix.

II. STATIC PEIERLS TRANSITION

As a simple model for a one-dimensional. sys-
tem, consider a linear chain with n atoms per
unit l.ength. Take the unperturbed electronic
states to be free-particle states. The motion of
the ions can be treated classically. Let the dis-
placement of the ions from their equilibrium po-
sitions (in the undistorted phase) be given by
u =A sinqx where q =2k~. The interaction of the
electrons with the lattice displacements of wave
vector 2k~ is given by the interaction Hamiltonian

8u'H. -=2C —= 2G cosqx

where C is a constant and G =CAq. The inter-
action of electrons with phonons of other fre-
quencies is neg'lected as are electron-electron
interactions.

The magnitude of the CD%V energy gap can be
calculated self-consistently as done by Fr5hlich. '
A value is assumed for 6, and the deviation from
uniform electron density caused by the periodic
potential H. t is calculated. Owing to this non-
uniform electron density there is a force on the
ions through H-, . Dynamical. self-consistency is
obtained by adjusting the parameter G so that the
motion of the ions satisfies Newton's second law.

In order to calculate the electron probability
density, the eigenfunctions and energy spectrum
of the electron Schrodinger equation must be found.
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4» = cos8e""—since'~» '"
+,=sin8e""+cos8e'~» '~"

t

(3)

(4)

for states below and above the gap, respectively.
The coefficients obey the relation

sin28=2G/(E+ -E ) —= 2G/W.

Although compact solutions to this equation cannot
be written down, the following artifice provides
sufficient accuracy. The perturbation (1) is dealt
with in two parts, one which leads to an energy
gap at k = —k~ and the other which l.eads to the
gap at k= kz. Each part is treated by degenerate
perturbation theory because the wave functions
are significantly altered near the gaps. Away
from the gaps these wave functions reduce to those
found using nondegenerate perturbation theory.
The simplifying feature of this method is that the
effects of both parts on the electron probability
density are additive.

For the discussion take the part of the periodic
potential which causes the unperturbed state k
to be mixed with the state k —q producing the gap
at k = kz. Treating this mixing by degenerate
perturbation theory leads to the energy eigenval-
ues for states above and below the gap.

E,(k) = —,'(e, + e, ,) ~ —,
' [(e,—e~,)'+ 4G'] &', (2)

where e, = f'fk/ 2m. The corresponding eigen-
functions are

exactly balances the ion-ion repulsion so that
the displacements of the ions are maintained.

At zero temperature the ampl. itude 4N of the
nonuniform part of the electron probability den-
sity can be evaluated analytically. Only states
below the gap are filled. The sum over k can be
replaced by an integral,

(10)

where a factor of 4 has been included to account
for spin degeneracy and for the contribution of
both parts of the perturbation. The integral can
be evaluated and with Eq. (9) gives G„ the zero-
temperature energy gap for the static CD%:

G, = 4&„[sinh(k 'M~20/8C'm)] ',

where ez =tf''k'„/2m. This is equivalent to the
result of Fr5hlich. '

For finite temperatures the states above the gap
will be occupied and 4N will decrease with in-
creasing temperature. The expressions (9) and
(10) can be evaLuated to find the critical temper
ature at which the force on the ions caused by the
electrons cannot balance the ion-ion repulsion
even for arbitrarily smal. l values of Q. To cal-
culate 4N it is sufficient to use the unperturbed
electron energies in the Fermi-Dirac occupation
probability. In the reduced zone scheme this
becomes

Note that in this reduced zone scheme —k~ + k + k~.
The linear deviation from uniform probability

density for the state 4» is given by where

—(f' -f:)-1, , dk
W + 2m' (12)

I qa I' —1=—(2G/W) cosqx. (6) f' =[exp[(e~ —ez)/ksT]+1) '

The corresponding deviation for 4'» is opposite
in sign.

