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Kinetic transport coefficients are studied in the vicinity of the critical point for the dynamic spherical model.
The solution of the kinetic equation leads to divergent transport coefficients at T, for the thermal conductivity
and sound attenuation in contrast to the earlier results of Ma and Senbetu. Their method is generalized to
obtain the particle diffusion constant and viscosity, which are nondivergent at T,. A comparison to mode-

mode coupling theories is also given.
1. INTRODUCTION

Recently, some progress in deriving dynamic
critical properties from first principles has been
made.!? The most notable has been for a system
of m-coupled complex Bose fields in the limit
m - «, Ma and Senbetu! (MS) were able to derive a
kinetic equation, using a microscopic Hamiltonian
as the only input. Using this equation, they cal-
culated the heat conductivity and sound attenuation
above and below the critical temperature. Some
of their results were unexpected. For instance,
the heat conductivity and sound attenuation were
not divergent at the critical point. This result was
not in agreement with dynamic scaling predic-
tions.®** Sak? found that their approximation pro-
cedure neglected the conservation laws and this
led to the unexpected results for the transport
coefficients. A corrected procedure for T >T, was
recently presented by Sak.?

Most of our present knowledge about transport
coefficients comes from phenomenological theo-
ries. These are all based on mode-mode coupling
theories®*® or on Langevin-type stochastic equa-
tions.”*® In general, they describe the existing ex-
perimental data® for critical exponents, but are not
always good for the critical amplitudes and in par-
ticular do not do very well for the amplitude
of the second-sound damping.® For this reason, it
is interesting to investigate transport phenomena
from a microscopic viewpoint, which is the pur-
pose of the present work.

The spherical model is familiar to those who
have studied critical phenomena, and the statics
have been worked out in great detail.’® The ther-
modynamics are known since they are exactly
given by Hartree theory and are summarized in
Table I of MS. Here, we investigate the dynamics
of the model in the m - limit. The procedure of
MS is clarified and corrected results for the sin-

gular part of the transport coefficients are obtained.

The analysis differs from that developed by Sak?®
since the kinetic equation used by MS differs from
the one Sak used. It turns out that the two kinetic
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equations describe different physical quantities and
this feature is discussed. The kinetic equation is
also generalized to include particle diffusion.!!*!?
This is of interest since the number of components
in the system is greater than one and particle dif-
fusion modes become important. In fact, from Hal-
perin’s mode-mode analysis,® it is believed that
the m =1 system (e.g., helium) is quite different
from the m =2 system, because of these extra
modes. Thus it is of interest to derive these extra
modes from a microscopic theory and that is done
here. To date, the spherical model is the only
model for which the kinetic equation has been de-
rived and studied. A similar calculation in the

€ expansion has not been performed.

The outline of the paper is as follows. In Sec. II,
the kinetic equation for T greater than the critical
temperature is presented and solved to obtain the
singular parts of the thermal conductivity and
sound attenuation. The viscosity and particle dif-
fusion are constant at T, and the volume viscosity
and thermal diffusion vanish. Comparison to mode-
mode theory results is also given. In Sec. III, a
similar analysis for T <T, is presented. An un-
expected infinity for the thermal conductivity and
sound attenuation is found for d <3 below T,. The
possible cause of this result is discussed. In Sec.
IV, a short discussion of important results is
given.

II. KINETIC COEFFICIENTS ABOVE T,

The spherical model is completely described in
MS, where the reader can find a review of the sta-
tics and thermodynamics. Here, we are interested
in the dynamics. To obtain results from first prin-
ciples, we use finite-temperature perturbation
theory to derive a kinetic equation. The large-m
limit is useful, as only a certain class of diagrams
need be considered. The equation is derived in
Appendix A of MS and the reader is referred to that
discussion for details, which will not be repeated
here.

We must distinguish two types of kinetic equa-
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tions, that used by Sak and the one used here and
derived by MS. In the large-m limit, one can di-
rectly write the kinetic equation for the one-par-
ticle distribution function. The linearized version
of which was used by Sak? in his analysis of the
transport coefficients for T >T.. The one devel-
oped by MS does not correspond to a distribution
function, but is related to the current-current cor-
relation function as shown below. Here we will use
the equations proposed by MS and comment briefly
on its relation to Sak’s.

