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The correlation energy per particle (expressed in rydbergs) of a two-dimensional electron gas is calculated by

summing the ring diagrams. For high densities, this is found to be of the form C+ Dr, lnr, -+ 0(r,), where r,

is a dimensionless parameter such that r, ' is proportional to the number of electrons per unit area. The value

of D is —0.172 and that of C is —0.38+0.04, the latter involves a numerical evaluation. By the same

methods, we have also calculated the difference in total energy of the nonmagnetic and ferromagnetic states

and we find for r, ) 2.3 the system may be ferromagnetic. We have also obtained some exact relationships

between the pair correlation function at zero separation and the asymptotic behavior of the structure factor

and the momentum distribution function. These are of interest in relation to scattering experiments.

I. INTRODUCTION

The conduction electrons in a metal are tradi-
tionally described as a dense gas of electrons with
a neutralizing uniform positive charge in three
dimensions. Between 1950 and 1960, sophisticated
methods were developed to study the various as-
pects of this model system. It was soon realized
that a clear comparison between the experimental
results and those derived from this model cannot
be made. However, much intuition was developed
concerning this system in three dimensions. ' Re-
cently, two physical systems have come to be
known as being essentially a two-dimensional ver-
sion of the above electron-gas model with con-
tinuously variable density. They are electrons
confined to the surface of liquid helium and to the
interface of metal-oxide- semiconductor sand-
wiches. They seem to be more closely describ-
able by the electron-gas model than the conduc-
tion electrons in metals in three dimensions, and
for this reason there is much interest in calculat-
ing various properties of this two-dimensional
system using the sophisticated methods developed
twenty years ago. There are many surprises
here. The dispersion of the plasmons in this sys-
tem goes to zero for long wavelengths in contrast
to the three-dimensional (3-D) situation. This
has been experimentally confirmed. ' Zia' calcu-
lated the correlation energy of a high-density
electron gas in two dimensions based on the Gell-
Mann and Brueckner method4 developed earlier
for the corresponding 3-D system. Zia has made
several errors in his calculation as we shall show
in the present paper. The correlation energy per
particle in rydbergs approaches the form
C+ Dr, lnr„where v, is the conventional dimen-
sionless electron gas parameter and r,' is pro-
portional to the number density per unit area of
the system. Zia concluded that D is negligible

and thus C dominates. He found C = —0.021+ 20%
and D =+ 2.2 && 10 4. We find that his D ought to be
8p4 times larger and has a negative sign. For
very low densities, it is surmised as in three
dimensions that this system may crystallize into
a Wigner solid." One of us' estimated that for
intermediate densities, the system may perhaps
exhibit ferromagnetism just as Bloch found in the
3-D system. One of us' has also computed the
effects of exchange contributions to the plasmon
dispersion etc. There are various other many-
body aspects of these two systems that have been
studied and one may refer to the conference re-
port cited in Ref. 2 for information concerning
them.

The plan of the present paper is to set up the
correct Gell-Mann-Brueckner approach to the
correlation energy problem in Sec. II for a mag-
netically polarized electron system. A relation
between the paramagnetic and the fully-saturated-
ferromagnetic state correlation energies is esta-
blished similar to the one for the 3-D case given
by Misawa. ' In Sec. III, we carry out the calcula-
tion of the correlation energy of the high-density
system for the paramagnetic state. In the same
section, we also mention an alternate theory of the
correlation energy based on the dielectric-func-
tion approach. This method is very physical in
that it brings out certain aspects of the plasmon
and particle-hole states explicitly. We derive an
expression for the cutoff wave vector for the plas-
mon, beyond which it will decay into a particle-
hole pair.