The total change in electron density bNcosqx
is found by summing over all states k weighted by
the appropriate Fermi-Dirac occupation prob-
abil. ity. Owing to this nonuniform electron dis-
tribution there is a force on the iona through H. ,
given by

E„,= —(2G/An)&Nstnqx

Dynamical self-consistency is obtained by re-
quiring that the ionic motion obeys Newton's sec-
ond law. For ions with mass M and unperturbed
2k~ phonon frequency ~„ this requirement be-
comes

and

f', =[exp[(e~, —ez)/ks T) + 1j
This expression can be evaluated numerically
with Eq. (9) and gives the critical temperature
for the static CD%,

ks T,(0) =—4.56ez exp(-O'MuP/8C'm),

which is conveniently written

ksTc =0 5VGO

as found by Kuper. '

III. DYNAMIC PEIERLS TRANSITION

(14)

Mu = Mou+ I'

For a static wave this reduces to

MuP, + (2G/A'n)n. N = 0.

(8)

(9)

The attractive force of the electrons on the ions

For the case of the moving CD%, take the ion
displacements to be u =A sin(qx —~t) for a wave
moving in the positive x direction. Consider the
case where the electrons are constrained to have
a net drift velocity the same as the veLocity &u/q

of the CD%. The effect of the perturbation on
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the electron density can be found in a way sim-
ilar to that above except that now it is the time-
dependent SchrMinger equation which must be
solved. For the mixing of k and k-q, solutions
of the form

e-jest/A(Aeikx ftei u4 ei(k-c)x)

can be found. This results in a secular equation,

4 = cos8e'~' —sin8e' ~ ' 'e' ',4

4'p = sln8e"'+ cos &e"" "e'~'
(16)

(17}

for states below and above the gap, respectively.
The coefficients satisfy the relation

sin2B =2G/(X+ —X ) =—2G/W.

The energies corresponding to 4 ~ and 4 ~ are

E (k) =X —Resin'8,

E,(k) =li. -I&@cos~8.

(18)

(19)

(20)

Note that the position of the gap is now ki +m&u/
Sq.

The linear deviation from uniform electron
density for 4~ is given by

( 4', ~' —1=—(2G/W)cos(qx —~t). (21)

For the moving wave ft = —~'A sin(qx —~t) so
that applying Newton's second law to the motion
of the ions yields

M(u&' —ru')+ (2G/A'n)EN= 0. (22}

To calculate the critical temperature T~(id}
for dynamical self-consistency, i.e. , propagation
of a CDW with frequency u with no Landau damp-
ing, it is necessary to calculate 4N. It is suf-
ficient to use the unperturbed electron energies
in the Fermi-Dirac distribution function. How-
ever, the distribution must be shifted in k space
so that the constraint on the net drift velocity is
satisfied. When the resulting expression for 4N
is written as an integral, a change in the integra-
tion variable, k-k —m&u/tfq, is sufficient to show
that 4N for the moving wave is the same as that
for the static wave for the same value of Q. Then
Eil. (22) gives T*(&u),

G e~, +g(u-zj

within the space defined by the basis functions
k and k —q. The eigenvalues X, for states above
and below the gap are

&, = 2 (&i + &i, , + gid ) + 4 [(&i, , —&i, + ttid )' + 4G']

(15)

The stationary states corresponding to these eigen-
values are

ks T*(&u) = 4 5.6ez exp[ —tf'M(sP, —id')/8C'm], (23)

which is higher than T,(0) by a factor exp(g'MuF/
8C'm) as found by Hopfield. ' This result can be
easily understood. The electron-ion force does
not need to be as strong if the ions are allowed
to oscillate as it must be if the ions are fixed.
Thus, dynamical self-consistency can be satisfied
for smaller 4N and higher temperature in the ease
of the moving wave.

and

S= —kent [fi lnfi+(1 —f, ) In(1 —fi)].
Here E, is the energy and f, is the occupation
probability of state i. The problem is to find
f, . For the static CDW, of course, this is just
the usual Fermi-Dirac distribution function. In
the case of the moving CDW, however, there
exists the additional constraint on the net electron
drift velocity. If the energy of state k is given
by k 'km/2m, this constraint is easily incorporated
by letting k- k —mid/)fq so that the distribution
is centered about mid/tfq. When the energies of
the electronic states are given by a more com-
plicated function of k, for example Eils. (19) and
(20), how to incorporate this shift of the distribu-
tion is less obvious.