We begin by defining the density-response func-
tion defined by

5 (k, w) = —i j at dx e = % ([o(x, 1), p(O) O (8)
(2.1)

with Imw >0. The speed and damping of sound

waves and heat conductivity are determined by the
poles of ¥ (k, w) in the complex w plane, or equiv-
alently the zeros of the dielectric function e(k, w),

ek, w)=1+mull(k,w), (2.2)

where II is related to § via § =mII/e. (In the pres-
ent paper m is the number of complex Bose fields
and equals 3n. We also use units in which the mass
is unity, unlike MS who use 2m,=1.) The task is
to find the zeros of the dielectric function in the

w plane. The idea is to write a kinetic equation
whose solution will be related to II. The equation
sums an infinite set of graphs which gives €(k, w)
to O(1). Since most singular behavior often comes
from the large boson populations with small mo-
menta, it is convenient to use the current response
function instead of the density-response function.
This is because the current is proportional to the
momentum and the large boson population for small
momenta are less singular. Therefore, following
MS, we express €(k, w) in a more convenient form,

ek, w)=1= (uk?/w?)[N-mIl¥ (k, w)], (2.3)

where I’/ (k, w) is the irreducible part of the cur-
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rent response function. The procedure for calcu-
lating the sound velocity and damping takes two
steps. First, we solve the kinetic equation and
solve for */(k, w) to leading order in 1/m. Then,
we calculate the zeros of the dielectric function.
The sound velocity which results from the solu-
tion of the kinetic equation does not agree with the
thermodynamic result and is not the real sound ve-
locity. The procedure that Sak uses does not con-
tain this second step because his kinetic equation
gives the correct sound velocity directly. This is
expected since his kinetic equation is for a par-
ticle-distribution function.

A. Kinetic equation

The derivation of the kinetic equation is given in
MS. The result is the Boltzmann equation in the
random-phase approximation which will be briefly
described. Define

1 (4 -
@0 3 | Gasieston o), (2.4)
s, =2sinh(3B¢,), €,=3p° +7, (2.5)

where ¢ and x are any m-component functions of
p and ¢,, x; are the jth components of ¢,x. 7 is
the renormalized chemical potential. Equation
(2.4) defines a scalar product in the vector space
of functions of p. The result of summing an in-
finite set of leading-order graphs gives!

mnjl(k’ w) =m6(<pn px> - w(p,, (P>)

=N —=mBw{p;, ¥), (2.6)
where ¢ is the solution to the integral equation,
(w =KD ( p) = by — iKe, (p), @.7)

and we have taken k along x direction. This form
is more general than that given by MS. Their
equation is in terms of ¢ and not ¢,. The form (2.7)
is necessary to obtain the diffusion modes. The
collision operator K is defined by

K(P‘ = Z (2")-3df d‘b'ddﬁ”ddb”' s(s’s”s”')"‘R(pp'p"i)”')[<p,(p)+(p,( P') - (p‘(ﬂ") - %(P"')], (2.8)

=1

and R is proportional to the rate of boson-boson scattering,

R(pplpllplll)___ (21!)4+16(E +€1_ €' = €'”)6(p+ﬂ' - P” _pul)m(i)_pn,e "E"st (2'9)

a(p,€)=u/[1+mully(p, €)].

(2.10)

In the above formulas, €=¢,, €'=¢,, etc., s=s,, s’'=s,,, etc.; and ¢(p) is also a function of k, w. The
equation is derived under the explicit assumption k< p and w <<€ and w, 2~ O(1/m). It canbe shown thatfor

r=0and p, € small,
o(p, €)~ p*~*fe/p%),
a(p, €)~ (1/m)p*=¢f =2 (e/p?),
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where f(y) is a nonzero function except for y—~ <. Thus, # is just the random-phase approximation for the
interaction, which is effectively short ranged and causes no divergences.
This equation differs from that of Sak, which is given by

(0 =-K-B)x,(p) - 7K B

The function y;(p) is related to the distribution
function for the ith particle f;( p),

Fi(D) = /() +fo (D)1 + (P x4( P, (2.12)

where f,(p)=1/(e®¢-1) and x,(p) is also a function
of k,w. The extra term on the right-hand side of
(2.11) is the Vlasov or streaming term. It is es-
sential to give the correct sound velocity, and
eliminates the need to find the zeros of the dielec-
tric function. Both methods are equivalent, but
the procedure of MS will be followed here.

