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The universal scaling functions that describe the crossover of the thermal conductivity and diffusion constant

of 'He above T„, from their behavior in pure helium to that characteristic of 'He -'He mixtures, along the X

line, are calculated to first order in a = 4 —d along with the leading correction terms. The crossover exponent
is determined to all orders in e which implies that the thermal conductivity at T), varies inversely with the

concentration.

The critical dynamics of 'He- He mixtures at the
tricritical point and along the X line for T& T,
have recently been studied by renormalization-
group methods. ' This note demonstrates how that
description of the X line maps onto a similar model
of pure helium and gives a number of dynamic
crossover scaling functions. Note that, while in
appropriate units, the static-order-parameter
fluctuations remain unchanged as the concentra-
tion of 'He, cp, tends to zero, transport coeffi-
cients can change dramatically' The thermal
conductivity diverges strongly in pure helium, but
is finite in the mixtures. The diffusion constant
of the He impurities diverges as the X line is ap-
proached at constant c, or chemical potential p, ,
but is finite as c,-0 at fixed T& T, .

The critical dynamics of 'He- He mixtures ean
be developed from the interactions among the
"slow" modes, i.e., the order parameter $(x, I),
the entropy v(x, I), and the concentration c(x, I).'
It is convenient to work with combinations of the
hydrodynamic modes whose fluctuations in thermal
equilibrium are independent. For 'He- He, these
are an entropylike mode q, with susceptibility
Cs= (Bo/BT), ~ and the concentration with sus-
ceptibility yR

——(Bc/Bp)r ~. The pure-helium fixed
point is unstable under the addition of He impuri-
ties, which simply means that for any cp&0, the
ultimate critical behavior is that of the mixtures.
If the only coupling between the concentration and
order parameter were nondissipative, i.e., g2 p

in Egs. (1b) and (lc) below, one could calculate
the crossover simply by following the growth in
a single effective coupling constant from a small
value -c, to its fixed point value, a=4 —d. While
this is the approach we will follow, it requires
some justification when the concentration sus-
ceptibility or specific heat are singular as they
nearly are in three dimensions. '

In pure helium, it is well known that in the ex-
perimeotally accessible range of temperatures
there are important corrections to the ultimate

critical singularity, originating from the almost-
singular entropy fluctuations. "' The corrections
may be calculated by including in the free energy
a coupling yp between the entropy and order pa-
rameter which is relevant when a &0, but relaxes
slowly to zero in three dunensions (n &0).' When
the fixed-point value of yp is nonzero, the corre-
sponding susceptibility diverges.

In contrast to pure helium, along the X line it is
the concentration that is weakly coupled to the
order parameter [ps=(Bc/Bp)»-f for o &0],
while the fluctuations in q are always finite, but
it is q that becomes the entropy as c,-0. This
seems to imply that to understand the leading cor-
rection terms as cp 0 both densities should be
coupled to P. Fortunately, this is not the case be-
cause the temperature scale on which q decouples
from g, or gR begins to diverge, is very different
from the temperature range of the dynamic cross-
over. For positive n, we believe that the thermo-
dynamic susceptibilities whose singular behavior
near I = IT —T,(c,)]/T, = 0 is different for c, =0 and

c, &0 can be represented in the form c,' f(c"f. ), for
small cp and ( with x 1 as a consequence of di-
lute-solution theory and an explicit calculation for
(Bc/Bp)r ~.

' It is true, more generally above T„
and in an isotropic system, that a is the leading
temperature exponent for any density and that c,
is the only small parameter. In the absence of
corrections from y„(gs and CR constant), it is
easy to show that the transport coefficients cross
over when c, t '" '-1. Corrections to this simple
result may therefore be calculated with the free
energy appropriate to pure helium with the con-
centration mode statically decoupled from the
order parameter. At a fixed concentration, the
additional correction terms signaled by the growth
of gR occur only at much smaller reduced temper-
atures and may be ignored in the dynamic-scaling
functions wheich are calculated in the limit
c, -0, c, t '"~' —const (see Fig. 1).