A shift of the electron distribution can be ac-
complished by a change in the observer's ref-
erence frame. For the case of the moving CDW,
it is most convenient to change to a frame in which
the drift velocity is zero, i.e., the frame moving
with the velocity of the CDW. The unperturbed
electron energies are easily transformed to the
new frame so the problem becomes to find the
way in which the perturbed energies transform.
This problem has been solved by Parmenter. '

IV. FREE ENERGY

It was shown above that the temperature T*
at which dynamical self-consistency can be satis-
fied is higher for a moving CDW than for a static
one. It is interesting to compare the free energy
of the CDW state with that of the undistorted state
with the same current. The free energy of the
electron-ion system can be calculated in two parts,
that of the perturbed electron system and that
of the ions caused by their kinetic energy and the
unperturbed ion-ion interaction. Since the ionic
motion is treated classically, the contribution
of the lattice to the free energy is especially
simple because there is no entropy associated
with the lattice. The free energy of the perturbed
electron system is given by I =E —TS where
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The SchrMinger equation for the perturbed
electron system in the laboratory frame is

84' 8 8~
iX —= —,2Gcos(qx — ())C. (24)

8t 2m 8x'

Transforming coordinates to x' =x- vt, t' =t and

performing a canonical transformation

0"(x', t') =exp[ —i m(vx —,'v'—t)/5) 0'(x, t) (25}

results in the transformed Schrodinger equation:

k' =k —mv/k (28)

so that k' and k satisfy the proper transformation
for momentum.

In the primed frame the electron distribution
is centered about k' =0 so that difference in elec-
tron energy between the CDW state and the un-
distorted state in the primed frame is given by

where P» is the momentum of state k. In addition,
as shown by Parmenter, '

84' 5 8
ik + 2G costgx'

8t ' 2m 8x"

The right-hand side is P'2/2m+ V' which is the
sum of the kinetic and potential energy in the
primed frame. To relate the energy in the two

frames calculate

(26) E' -E' = — dk'
E'(k')

2v „exp{[E'(k') —l(, v) /ke T f+ 1

I &»dk'
2n .„exp[(&',, —e~)/ks T)+1 '

(28)

(4'i Ns/sti 4')

( ej iw 6/st((q) -(q[- Nva/sr[ q)
%i%)

=E(k) —vP, +-,'mv', (27)

where e„' ~ =I'k"/2m and E'(k') is the energy eigen-
value of Eq. (26). Note that t(, v indicates that the
Fermi energy must be a function of the size of the
energy gap to keep the number of electrons con-
stant. Using Eqs. (2'l) and (28) gives the energy
difference in terms of unprimed variables,

E' -E' —— E(k) —vP„+-,'m v '
cow 0 2v „exP[[E(k}—vP„+&mv' —i( ]/ksT) +1

2 E» —Skv+ zmv
2w „exp[(e~—ftkv+ 2m v2 —ez)/ks T] + 1 (3o)

The argument of the exponential. in the second
term is the usual. result obtained for a system
of free fermions with drift velocity v, i.e., the
Fermi distribution is shifted to center at mv/g
in k space. The first integrand shows how the
constraint of a net drift velocity is included for
the case when E(k) is a more complicated func-
tion of k. The expression (3) can be written

E'cow Eo =n[(E(k)) —-v(P(, ) + 2mv )

—n(( e~) —v(kk) + ~mv'), (31}

where ( ) denotes the average value. Since both
the CDW state and the undistorted state have the
same total momentum and number of particles,
this becomes

CD% 0 CD% O& (3
so that the difference in electronic energy be-
tween the CDW state and the undistorted state
with the same current is the same in both ref-
erence frames.

Similarly, the difference in entropy can be
shown to. be the same in both reference frames.

Thus, the free energy can be calculated in either
frame with the same result. It then suffices to
calculate the difference for the static case.

The effect of the change of reference frame
on the ion motion is to give a uniform drift to
the average positions of the ions. This does not
change the oscillatory motion of the ions about
their equilibrium positions and thus, cannot change
the difference in kinetic energy and ion-ion po-
tential energy between the CDW state and the un-
distorted state with the same current. There-
fore, the total change in free energy of the elec-
tron-phonon system is the same in both reference
frames.