B. Speed of sound

To compute {p,, ¢), we must solve (2.8). The so-

lution is obtained by inverting the operator (w—-K-p
+iK) such that

<pr’ <P> = <px; (w - kpx + iK)_lpx>-

We will assume there is a complete set of ortho-
normal eigenvectors ¢, such that

(kpx—iK)¢aj=wa¢ s

where ¢ labels the eigenvalue and the eigenvector,
while j takes on values 1, 2,..., m and labels the
elements in the column matrix ¢ ,. If such a so-
lution exists, we can write

(2.13)

(2.14)

(p”(m = Z (px) ¢a>2

W-wg (2.15)
The idea is to determine (p,, ¢) and w, as a power
series in k, following the standard steps in kinetic
theory. This method is usually referred to as the
eigenfunction method.”® The solutions of w, (k) we
are interested in decay exponentially in time and
vanish as k-0.

First let =0 in (2.14). The resulting eigenvalue
problem for ¢, has a (d+m +1)-fold zero eigen-
value corresponding to collisional invariants which
form the null subspace and an infinite number of
relaxational modes with nonzero decay frequencies.
As usual, d+2 modes correspond to the conserva-
tion laws for particle number, momentum, and en-
ergy, while the additional m — 1 modes are related
to particle diffusion. These extra modes were not
considered by either MS or Sak. In the spherical
model, above T, there turns out to be only m -1
such modes, unlike the m(m — 1) predicted by Hal-
perin.® This is because the model Hamiltonian con-
tains only density-density interactions and does

dpr
f(”‘;—"‘;, "2, (p') == iKx4(p).

(2.11)

r

not allow for particles to change their component
label. The extra modes found by Halperin prob-
ably exist, but only for a more general interaction.

The null space is spanned by the orthonormal
eigenvectors,

r‘l'ﬁ ﬁlj
1 1
1 : S U dA X,
Szl I vl R v
— - hl_d
1
1
Xa:—\/Az1 . Das G=%,9,2,...,
) —
1 1)
-1 1
0 -2

E

ol

&

>1/2

0 .
-
\-O_J

1 7
1
= 1 .

Xm =1 [on - DA,? )
1

- om=1)

where the functions x,,..., x, -, are the m — 1 dif-
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fusion modes and the A,’s are normalization con-
stants,

A0=<1,1>=f(12:%;s;2, (2.16)
A, =NT/m, (2.17)
A,=NT(d+2)(p?),, /m - d*A%/A,, (2.18)

where (p?),, is the average of p* with the equilibri-
um function fy( p).

The next step is to let k be different from zero
in (2.14) and treat terms linear in k. Because of
the cylindrical symmetry around k, there are only
three nonzero matrix elements (p,, ¢,). These
three eigenvectors x,, X,; X. combine to give the
sound wave velocity and thermal conductivity, while
Xy Xg» .. correspond to the d -1 transverse vis-
cous modes and X,;,Xzs ¢ « - Xm -1 aTe€ the diffusion
modes. To find w, to first order in k, use first-
order degenerate perturbation theory to diagonal-
ize kp, in the three-dimensional subspace spanned
by X o5 X, and X, as the other modes decouple and
have zero eigenvalues to this order. The eigen-
values w, for this subspace are

wo =0+ O(F?), (2.19)
W, =% Cok + O(R?), (2.20)
where the velocity ¢, is given by
1 d+2
cf,=FA€/A,+A1/AO= 7 (Ve - (2.21)
The eigenvectors are
1T1/AN\2  [A)\Y?
=== (Le Y il §
ooz [a(a0) xe-(3) k] (2.22)

1 1/A)\Y? 1 (A\Y?
o ‘/_2—[ Co <Ao> XO+Xltcod (A1> XE-J,

(2.23)
and corresponding scalar products,
(bys o) = O(k), (2.24)
(bes 92)=(34,)2+ O(R) . (2.25)
This result determines (p,, ¢) from (2.15),
(Pr, 9) =A 0/(* = ciF?). (2.26)

Substituting this into (2.6) and then (2.3), we ob-
tain

€(k, w)=1=uNk/(w* - 2K7), (2.27)
whose zeros are given by
W® =K, F=uN+ci. (2.28)

This corresponds exactly to the thermodynamic
result & =(8P/aN), as expected.