The model we propose to investigate is defined
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t-(c @+a ) /2
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(q1 (1)y(1')) = -2Kov '5(1 —1') .
It differs from the model in Ref. 1 only in that yp

couples q and g rather than c and g. The renor-
malized susceptibilities can be identified with the
physical thermodynamic derivatives'
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FIG. 1. Concentration- reduced temperature plane

showing, schematically, the two distinct scales for dy-

namic and thermodynamic quantities for a &0. The X line

is given by t = 0. Transport coefficients display pure-
helium behavior in region I but only attain their X line

dependence in region III. In region II, the leading singu-

larity is characteristic of the X line but the correction
terms are different. Only the crossover from I to II has

been calculated. The distinction between regions II and

III continues to exist in three dimensions (n & 0) with

t ~ replaced by (Bo/BT)„& because throughout the ac-
cessible temperature range, the specific heat is in-

creasing and modifies the leading singularities. Ther-
modynamic quantities are characteristic of pure helium

in region I and most of region II.

by a phenomenological thermodynamic potential

W, and stochastic equations for g, c, and q. It
includes the leading corrections to dynamic scaling
in region I and part of region II, but not in region
III (Fig. 1):

W= d'X —,rp P '+-, +~ '+up ~

+ ,'c,'q'+ r—,q~ t ~'+ l x,'c'),

eq 6W . 5W . 5W= -2I p
—'tg& pg —A/2 pP + 0 q

(lb)

The weak temperature dependence of XR in re-
gions I and II is not contained in our model al-
though CR is of course given c'orrectly. The re-
normalized transport coefficients maybe combined
to yield the experimentally accessible quantities

D= XB/XB

"r XRLB/x

'1r =KB —L'B/xB ~

(3a)

(3b)

(3c)

C1,0 B PO/

g2 0 kB 1CO/PO

(4a)

(4b)

It is only necessary to know that as cp 0 g1 p

constant and p2 p pp.
The recursion relations generated by (1) are

readily found by comparison with the results of
Ref. 1 and Appendix C of Ref. 3.' They are most
simply written in terms of the effective coupling
constants v(l), f, (l), and f,(l), and the ratios w, (l),
w2(l), and w, (l), (K, =l/8x ):

v(l) = K, C (l)r'(O,

K, g', (t)
K(l) Rer(i)

(5a)

Our notation agrees with that of Landau and Lif-
shitz' except that the thermal conductivity Kt car-
ries a subscript to distinguish it from the inverse
correlation length. The strengths of the mode
couplings are not renormalized except for scale
changes and are determined by hydrodynamics, '

~c 26W 26W 5W

Oq
+L V' +2g Im (* +0

=KpV + LpV + 2g1 p Im $ -I- P .P g+ 12P

(1d)

The noise sources r„(x, t), 6(x, t), and p(x, t) satis-
fy

(f(1)f*(1'))=4 ReI', 5(1 —1'),
(&(1)e(l'))= -2X V '6(l —1')

(q (1)e(1')) = -2Lov 26 (1 —1'),

K48(l)
X(l) ReI'(l) '

w, (l) = w,'(l) + iw,"(l)= I'(l)C(l)/K(l),

w2(l) = w2'(l) + iw2" (l) = r(l)X(l)/X(l),

w (l) = L(l)/X' ~'(i)K1 ~2(l)

The recursion relations become

dv(l) o.

dE v
= —v(l) —4v'(l)

,(l) f(,), .f(,) R, ,(t)~(t)
&(I)w,'(I)

(5c)

(5d)

(5e)

(5f)

(6a)

(6b)
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,(I) w, (I}A(I)=f (I) ~ ——,'f (I) —Re
B(l)w'(I)

(fw, (l) A(I},((( (
—v, (((~ 4v(()),

where

(6c)

(6d)

ed, the equations for w, and f, imply f,(I)- e and
A/B- e/2 relatively rapidly; f,(l}-f»e" ' and

u( (I) = w e"~' provided f2(l) «e. Thus by the time

/, (I)-&, its fixed-point value; w, (l}-c,'. Dynamic
crossover functions, including the corrections
from the slow transient v(l), can be computed
with zv2 infinite from the beginning.