The expression (2) for the energy of the elec-
tronic state k gives the effect of one part of the
perturbing potential. It is necessary to include
the effect caused by the other part. This is ade-
quately given by the first-order correction to
the plane-wave energy so that

E, =E, + Q (e~ —e~, ) '.
Using Eq. (33}the difference in electron free
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kp dk
(ETf T ~ETf T)

p

"kp dk
(eaf ++a--qf+)

2~tp 2m' (34}

energy between the CDW state and the undistorted

state can be calculated. This difference is given

(in reduced zone notation} by

where fr and f o, denote the Fermi occupation fac-
tors for the upper and lower bands using Eq. (33}
and the unperturbed energies, respectively. One
factor of 2 is included to account for spin de-
generacy and another since the contribution from
the interval —k~ ~ k~ 0 is equal to that from
0~k ~ kp.

The electronic contribution to the difference
in entropy is given by

Son~ —So= —4ks —[f Inf +(1 —f ) In(1 fr)+—f,"Lnf, +(1 f~+)—Ln(1 —fr) fo Lnf—o

p

—(1 —f0
) Ln(1 —f0

) —f~+ ln fo+ —(1 —f0
) ln(1 —f + )] . (36)

The lattice contribution to the change in free
en, ergy is the number of ions times the average
kinetic energy plus the average value of the ion-
ion potential energy

b,F„,= ,' nMuo—(u'} + ~ nM(u'} = ~ nMA'(u20+ uP).

(36)
Since a determination of G gives the amplitude
of the ion displacements, Eq. (36) is readily eval-
uated once G is found.

At zero temperature the difference in entropy
&S is zero. Equation (34) can be evaluated analyt-
ically to obtain the electronic contribution to the
change in free energy

r F, (T=0) =n&~(1 —(1+g )' ' —g'In[1+(1+g )'~2']

—g' In(2/g)], (37)

where g= Go/2'. The total change in free energy
for a static CDW at zero temperature is

for v/~oc0 demonstrate that the free energy of
the moving CDW state is higher than that of the
undistorted state until the temperature reaches
T, (~) which is lower than T, (0). At T, (~) the
moving CDW has a finite amplitude and the tran-
sition is first order. At T*(ur), the temperature
at which the CDW with frequency + becomes dy-
namically self-consistent, the curve of 4F inter-
sects the abscissa at finite slope.

A plot of T, vs u/u, is shown in Fig. 2. Note
that there is a cutoff value ~, -=0.205~p beyond
which the free energy of the CDW state can never
be less than that of the normal state with the same
current. Near u, the critical temperature T,
goes as (1-~/~, )'~'.

With T, (&u) and the size of the energy gap G
known, Eq. (34) can be evaluated numerically
to find the latent heat of transition I.. A plot of

AEO=EF, (T=0)+serg sinh '(2/g), (38)

where Eq. (11) was used for G, .
Equations (12) and (22) can be soLved numerically

using the energies (33) in the Fermi occupation
factor to give the dynamically self-consistent
energy gap G(T, &o) as a function of temperature
T and frequency co of the CDW. Using this value
for G(T, u), Eqs. (34)-(36) can be evaluated nu-
merically to give the difference in free energy
between the CDW state and the undistorted state
with the same current.

Typical results for 4F, the difference in free
energy between the CDW state and the undistorted
state, are shown in Fig. 1 as a function of tem-
perature, for several values of the ratio of the
CDW frequency ~ to the unperturbed 2' phonon
frequency ~, These cur. ves use a value G,/2&~
= 0.01. The curve for ~/&u, = 0 is characteristic
of a second-order phase transition. The curves

).0-

QO

C~l

@ac

-l.o

k,T/Go

FIG. 1. Free-energy difference between CD% state
and undistorted state with same current vs temperature
for various CDW frequencies u. EJ" 0 is the difference
for co =0, T =0 K. 60 is the magnitude of the static
CD% energy gap at T =0'K. uo is the unperturbed 2 k p
phonon frequency.
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0.6—

0.5

r ~ » ) I I ~ ~ the electron-phonon system is given in this ref-
erence frame by

H =Z, e,c,c,+«v, (a, a, +a,a, )

0.4
+ gP[(at +a, )ct,c,e' &'+H.c.], (Al)

0.2

O. I

O. I

(U/(do
0.2

FIG. 2. Critical temperature vs CDW frequency.

where c~, c~, a~, and a, are the electron and
phonon creation and annihilation operators, g
is a coupling constant, and ru, /q is the net elec-
tron drift velocity in the lab frame. The Ham-
iltonian (Al) can be obtained from that in the lab
frame by the transformation discussed in Sec.
IV and is the total energy of the electron-phonon
system.