C. Kinetic coefficients

We must now examine the O(k) terms in (p,, ¢ »
and O(k%) terms inw,. Following MS, let @ be a pro-
jection operator excluding the null space of K and
P=1-Q. To O(k?), MS find the following equa-
tion for P¢:

[PE B -iPK-BQU/K)QK BIPp oy = waPdoy  (2.29)

The eigenvalue solutions of (2.29) to O(K?) are
easily calculated in the new basis ¢, ¢,,

wo =~ Dk, (2.30)
W=+ Cok —iT R? (2.31)
w,=—ink?/p, (2.32)
wp=~iDF?, (2.33)
where
’ 1
Do=7, <¢o,1>,xﬁ>2;gm‘, (2.34)
8
1
T = Z,<¢upxxa>2my (2-35)
B ws
’ 1
/0= 32 (X bXsF o7 (2.36)
B B
’ 1
D=3 <x1,t>,xB>2;g,7, (2.37)

B8

p is the density, and the sum excludes xg from the
null space of K. The scalar product needed to
evaluate €(k, w) is given by

A A

=.i. 0 1/2.
<p:’ ¢0 dCo ( A1 > chk + O(kz), (2.38)
(Drs 0:)= (A2 (A FikT_/2¢,) + O(R?), (2.39)
where
’ 1
7= ) (9us DX 8XX 6P -) oy - (2.40)
8 B

Again, because of the cylindrical symmetry, only
these three matrix elements are nonzero. The
real thermal conductivity and sound attenuation are
not given by (2.34) and (2.35), but by the zeros of
the dielectric function. The true viscosity and dif-
fusion are given by (2.36) and (2.37), since they
are completely decoupled from the calculation of
the dielectric function. Substituting the results of
(2.38), (2.39), and (2.15) into (2.6) and then (2.3)
gives e(k, w),

uNE*[1 +i k¥ (1, - 7_)/w]
W? — cgk? +2it, Krw

uNE A A, 1

w d%2A2" 0w +iDRE "

ek,w)=1-~

(2.41)

The zeros are
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wo = = iD K, (2.42)
w,=+ ck — 3iTk, (2.43)
with
Afg (N +4,/A0) =S (2.44)
r=27,+Dy-Dp, (2.45)

and where we have used

T,=T-=DyA A,/ d*c: A}

These expressions are exact in the large-m limit,

and we need now only evaluate the matrix elements
or at least their singular temperature dependence
as a function of ¢t=(T -T,)/T,. This is the difficult
part of the calculation.

Before doing this analysis, it is of interest to
rewrite the transport coefficient in a more instruc-
tive form. The restriction on the sum over 8, can
be removed by noting that

<X o DX a') Sw (011)5 aa’
and that the spectral resolution of (K — €)' is

1 1
_e—EB:Xew(Bo)_GXm

We then get

Dr=t = tim 25 (o, (7 - L2000,

DC, e—-o"AE
1 , d+2
XK—G (P - d <P )av)p‘>’

(2.46)
_ _1 2 2 1 2
I‘—elirgAl<(i>x—D/d),K (Px—l’z/d)>
+<L 1_>5 47
< C)p (2.47)
n=tim 2 (np, g p.b) -
Ao im L _1
T A, <p"’K—€ p">' (2.49)

Note that the heat flux p_{ p2 - [(d+2)/d]{p?),}
coincides with the conjugate flux of Mori.* Thus
the kinetic theory produces Kubo-type formulas
with conjugate fluxes.

Ap is the transport coefficient theory for diffu-
sion and y is a susceptibility.® From static scaling
theory,®

x~¢& forT,T,,
x=2<p/V—d,

(2.50)

where £ is the correlation length (r
spherical model) and ¢ is the crossover exponent

~§—2+n ~E-2 in

for a perturbation proportional to [ p — (1/m)p],*®
¢@/v=2+0(1/m) in spherical model.

Finally, let us consider the expression for sound
attenuation. Sak has shown that the first term in
(2.47) just equals [2(d-1)/d]n/p. By comparing

the hydrodynamic result,!+'®

ETERERETE
F'p((cu'c)“ a e

with (2.47), we see that the volume viscosity ¢ van-
ishes as in the Boltzmann gas. Since the masses
of all the components are equal, we find that the
thermal diffusion'! g, also vanishes for this model.