In this limit, the equations for u, and f, become
identical to those of model I' that were analyzed
in Appendix C of Ref. 3. Their solution with cor-
rection terms is7

A(l) = ' {f, (l)[I+u, (l}]+f,(l)[I + w, (I)]
wi I

—2f',"(I}f'."(I)w, (I)]

- 4v(l) w, (l)[1+w, (l)] —4i[f, (f)v(l}w,'(I) ]' ~'

x [1+w, (l)]+ 4i[f,(l)v( )Iw'( )I]' "w, (l)

B(l) = [1+u, (l) ][1+u, (l)] —»23(l) .
In (5a), o( is taken from experiment to be slightly
negative, and v(l) decays slowly to zero but gener-
ates the essential correction terms. To make con-
tact with (3), some additional relations are need-
ed '

r~
CR exp 4 v l dl

0
(7a)

l

0
(7b)

1
K~-exp — f, l dl

0
(7c)

where l* is determined from t"e' -1.
Equations (6b)-(6f) are to be solved at some

small concentration co. Integrating on l we expect
(6) will first relax to values appropriate to pure
helium and then cross over to their X line values.
The integration requires the initial values of v, f, ,
and so,.; in particular those that depend on c,. They
follow from (2) and (4), and the knowledge that at
any fixed temperature the diffusion constant,
i(,/X, tends to a constant as c,-0. We thus have:

f2, o o»(o o~

The last relation depends on the value of k~ in a
dilute solution and while w„&0 implies x~ 0, the
precise vlaue of zo» will not enter the dynamic
scaling functions, even if x=0. The remaining
initial values are independent of co.

Equations (6b)-(6f) are rather formidable, but
fortunately considerable simplifications occur in
the limit c, -0, c, t '"~'-const. If v(l) is neglect-

20 dv(l)», (l)A(l)
fz(l) = &+4v(l)+ — +R .

( ),( )

e 50 dv(l)= ——2v(l) +—
2 9& dl

(9b)

Only the first terms in an expansion in v(l) and its
derivatives have been given. Recall that v(l) «e,
v„=O, l&tw(I)/&&I ~ I&l/u«e and d[lnC(l)1«I
= 4v(l). '

The equation for f2 can now be solved to the same
relative order as (9a)8:

5coe" 'C' '(l) [1 —50v(l)/9e]
1+ 6c e" 'C' '(l)[1 —86v(l)/9&] (10)

where 0 is a nonuniversal constant of integration in-
dependent of c,. It will be seen shortly that the argu-
ment of the dynamic crossover functions is just the
combination of c,and temperature (I= l* —vlnt), that
appears in the denominator of f,. Although the func-
tions are determined only to first order in &, the
crossover exponent y is known to all orders, as
will be shown:

Q y + gC e6l /2gl l2 1 86vt,'l*

where X), is a constant. To make contact with ex-
periments, we set &=1, e' -t ", and

80' ~CF
C(l~) -C„=— = — + O(c,),8T.. BT..

(I~)
—S(lnCe)

4v& lnt'

Equation (6f) can also be solved

(13)

p = e/2+ o. /2 v, o( = max((r, 0) .

Formally, y is the exponent for the growth of f,(l)
when (6c) is linearized about f,(l) =0. Equation
(6c) is formed from the recursion relations of
&(l) and I'(l) (g, is simply rescaled). The diagram-
matic contributions to X(l) are always O(f, ) and
do not contribute to y while 81nI'(l)/dl is known to
all orders in model I' by scaling. '

Equations (2), (3a), (7b), (8), and (10) imply
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Bc,e""C'"(I)[1—BBv(I}/Bc]
1+Bc s" ~C' "(l)[1-BBv(I)/9«]

and ms 1 as l . ' The thermal conductivity can
be found from Ks, Eq. (Vc), which is just the
thermal conductivity in pure helium, ~ and ce,(l~)