In Sec. IV, we give certain exact relationships
concerning the pair correlation function, the
structure factor, and the momentum distribution
function for the two-dimensional (2-D) system,
similar to the ones derived by the second author
for the 3-D system. '" In Sec. V we give a sum-
mary of the results derived in this paper.
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II. CORRELATION ENERGY OF A POLARIZED

ELECTRON GAS

We first establish the notation used in this work.
We use units where S, the Planck constant, di-
vided by 2~ is set equal to unity. The mean radius
per particle of the system with the total number
of electrons N confined to ihe surface area S is
defined by the dimensionless parameter r„

—= vr,'amok a, =
@

is the Bohr radius. ( )me'

Here m is the mass and e is the charge of the
electron. The Fermi momentum for the nonin-
teracting system for spin cr is kz, and is such that

[S/(2,)'],(k'„+k'„)=N. (2)

If p is the relative magnetization of the system,
0- f-1, we define

The average kinetic energy per particle of the
system is given by

T S~ I' k dk k~

or expressed in rydbergs, using the relations
(4) and (5),

k2/2m = 1/a'r'

we have

T/N =(1+g')/2a'r 2

The first-order interaction energy per particle is
the Hartree-Pock energy and is given in a con-
venient fogm:

kryo =k~(1+ f}'f', k~)=k~(1 —f)'f',
so that

kg/2v =N/S .
Combining (1) and (4) we thus have the relation

ar,a+~= 1, where a = 1/W2 .
The Hamiltonian of this system of electrons is

(3)

(4)

xg f d'k,

X ra'k,
Ikml &kz~

d «t -g, } s

m

+- g g g V(q) C„'„C,', „.C, .C„,
e k km'

(6)

Doing the k„k, integrations first, using the iden-
tities

~ kate
d'k e'2'= k dk 2sJo(kr)

~ I kl &ky'g Jp

where the wave vector k is two dimensional. V(q)
is the Fourier transform of the 2-D interaction
potential between electrons (e'/r») and is

1'(q) =2v~/~4[

=2vk Eo

frt frI} ~' 3v '

(12a)

(121)

C~, Ck... obey the usual anticommutation rules.
The ground state of the noninteracting system is
the filled Fermi sea defined by

C'„i O&.
a

(k&kgy)

we obtain

E,/N= —(4/3var )[(1+1')' '+ (1- }t')' '] (13)

The second-order interaction energy per particle
is given by

g f d'q f d'k, f d'k, j, (k,}f,{k,}{1—f„(k,qt}}]

(14}
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Here f,(k) stands for the usual Fermi function

which at T=0 K, is just a step function. All the
momenta here are scaled by k~ so that

f&(k) = 6{k—(1+ f')'~'), f&(k) = 6(k —(1 —f)')'), (15}

where

1 if @&0,
6(x =

0 if x&0.

The first term in (14) is the direct term and the
second is an exchange contribution. E,/N in ryd
bergs is independent of r, . It may be further
noted that the exchange term in E,/N, because of
the condition 5„„,is found to be indejendent of
magnetization, (, as is seen by a simple scaling
of the momentum vectors for each of the up and
down spins and then adding them up. We call this
E())/N.

1

4~ q~q-t-I. ..&+k2~ q +q'lk +k )
d (f d k) d k2 f(k))f(k2) [1 f(k)+q)][1 f(k +q)]

(16)

Here f(k) is the same as (15) with /=0. Note that there is no divergence in E(2'/N or in the direct term
in contrast to the 3-D calculation. Following Gell-Mann and Brueckner, 4 the direct term in the second-
order energy is called the lowest-order ring diagram and will be denoted by E(2")/N and is expressed in

the form

I ~ f d ~.I%I (, ' (( .i(")+ ( .i(")))

where

q ( )=) d'k dt "'"~"'' ' ""'f(l)(1 —f(k+q)],

with f,(k) defined as in Eq. (15}. Note that Q„(u} is real and even in u. The contribution from the ring
diagrams in the nth order is given by

du d'q lql '[Q, )(u)+Q, )(u)]

For n~2, observe that E„'"/N is divergent for small (f. Summing over all the ring diagrams then, we ob-
tain a closed form expression for the energy of the system:

(20}

[(1 g) / (1 g) ] d d k d k f( )f( )[ f(k +q)][1 f(k2+q)]
4v' ' ' ~lq+k. +k. l[~'+q (k. +k.)]

1 Qg Qy'' [Q, ( )+ Q, ( )] —
2

' [Q, ( )+ Q, ( )]
$ wee

The last term in Eq. (20) is the ring contribution to the correlation energy of the system and is denoted
here by E(")(t';r,)/N.