D. Spectrum of K

To complete the analysis, we must find the
eigenvectors and their corresponding eigenvalues
which are not in the null space. This is impossible
to do exactly and we must resort to approxima-
tions. This is where MS made a crucial approxi-
mation for K which violated the conservation laws.
This violation led directly to their result of non-
divergent transport coefficients for x and I'. Here
we follow the analysis of Sak,? which while not
exact, satisfies the conservation laws. Write the
collision operator K as a sum of two terms

Ko;=w(plp;+He, ,

where

(2.51)

w(p) =1 m sinh(3B¢,)

ff,[ _ﬂ;f)# Iﬁ(P—P”,e-e")P

6(P+P -p"=p"dle+e’'—€" =€)
sinh(1Be’) sinh(3Be” ) sinh(4B8¢™)

(2.52)

and H is the Hilbert operator consisting of the
three remaining terms in K. Note that w(p) is not
an integral operator, just a multiplicative factor.
The integral in K is well defined and vanishes ex-
ponentially at large moments. Counting powers
shows that H is also well defined at small mo-
menta. We will assume, that the relaxation spec-
trum consist of a continuous spectrum and a dis-
crete spectrum. In some cases, when the Hilbert
operator is completely continuous,'” it can be
shown that H can add only discrete values to the
spectrum. While this is probably not true here,
we will assume that the continuous spectrum is
well approximated by the explicit p dependence in
front of integral in (2.52). While this may not be
exact, it should be sufficient for determining the
singular part of the transport coefficient in the
limit » -0, but could possibly be off by factors of
logarithms. We proceed under the assumption that
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the relaxation spectrum has the form
w(p)=Cu?sinh(3B¢,) , (2.53)

where C is some unknown constant.

The problem is now to determine xgz(p). If we
made a relaxation-time approximation as in MS,
we would replace the collision operator by the
multiplicative operator K yx,(p)=w(p)x,(p). How-
ever, this procedure would violate the conserva-
tion laws. In particular, the solutions could be
taken in the form y (p) 5(p - q), which is not
orthogonal to the null space of K. Sak used a gen-
eralized of the relaxation-time approximation by
constructing a model collision operator K,, which
has the spectrum w(p), but preserves the con-
servation laws.'® Unfortunately K,, is not equal to
its transpose as K is and one should really go back
to the initial stages of the calculations and include
this fact. Instead, we shall add to the 6 function,
additional terms so that it will be orthogonal to the
null space. This takes into account the conserva-
tion laws. Therefore, we solve the eigenvalue
equation

Kx (p)=w,Xx,(p),

which has the eigenvalue w, =w(g) given by (2.53).
There are several corresponding eigenfunctions,
which depend on the symmetry of the solution de-
sired. The first solution, contains no concentra-
tion gradients and corresponds to uniform flow,

w(p)

X (p)=B6(p-q) +Pm-)

X (CoXo+CyXe**** +CcXe) (2.54)

where P means principal value and the C,’s are

e R __w(p)
(Pab? Xq) Bq((p,p,é(p a) <1>,p2,Pw(p)_w

Here only the 6 function and C, term contribute.
For small ¢, the second term dominates and gives

2 - 9x
(pxp ’xq> const Sinh(%BGQ) . (2-59)
This second term was not included in MS and since
it dominates for small g, a different result is ob-
tained. Since the specific heat is constant in this
model, for x we have

1 d’q q2
~ t — .
roeonstiz J ny w(g) sinh®(38€,)
~(const/u?)gi~? | (2.60)

Comparing this result with the form expected from

constants determined from the orthogonality con-
ditions (X, X, =0. X,(p) does not contain any dif-
fusion terms since the 6 function is already orthog-
onal to y;,7=1,...,m. This eigenfunction gives
nonzero contributions to D,, I", and 7, but because
of its uniformity does not contribute to D. Follow-
ing the analysis of Sak,® we find that the relevant
constants for (¢2,7») small are

B,=2sinh(3Be,)A(r/q?) , (2.55)
C,x=B (X, 0(B-Q), (2.56)

where A(r/q?) is a dimensionless function.

To determine the diffusion, we also need the
eigenfunction which corresponds to nonuniform
flow or a concentration gradient. The simplest
of which has components 1,2 moving in opposite
directions. That particular eigenfunction is

- - . - w(p) ~ -
= - —_— C ,
X1 = B,0(p q)+Pw(p)_w(q) (CoXo*CeXe)
- (2.57)
xd2=x-ql’ xqsznnn :qu:O .
where B,=3mB,. Xy, Xy -+ a0d X1, 00, Xmoy ATE

orthogonal to )Zq and therefore do not contribute to
(2.57). There are m— 2 other eigenfunctions sim-
ilar to (2.57) which describe concentration gradi-
ents for the remaining components, but the two
given here are sufficient to determine the trans-
port coefficients.

