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Correlation function and susceptibility of site- and bond-diluted Heisenberg paramagnets
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Generalizing the recent work of Collins, the wave-vector-dependent susceptibility and the static correlation
function for a randomly diluted Heisenberg paramagnet on a Bravais lattice with quenched-site, or nearest-

neighbor exchange-bond, dilution is studied by high-temperature series-expansion techniques. The first five

coefficients for the spin correlation function S(k) and susceptibility y(k) are calculated for arbitrary k, the sign

of the exchange and the spin magnitude and the magnetic site c and bond p concentrations. Numerical results

for these functions are presented for various spins and for k along the symmetry directions (1,1,1) and (1,0,0).
Because of the generality of the present series, their length is rather limited, and as such they are not suitable

for a careful analysis of the critical region. Nonetheless, to get a qualitative feel for the accuracy of the
present results near the transition region, we have used Pade approximants for determining the correlation
length g(T) as a function of the reduced temperature & = [T—Tc(+(random)]/Tc(+(random). In this manner,
we estimate that the numerical accuracy of our results should be reasonable as long as the system is
moderately above the transition temperature, e.g., e &0.5.

I. INTRODUCTION

The dynamics of randomly diluted Heisenberg
ferro- and antiferromagnets with quenched in site
and bond dilution has been analyzed at low tem-
peratures in the coherent-potential approximation
by several authors. ' ' In the opposite limit of high
temperatures, we have recently given an approxi-
mate description of the same by a phenomenologi-
cal procedure which makes use of the first four
frequency moments of the correlation function,
which are determined in the limit of infinite tem-
perature where magnetic short-range order is
vanishing. 4

For finite temperatures, however, the paramag-
netic short-range order is of central importance.
Here, only the statics of the random system has
been studied. 'The procedure consists in analyzing
the high-temperature series expansion for the
k= Q susceptibility. ' corresponding work for
arbitrary wave vectors is available only for the
nonrandom, undiluted ("pure") system. '

In the present paper we generalize Collins's'
study of the wave-vector-dependent properties
of the pure Heisenberg paramagnet to arbitrary
bond or site dilution. In other words, we work
either with a system where the concentration of
sites occupied by magnetic atoms is c (0 &c—1)
or where the concentration of connected nearest-
neighbor bonds is p (0& p~l). The relevant, con-
figuration-dependent Hamiltonian is written

co~ a= -Qip(~ ( j } ~ g (' g.
tf

S ( )= Q Qe '"'(c,s, c~sg},.„„,
(c,p) f

(1.3)

where P = (keT) ', p, is the Bohr magneton, and g
the gyromagnetic ratio. The superscript o. de-
notes x, y, or z, component of the spin. [Because
of spatial isotropy of the Hamiltonian (1.1) in the
paramagnetic region, both the susceptibility and
the correlation function are independent of the
superscript n. As such, for convenience, this
superscript can, without any ambiguity, be dropped. ]
Both the complex time dependence of the spin op-
erators in Eq. (1.2) (specified in the Heisenberg
representation) and the canonical averages, de-

The given distribution of the magnetic sites (or
the connected bonds} is specified by the random
variables c, (or p, ~}, which are the usual site (or
bond) occupation operators such that c, is unity if
site i is occupied by a magnetic atom (or, p, ~=1
if the exchange bond ij is connected); otherwise,
they are zero. Also J(ij )=+J only if i andj are
neighboring sites and the upper and lower signs
imply ferro- and antiferromagnetic coupling, re-
spectively. The magnitude of the spin S()f= 1) is
arbitrary as are the site (or bond) concentrations
c (or p).

The wavelength-dependent susceptibility y(k),
and correlation function S(k) are defined as

(k)=g p*() E E. ~ ~f 'di(cscots~(i(ix))
(c~) f 0

(1.2)

and
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noted by pointed brackets with subscript "config,
"

are with respect to the configur'ation-dependent
Hamiltonian given in Eq. (1.1). Finally, we note
here that because we are dealing with quenched
spatial disorder, it is essential that in order to
achieve appropriate thermodynamic averaging,
the weighted summation over all the possible con-
figurations, consistent with given concentration c
(or p) of magnetic sites (or bonds, as the case
may be) denoted by

II. SERIES EXPANSION

X(k}=&a'u'PQX. 8 "
n=0

(2.1)