We will now establish a relationship between E("(g= 1;r, ) and the /=0 (paramagnetic) energy, following
the»nes of Misawa who found a similar relation for the 3-D case. Note that for )=0, we have

E.'"'(o;. )
4 2 2 2 du d'(f Iql » 1+ '

Q,(u) — ' Q,(u)
mq 7Tq

and for g=l,

E,"(1;r, ) 1 ", o(r, o(r,'- =
4 2 2 2 du d'q lql ln 1+

2
'

Q,)(u) —
2

'
Q,)(u)

2mq ' 2nq

(21)

(22)
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where

00 2

((.t( )=}&*( « " —l'l —', ~ ~' " f(""')(~ f(-k'q)1.
~OO

In view of Eqs. (3) and (15), scale k, q, t, u as follows:

2 /

and obtain

q 21/2 q~

24 2 Q~

(23)

Q,its, &(2't'u) =Q,(u),

and so using (23) and (24) in Eq. (22) we get

E&r((I. r I' ~' ' =4 ~ ~ *4 ~"f d ql~l (*" (', l* ((.((-„",l. a.(~) .

(24)

Hence,

Z&")~i ~ rc & trs) ~ E&r& 0. s

In the high-density limit, we need the small q
limit of Eq. (27) and it is given by

Q„(u) -=Q,(u; g) and Q„(u) -=Q,(u; —l), (26)

where it is enough if we know Q, (u; f ) for u & 0 and so

This result is similar to the one derived by Misa-
wa for the 3-D system, where the scale factors
are different. ' We find the ferromagnetic state to
be lower in energy compared to the paramagnetic
state for x, &2.3. This result is of course specu-
lative because it is based on a high-density expan-
sion. In the Hartree-Fock theory, this happened
for r, & 2. This should be contrasted with what happen-
ed in the 3-D case, namely, r, & 6.1 (Misawa's origin-
al result thatr, & 7.4 contains anumerical error) com-
paredto the Hartree- Fock result, r, & 5.45.

An explicit evaluation of Q (u) is possible. Here
we give it for small q:

Q,(u; &) =

where

2«R(u') for 0 c q ~ (I+ g)'~',

u' =u/(1+ g)'~',

0 otherwise,

(28)

R( )=I-I I/("+»'" (29)

III. CORRELATION ENERGY OF A PARAMAGNETIC
ELECTRON SYSTEM—HIGH-DENSITY LIMIT

We will now discuss in detail the calculation of
Eos(t = 0; r,)/t(t We will. first use (24) and (26) to
make a few comments in relation to the work of
Zia. We will then mention an alternative, equiva-
lent expression for Eos(/=0; r, )/t(t in terms of the
dielectric function calculated in the random-phase
approximation.

In this case /=0 and we have

+ E&"+ ~ ~ d. «Iql' »+ '
Q (") Q (")

~y QI'

2& f' 3pQX' 2pQ y' p Q' PTER

(30)

In the high-density limit, we may use the q-0 limit of Q, (u) to evaluate the r, lnr, term in the correlation
energy. Then Eq. (30) can be reduced further to the form

E (&= ; 0)r1 8
2~~@~

1 5 o 3 1+» (' du ln(1+2nr, R) —2nr, R —(2nr R)' +(2nr R)'ln 1+S S S S 2ar, R (31)

Isolating the most divergent part, we finally obtain
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Eon(&=0 r ) 1 8 2&2
+ (E,'"+ E,'"') — (10 —3 w) r, lnr, + O(r, ) .