E. Singular part of the transport coefficients
The singular parts of the matrix elements in
(2.46)-(2.49) are now easily determined. For the
heat conductivity we need the matrix element {the
enthalpy terms [(d+2)/d]{p?, do not contribute
by orthogonality}

@ x,><x,,6(5—a))> . (2.58)
scaling,’®
K ~ constg?tz ¢ (2.61)

we conclude z =2,

Similar calculations for viscosity and second at-
tenuation show that?

n~(1/u2)const+const’(1/u2)52"’ , (2.62)
T ~const(1/u?)£t-¢ | (2.63)

Both results are also consistent with scaling.

The singular part for the diffusion is also easily
calculated. The uniform eigensolution X, gives
no contribution to D, but the solution x, do con-
tribute. The matrix element we need is



(Drs X =B (D5, 6(0- Q) - (2.64)
For small g,
= ~ qx
{Dy»Xqn = const _sinh(%ﬁeq) . (2.65)
Thus we get finally for D,
D= const dlq q2
Aqu? J (2m)7 w(q)sinh(3Be,)
const
i R (2.66)

u

where we have used A,~r ~(4=/2 ~¢4=4_ This re-
sult is consistent with Halperin’s since

D= z‘_Q..gz-bz-d/gZ(ﬂ/v-d,.gO
X
for the spherical model. Halperin’s claim that
z=¢/v for m>2 and D~£"¢/? cannot be checked
by the present calculation since we do not know z
beyond the lowest order.

The singular parts of the transport coefficients
are the main result of this section. The results
for k, I, and n agree with those of Sak and that for
D is new. The analysis also shows how important
the conservation laws are in obtaining singular
parts for ¢ and I".

(2.67)

. KINETIC COEFFICIENTS BELOW T,

A. Kinetic equation

For T <T,, the Bose condensation gives rise to
several important features, one of which is second
sound. The overdamped thermal conductivity mode
splits into two propagating modes known as second
sound below 7,. The condensate introduces new
collision processes and as a result, new terms in
the collision operator. Also for m>1, the cor-
relations below T, do not decay exponentially, as
they do above T, but rather according to a power
law,

We describe the condensate by a nonzero average
of {(a,,) =(N,)*/2. In spin-vector language, we have
a nonzero average of the spin in Rey, direction in
spin space.2’ This breaks the rotational symmetry

—
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in spin space and the number of bosons with com-
ponent 1 are no longer conserved. The Green’s
function G, is different from G,=G,=-++=G, =G,
and we define

limG'(p,0)=7, ,

p—0 (3.1)

limGi'(p,0)=7, .

»—0
These are the inverse of the magnetic suscepti-
bilities parallel and perpendicular to the direction
of an “external field” . In the limit 2 -0,%° , and
¥, vanish, and can be set equal to zero when there
is no ambiguity. For spin systems, the 1 direc-
tion can unambiguously be chosen by applying a
small field ~# and taking the limit 2z -0. For non-
magnetic systems, the component labels 1,...,m
can no longer be thought of a species of different
particles as was done above T,. The number 1-
component is now the nonconserved combination of
the m-original wave functions, while the other
m -1 components are conserved combinations.

As in Sec. I, we determine I1/ by solving the
kinetic equation. To simplify the notation and
analysis, we will solve only for the first- and
second-sound attenuations. Since there is one less
conserved component, there will be only m — 2
diffusion modes. The diffusion and viscous modes
are similar to the results above T,. The inter-
esting new feature below T, is the second sound
and we will restrict our attention to it. Thus we
can write ¢ as a pair

¢=(:l! ) (3.2)

where we have used L for the equivalent compo-
nents 2,3,...,m. The scalar product is now

1 d? -
<¢,x>=;lf(2—ﬂ% s¥loxatm=-Dox.],  (3.3)
where
s=2sinh(3B€), €=3p>. (3.4)

We write the new kinetic equation as
(w—l:-l’))wﬂ;-ﬁ—iK(p, (8.5)

where we can express K as 2x2 matrix!:

Koi=s 2 @ [ [ [ atp atpr aipm(s'stsmP R(p 0" b Hou()+ 9,5 - 0,(4) 0,5

x {1+ Ny(2m)*[6(p")5,,,s" + 8(p")6,,,s" + 6(p™)5, ,s™]}. (3.6)

In (3.6), R(pp’p” p™) is still given by (2.9), we
have set [¢,(p)],.,=0 and expanded in powers of
N,/N, since N,/N~(T, -T)/T,.