To remove the explicit time dependence Hopfield
makes a canonical transformation in which

the magnitude of L vs. ~/&uo is shown in Fig. 3.
L goes to zero at ~, since the entropy of both
the CDW and the undistorted states goes to zero
at T=0'K.

V. CONCLUSION

~-jht y 7

A = (-a t a, +a,a, )&u„.

4' is found to satisfy a Schrodinger equation

where

(A3)

(A3)

It was shown that in a simple mean-field model
of a one-dimensional conductor the temperature
at which a moving CDW can propagate without
Landau damping is higher than T,(0), the Peieris
transition temperature for the static wave. How-
ever, the free energy of the moving CDW state
does not become less than that of the undistorted
state with the same current until a temperature
below T,(0). At this temperature the phase tran-
sition is first order. There exists a cutoff value
for the CDW frequency (and the current) at which
the CDW free energy is never less than that of the
undistorted state with the same current.

= e-~"t He~ht+ggetf

ht + g$ht +i wilt
CE -a C

(A4)

H„,=Q e, ct, c,+a(&u, +&a~)a'ta',

+h(~, —&u, ) a,'ta,'

+gQ [(a,' +a', )ct, c,+ .H)c. (A5)

The effective Hamiltonian (in terms of the primed
variables) is given by

APPENDIX ~ [ I S ~ e

Expression (33) for the increase of T» (the tem-
perature at which the CDW solution is dynamically
self-consistent) with the velocity of the CDW
agrees with that calculated by Hopfield' (except
for a numerical factor which results from the
use of different expressions for the unperturbed
electron energy). However, this result was de-
rived by Hopfield by comparing the free energy
of the CDW state to that of the normal state. He
found that at T* the moving CDW has a lower free
energy than does the undistorted state with the
same current. This result contradicts the findings
in Sec. IV.

Hopfield treats the problem of the moving CDW
from the reference frame in which the net elec-
tron drift velocity is zero. The Hamiltonian for

1.0

—0.6

0.4

0.2

a1
CU/400

0.2

FIG. 3. Magnitude of latent heat of transition vs
CDW frequency.



THE DYNAMIC PKIERLS INSTABILITY

This effective Hamiltonian is then used to cal-
culate the free energy of the CD% state.

However, because of the explicit time depen-
dence of the canonical transformation, H,„does
not represent the total energy of the system. H,„
is a conserved quantity and generates the dy-
namical evoLution of the system in terms of the
primed variables, but the "extra" part SA makes
g«unequal to the sum of the kinetic and potential
energies of the system. That this is true is seen
by starting with H, which is the sum of the ki-
netic and potential energy. The energy is given by

E = (q[ H[ 4) =(e'"'q'[ H) e'"'4')
= (q'( e '"'He'"'~ +')
=(g"I f(J q') -(e'I +x) g'). (A6)

Thus the expectation value of H,«differs from the
energy by (q'~ RA~ 4"). It is precisely this dif-
ference which leads to Hopfield's result.

Hopfield interpreted the terms

h(too+ tv~)a, a, and K(&uo —ue)a, a,
as the unperturbed phonon energies in which the
frequency is replaced by the Doppler-shifted fre-
quencies ~,+co„. Thus the 2k~ mode is softened.
However, since the unperturbed phonon mode

involves the displacements of the ions from their
equilibrium positions and the time rate of change
of these displacements, a uniform translation of
the equilibrium positions will, not change the fre-
quency or energy of the mode aside from the ad-
ditional kinetic energy per ion &Mv,' associated
with the translation vel. ocity v~ of the equilibrium
positions. The envelope of the wave is DoppLer
shifted, but the ionic oscillation frequency is the
same in both reference frames. An illustration
of this point is the application of the canonical
tranformation (A2) to the unperturbed phonon
Hamiltonian in an insulator,

H =I&u,(a ta, +at, a, ),

with the choice ~~ =~,. This leads to'the effective
Hamiltonian

A',«=h(&u, + ~,)at, a, +a(e, —&u,)at a„
so that the energy of the mode q is identically
equal to zero. This result is clearly impossible.

Thus, a softening of the unperturbed 2k~ mode
does not occur. The "softening" which does occur
for a moving CDW is in the electron-ion force
which can satisfy the requirements of dynamical
self-consistency with a smalLer value in the case
of the moving CD%.
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