8

(32)

In evaluating (31), we need an integral over E'(u)
which is found to be

q' =2me2[(q' +2q kr)'~' —q ]. (37)

In (32), the constant terms, independent of r, have
been isolated and as noted earlier, these are the
second-order terms, E,'"'+E,'» given by Eqs. (16)
and (17) (with n=2}. These integrals must be
evaluated without approximation to obtain the con-
stant term and this can only be done on a computer.
The result of a Monte Carlo calculation is

(E'"+ E,")/N = —(0.38+ 0.04),

E I /N= 0.21 s 0.02 .
(33)

Zia's result differs from ours in the following
respects: (i) Zia's second term, the lowest-order
exchange contribution is a factor of 2 smaller;
(ii) our third term, the second-order exchange
energy, independent of r, is —0.38+ 0.04, not
—0.021; and (iii} Zia's r, jnr, term is 8v' too
small and has a minus sign. We thus have

Eo (r,)/N I/r ' —1.2-/r —0.38

—0.172r, lnr, + O(r, ) . (34)

~„(q ) = q' /2m+ q kr/m

in Eq. (35), and we obtain

(36)

The frequency and wave-vector-dependent longi-
tudinal dielectric function for this system has
been calculated by Stern in the random-phase ap-
proximation. " Using this we can express the
correlation energy of this system due to contribu-
tions from all the ring diagrams as in the 3-D
case." Further, we may rewrite this in terms
of a zero point plasmon contribution and a scat-
tering contribution to the correlation energy. The
plasmon dispersion relation is, in this approxi-
mation, given by [Re&~(q; e)=0 and Imez-—0]

m2e' (q2k,2
' q' q1=2, e~,~ — &u»+ sgn &u»+

q (m 2m

2 2 2@2 -1/2
x &p, + F

2m m

(q2y2 q2 2) q2—e
~

~r — &o» — sgn &u»—
I, rn ~ 2m ] ~ 2m

'a', -"'
x (o~,—,~ —

I
. (35)

2m m2 m

The cutoff wave vector q beyond which the plas-
mons are unstable towards electron-hole pairs is
obtained when

IV. PAIR-CORRELATION FUNCTION AND THE

STRUCTURE FACTOR

When two electrons are separated by a short
distance, the physics which governs their be-
havior becomes a two-particle problem, and some
exact relations can be obtained in the limit of
zero interparticle separation. "" The results ob-
tained here are valid only for a strictly 2-D elec-
tron gas. In real systems with a nonzero width w,
the results remain approximately valid for values
of interparticle separations and inverse wave vec-
tors which are larger than u but considerably less
than r, a, .

The pair distribution function is proportional to
the probability of finding two electrons separated
by a distance r. This function is normalized to
1 for large r For s.mall r, properties of g(r)
can be obtained from the square of an effective
two-electron wave function P(r}. This wave func-
tion must be a solution to a SchrMinger equation
which, for two dimensions, has the form

, + ——+ —4(r) = ~4(r),
2p, Br 2 r ~r (37)

where p, is the reduced mass of the two-electron
pair equal to one-half the electron mass. No
angular-momentum terms appear in Eq. (37) be-
cause only the s-state portion of g(r) contributes
significantly to g(r) for small r. The term on the
right-hand side of Eq. (37) includes complicated
many-body effects, but since these effects are
finite as r-0, the coefficient of the singular
terms on the left-hand side of the equation may be
set equal to zero Expand. ing P(r} as a power se-
ries in v yields

((r) = 1+ (1/a, )r+
Since g(r) is proportional to g*g,

dg (r) 2

dr „0 aa

(38)

(39)

where a, is the Bohr radius. This result differs

This again differs from Zia s expression; he gives
—,'me' on the right-hand side of Eq. (37). In view
of the complete equivalence of the final result for
the correlation energy via the random-phase-ap-
proximation dielectric function and the Gell-Mann-
Brueckner approach, we shall not give these ex-
pressions here.
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from a corresponding relation in three dimen-
sions"" only by a factor of 2 which comes from
the different form for the Laplacian.

The structure factor S(q) is essentially the
Fourier transform of the pair-correlation function
g(x). Following the notation of Pines, '

N

x p(r', r„.. . , r„}d'r d'r' g d 'r,
4=2

(48}

1 —g(r) =—Q e"'[1—S(q)],N —1

or, in two dimensions,

(40) the probability of finding two electrons at points
r, and r, is

g(r„r,) =N(N —1) Jl g (r„r„.. . , r„)

g(r) =(

e" '" [1 —S(q)] d 'q,
7T F

I
d, (qr)[1 —S(q)] q dq .

kF

(41)

' )Ig 4*;;
4=3

and the pair-correlation function is

g(r)= v g(r, +r, r, )d'r, .
N

(49)

The large-q behavior of S(q) leads to the discon-
tinuous derivative of g(r) as r approaches zero.
The appropriate behavior of g(r) is produced by
an asymptotic 1/q' dependence of [1—S(q)].