The current response function is now given by

—

mI¥ (k, w) =N’ ~mBw Dy ©) - (3.7

Again, we solve for (py, ) in powers of k, cal-

culate the dielectric function €(k, w) and look for
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its zeros to obtain the sound velocity and attenua-
tion. A generalization of Sak’s kinetic equation
for T<T, turns out to be more complex, as the
Vlasov term includes contributions from fluctua-
tions of the condensate. As a result, two addition-
al equations, one for the superfluid velocity and
one for the fluctuations in N, are necessary. These
three coupled equations are not as straightforward
to solve as the MS equation. This is because Eq.
(3.5) describes only the above condensate particles
and the dielectric function automatically takes into
account the fluctuations in N,, at least to lowest
order in 1/m. This makes the calculation very
similar to that for T>T, and we follow the MS
procedure here.

B. Speed of sound

To solve for ¢, we follow the procedures for
T>T,. First set £=0 and find the null -space
eigenvector of K. Since we are only interested
in uniform eigenvectors, there is a (d+ 2)-fold
degenerate zero eigenvalue. The three-dimen-
sional subspace in the null space with cylindrical
symmetry around the x direction is

xO=A(-)1/2<0>,
1

1 2
Xe =AZ1/2 1>1’ ) (3.8)

1
Xx:AIl/Z( >px'
1

The normalization factors are given by

A =T+ 2Xp?, N'/m, (3.9)
A,=N'T/m, (3.10)
Ay~ (3.11)

Since A,—~«, the matrix elements of interest in-
volving x, drop out and we can safely ignore x,.

Now let & be nonzero and solve for w, to O(k)
and ¢, to O(1). Using degenerate perturbation
theory, we diagonalize k D in the two-dimensional
space spanned by x, and x,. The eigenvalues w,
are cyk and eigenvectors are

=(I/NV2)(x £Xx) (8.12)

where ¢, is given by (2.21). Putting this result
into (2.15) to obtain {p,, ¢) and in turn into (3.7),

p— )

- 1 /(pi-p* 1 /-1 -
T 512132:4\( d >’ K-\ a >>ielir32A

<p,(1>2 22259 )
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we have

mIl* =N’ ~[mA Bw?/(w? - c2k?)]. (3.13)
The dielectric function is then

ek, w)=1-u<i£§i+—w-gli—'f§?>. (3.14)
From €(k, w)=0 we find

w* = WPk (N + c2) + uN,c2k* =0, (3.15)

which exactly agrees with Khalatinkov’s?! result
after inserting the known thermodynamic functions.?
To first order in N,/N, we find

uN N2
wz/k2=cf=c§+uN-uN—jfgr 0<N>, (3.16)
o

uN,c2 Ng
o= 3= 0% 01 (3.1

¢, and ¢, are interpreted as the speed of first and
second sounds, respectively.

C. Damping of sound waves

The next terms in w, and ¢, are obtained as in
Sec. II. To O(k?®), the eigensolutions of (2.29) in the
new basis ¢, are

W, = £Cok =T, 12, (3.18)
(b, 02" =2A,(1FikT./c,), (3.19)
where 7, and 7_ are given by (2.35) and (2.40) with

A,—~~. The dielectric function can be calculated
from (2.15) and is given by

uN'k2[1+ @R2/ w)(T, =7.)]
w* = cok® + 20T RPw

€k, w)=1 -uNp?/w?> —

?

(3.20)
the zeros of € are
w=xck —i3T %, (3.21)
w= ﬂ:Czk - l%rzkz ’
with T', , defined by
c?
-Gz e (1, ) G2t
Ci,2 =Cz,y €12 = C2
(3.22)

These matrix elements are more illustrative in
the form

16(2—d+2<p2>a.) >

(3.23)
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Within the proportionality factors, the first term is the viscosity and the second is the thermal conductiv-
ity. Expanding (3.22a) to first order in N,/N and comparing it with the hydrodynamic result,*"'** we find
¢,, the second-volume viscosity, vanishes. This is to be expected since £ =0 for T>T,.

One advantage of the MS procedure, is that it directly calculates correlation functions and €(k, w). The
density -response function & (, w) and the structure factor S(k, w) are then easily accessible. We find

F (B, w)

_ NE{=w’+ No/N)Gl + ik’ (No/N)(T, +7.) 4 7, =71}

(3.24)

By comparing this with the usual hydrodynamic re-
sult,?! in particular the numerator, we find that
£,=¢,=¢,=0 for this model. The structure factor
S(k, w) is proportional to Im& (¢, w) and is given

by the usual hydrodynamic form.