K Ctr 0 (15)

with some weak temperature dependence arising
from the correction term 6 lnC„/dint. Actually
(15) holds to all orders in «because p, Eq. (11),
is identical to the exponent of «„(0), also known

by scaling to all orders. 3 In region III it was
found in Ref. 1, thai x„ takes the form:

=6 +6 t'"i
tr

The leading confluent singularity has been shown to
emphasize that there are. no corr ection terms
induced by the most singular thermodynamic sus-
ceptibility which is g„ in region III. Again the
temperature dependence of the less singular sus-
ceptibility, (sc/ST), ~, has been ignored. By con-
tinuity 6, -cp' and 6, -cp, for cp«1 and arbitrary

The result, v„-cp', along the A. line has pre-
viously been found by applying dilute solution
theory below T„and neglecting critical effects. '

It would be rather difficult to test (14) and (15)
for small c, because a„ is rapidly varying and the
small temperature gradient needed for its mea-
surement leads to some rounding of the transi-
tion. '0 The extrapolation to t = 0 is easier, ex-
perimentally, from below T„where x„ is effect-
ively constant. Its hydrodynamic expression has
been given by Khalatnikov, and is rather more
complicated than (13c). We have not done a re-
normalization-group calculation below T„, but
nevertheless wish to point out that it is not neces-
sary for ~„measured macroscopically above and
below T„ to agree at t =0." Furthermore the
breakdown of the hydrodynamic expression for a„
below T„need not occur at k)-1, where k would
typically be the inverse of the sample cell height
h. A deviation from the criterion kg-$, although
difficult to attain in a macroscopic sample, must

«g (ca) = «„(0) 1+Bc,«„(0) 1+
3fv & lnt

(14}
Equations (12) and (14) are both O(e} results and

apply in region I and into region II of Fig. 1. If
correction terms are neglected, they are valid
uniformly for small c,. The coefficient of c„5, is
not universal, although the quantity «„(co)S is
independent of c~ to 0(«). ln region II, (14) pre-
dicts that

occur for sufficiently small cp since x„does not
exist in pure He It. The relation which replaces
k$-1 is given below.

In a static measurement of ~„, P, and p.4 are
constant and Vc =[co/ksT„+ O(co)] VT.' There is
a normal velocity which opposes the concentration
gradient v„= (S)o,/coke T) v T, and because the total
density is constant j= 0 or vz = -pov„/p«. Hydro-
dynamics wiQ cease to be valid when v~ equals the
intrinsic critical velocity estimated by Reppy and
Langer to be v, -500 p«/po cm/sec. " If we use the
approximations' o,/ks-I and p«-2po t ~', the
critical temperaiure gradient expressed in terms
of the temperature difference hT across the sam-
ple becomes

n, T/hT„-10~cot I~/&, (16)

tr j. 0 2 0

For c s 1%, they extrapolated to T = T„ from below
T„. They found x-3, in accord with Kawasaki's
scaling argument, but with 6,/6, -10'. For c,= 0,
their data disagree with published results of
A)Qers ~6
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where all units are cgs. If the transition is to re-
main sharp, n.T/T„« t or

10'coht' ~'/&«1 .
The diffusion constant is only known above T„
where Ahlers and Pobell found in concentrated
solutions, S -10~ t '~~ cmm/sec. " If a similar
value applies below T„, perhaps not tempera-
ture dependent, Eq. (IV} would be difficult to
satisfy. If (IV) alone is satisfied the superfluid
transition would appear sharp, but the applied
thermal gradient must be less than the critical
value (16) if the conventional definition of a ther-
mal conductivity is to apply.

Kawasaki" has recently proposed a scaling re-
lation for e„which predicts ~„cp ' along the X

line in disagreement with (15). He appears to as-
sume that y =1 because the X line is linear in the
c,-t plane [compare with Eq. (11)]. We believe
this assumption to be unwarranted particularly
because T„(co) is a static quantity while qr pertains
only to dynamics.

Tanaka and Ikushima" have measured the therm-
al conductivity along the A. line and fit their data
for c, &10% to
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