We define the function S(q) by

8(q) =1 —S(q) —&/q(1+ q')

where

(42)

44( ),, 4 r &.(or)
)dr „~0 dr kp 0 q+1

Here Io(r) is a Bessel function of imaginary argu-
ment and L,(r) is a Struve function.

Only the Struve function varies linearly with r
for small r,

L,(r) = 2r/v + ~ ~ ~ . (45)

y= Iim(q' [I—S(q)] j . (43}

With this choice of y, 8(q) vanishes so rapidly for
large q that it does not contribute to the derivative
at g(x) at the origin. Using E(ls. (41) and (42),

In (50), the normalization S/N' is chosen to make
g(y) -1 for x-~. The dominant contribution to
n(k} is produced by the kinks in g which occur at
zero interparticle separation. In E(I. (48), the
lowest-order terms in 1/k which contribute to
n(k) occur when both r and r' are near the same
electronic coordinate. For large k,

n(k)= e'"'" "(1)*(r r r )
A(r2)

x P( r', r„.. . , r„)d'r d'r'

(51)

where ««, , means r and r' are near r, and theQ(r2)
additional factor of N —1 appears because the sin-
gle coordinate (r, ) was selected from (N —1) in
distinguishable possibilities. When r is near r„
g may be approximated by

lr r,
l4(, *,r )=((~ ' 4("= * ., ", ,)

ao

(52)
and n(k) becomesHence,

dg(r) r
dr „ 0 kF

g(0)=', lim(q'[I -S(q)]J.
F

(47)

or

(4)=(O) (4O)(f
"' '"4'r)

n(k) ~ (N/S)'[ g (0)/a'o](2 v)'/ko

(53)

(54)

The probability of finding an electron of wave vec-
tor k, n(k), is given by (p being the normalized
many-electron wave function)

a
g(0) = —,' lim[k'n(k)] .

F
(55)

From the x-ray and electron-scattering experi-
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ments for large momentum transfers, one may ob-
tain S(q) and n(k) and the results obtained here re-
late the large momentum limits of these to g (0},
the zero-range correlation function. Such mea-
surements mill yield valuable information concern-
ing the zero-range correlation function, for ex-
ample, deviations from the Hartree-Pock value of
g (0}.

V. SUMMARY AND CONCLUDING REMARKS

Our main results are as follows: (i) Eq. (20),
an expression for correlation energy of a polar-
ized electron gas which includes the ring diagrams
of all orders and first- and second-order exchange
processes; (ii) the relation of Eq. (25) between the
correlation energies of the paramagnetic and fer-
romagnetic states; (iii) the expression for the

energy for high densities, Eq. (34}. This corrects
the result of Zia; (iv) we have shown that r, &2.3,
ferromagnetic state is favored. This result is
based on Eq. (25), the approximation given by Eqs.
(28} and (29) and explicit numerical evaluation of
Eq. (31}. Compare this with the Hartree-Fock
result, ' r, &2; (v) Eq. (39) relating the discon-
tinuity of the pair-correlation function to the value
of this function for zero separation. This is exact;
and (vi}

g(0)= 2 lim(q [1—S(q)])=—
4 lim[k n(k)].

(56)

This result may serve as an experimental measure
of g(0), the zero-range correlation function.

See, for instance, the collected papers on The Many
Body Problem, edited by D. Mes (Benjamin, New
York, 1961);and D. Pines, e~ggtary Excitations is
Solids (Benjamin, New York, 1962), where an account
of the comparison between theory and experiment are
given.
For a recent report on the various aspects of these
two-dimensional systems, one may refer to the sum-
mary talk by F. Stern, Surf. Sci (to be published). This
issue of Surf. Sci. has many papers on subject, being
the Proceedings of an International Conference on the
Electronic Properties of Quasi- Two-Dimensional
Sytems held at Brawn University in August 1975.
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