D. Temperature dependence of I'y and I,

The singular parts of the matrix elements 7,
and hence I', , can be determined as was done in
Sec. IIE above. For T <T, the continuous spec-
trum of K starts from zero and does not contain
a gap. There is also several new features due to
terms in K which appear below T,. Besides the
streaming mode solutions x, as found above T,
we must also consider the eigenvector for the
component-1 bosons,

xbzA;l/2<1>’
0

which is no longer in the null space of K. This
new vector contributes to the viscosity piece of
7, [see Eq. (3.23)] as shown by MS, but is not the
most divergent singularity. Here we are interested
in the dominant contributions to 7, which comes
from the streaming modes yx,.

Since m is large, the L-component bosons give
the dominant contribution to 7,. The energy eigen-
value is now given by

w,(q)~Cq?+C'(Ny/N)g*? (3.25)

for small ¢q. C and C’ are constants and the second
term comes from the added piece in x below T,.

It is now straightforward to obtain the singular
pieces of I', ,. From (3.23) we see that 7, are
made of viscosity and thermal conductivity con-
tributions. As the latter is most singular, we
shall investigate it first. The eigenvector y,, cor-
responding to w,(q) is similar to (2.54) and we

find the matrix element

(pb% Xo ~ constq,/sinh(:84%) .

The thermal conductivity is thus

(3.26)

_const r di q:
u® (2m)7 sinh*(£8¢®)(Cq”+ C'(N,/N)g* %) "

(3.27)

(w? = R +iT PP w)(w® - c2k® + T,k w)

r
Since the spectrum w,(g) is continuous down to
zero and 7, 7, =0 on the coexistence curve, there
is no lower cutoff on the integral (3.27) as above
T.. For d>3 the integral is convergent and goes
like const(N,/N)¢-#/4-2) However for d=3, the
integral has an infrared divergence and
k~const{fd, d>3, (3.28)
K=o, d=3,

where £, ~(N,/N)™*/ @2, The result for d>3 agrees
with scaling whereas the infinite result for d=3

is unexpected. In the lower dimensions, the mean-
free path becomes infinite and as a result « goes
to infinity. Above T, this infrared divergence is
eliminated by the chemical potential » which is a
lower cutoff on the integral. The correlations de-
cay like a power law below T, and this is probably
related to the divergence in (3.28) for small d. It
is expected but not proved that higher-order in-
teractions, will reduce the dynamic exponent z to
a value less than 2 and the integral will converge.
This is expected to occur for helium, m =2 and

z~ 3, since known experimental results® give well-
defined thermal conductivity and sound attenua-
tions below T.. The sound attenuations for d>3
are

I, ,~const, ,£¥?. (3.29)

The infinite result for «x and I, , for d=3 means
that in the m -« limit the sound velocity below T,
is not defined. This is probably an artifact of the
large-m limit and finite results for I', , should be
obtained in more realistic models. MS did not have
this difficulty as their result for the thermal con-
ductivity was not singular and did not contain these
infrared divergences.

The viscosity, does not have this difficulty as the
integrals are convergent for all dimensions-and
results for 7 agree with scalings.

IV. DISCUSSION

The leading singular behavior of the kinetic
transport coefficients have been calculated for
the spherical model in the large m limit. While
this model does not correspond to any physical
system, the present paper and that of Ma and
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Senbetu! and Sak® indicate the mathematical com-
plexity in deriving and solving microscopic equa-
tions for critical dynamics. The procedure follows
closely the abundance of work on Boltzmann’s
equation and is the only known method of obtain-
ing a microscopic proof for dynamics scaling. Un-
fortunately the present analysis does not give z
beyond the lowest order and thus does not really
test dynamic scaling.

A word on further calculations using this pro-
cedure is in order. One would like to do a similar
calculation in the € expansion for small values of
m (e.g., helium) but this turns out tobe quite dif -
ficult. The lowest-order calculations, with K
given to order €® is a straightforward generaliza-

tion of the present work and gives 2=2+0(¢), as
expected. To the next order, however, many of
the assumptions made in the deviation of the kine-
tic equation (see MS, Appendix A) are no longer
valid and it is not clear how to write down the kine-
tic equation let alone solve it. At this time there
exists no consistent calculation of the kinetic equa-
tion to order €*, and as a result, a microscopic
derivation of dynamic scaling is not available.
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