%hen the wavelength-dependent susceptibility
y(k) and the correlation function S(k) are studied
by the high-temperature series-expansion tech-
nique, ' they are written

S(k) =QS„O ",
tf=o

(2.2)

be carried out last.
In order to get a qualitative measure of the mag-

netic short-range order, we expand the correla-
tion function S(k) in a Taylor expansion about the
magnetic reciprocal-lattice vector Q of the given
system, i.e., Q=(q, q, q), where for a ferromagnet
q = 0; q = n for an antiferromagnet of sc lattice
structure and 2w for that of bcc or fcc structure
(we choose our units such that the primitive cube
edge a, is of unit length):

S(k) =Sgo[1+ ]'(T) Ik -ql'+O(lk -ql')] (' }

Recasting this in the Qrnstein-Zernike form, the
following asymptotic form is obtained:

S(k) = S(Q)&'(T)/[&'(T) ~k-Q~'],

where the upper and the lower signs correspond,
respectively, to the cases of ferro- and antiferro-
magnetic exchange coupling and where K(T}
=1/$(T}. By Fourier inversion, this gives the
expression

S(r) = (e «"/r)e 'o'. (1.6)

In this fashion the quantity $(T) emerges as a natu-
ral measure of the effective co"relation length. As
is well known, the correlation length diverges as
the critical temperature is approached. Away from
the critical region, the correlation length is finite,
approaching zero at T = ~. Thus, it also provides
a convenient measure of the short-range order
effects in the paramagnetic phase.

where 0 is a dimensionless reduced temperature—
defined as the ratio skzT/~Z~. For the system
being considered here, the standard procedure for
computation of the high-temperature series ex-
pansion, ' has to be generalized so as to deal with
the additional feature of spatial randomness. For
instance, the coefficient S„ in Eq. (2.2} is now given
as

(2.3)

Here the canonical expectation value, denoted as
( ~ ~ ~ )„, has to be evaluated (in the infinite-tem-
perature limit) for the given configuration: the
configuration average, over all possible such con-
figurations, is taken next.

We have evaluated the first five coefficients in
this series expansion for g(k) and S(k) for arbi-
trary Bravais lattice, i.e., for sc, bcc, and fcc
lattices. These results have been checked by
making comparisons with available results rele-
vant to several limiting cases. We have compared
our results for the site-diluted problem in the
k= 0 limit with those given by Morgan and Rush-
brooke. ' For the pure Heisenberg system (i.e.,
c=p= 1), we found our results for arbitrary k
values to be identical to those of Collins' and
finally for the bond-diluted system our results
were checked against the available S = &, k = 0
results given by Brown etal. '

The final expressions for the coefficients X„for
y(k) and S„for S(k) are given in the following:

(a) First, we present the results for the site-
diluted system:

Xo=cx, X, =2e x Z, , X2= —3zc x -3 e x Z, +4c x Z2,

X, = 3 zc'x'- '- zp, c'x'+[ —'(-V2x'- 24x+ 3)c'x'- -'(z —1)c'x']Z, —-'c'x'Z, + Sc'x'F, ,
X,= zg(8x'+ 4x-1)+ 5 [6(z —1)+4p ]cx- -'p, c'x') c'x'

ri+(5 (12x2+ 6x ——', ) + [——"4x'p, —~-'xp, + 2(z —1)+—',p, )cx+ 16(1—3 z)p, c'x') c'x'F.

+ [-,'(-96x'-32x+ -" ) —
—,
' (3z -4)cx]c'x'Z, -4c'x'Z, + 16c'x'Z, ;

(2.4a)
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S3 = [—(-9x'-3x+ 1)+ 4 (2-2z-P, )cx]c'x'Z, —4 c'x'Z, + 8c~x~Z, ,

S,=( ——', (-12x'-6x+ 1)+[—+''p x'- —", p x+ -"(z-1)+ '-, p ]cx —
—,
' [2(z —3)p, +p,]c'x') c'x'Z,

+ [—-', (24x'+ 8x- 1}-,-'(3z -4}cx]c'x'Z,—4c'x'Z, + 16c'x'Z, .
(b) The corresponding results for the bond diluted case are

X =x, X = 2px'Z, Xp 3 Spy 3pX Zy+ 4p

X,= —', z(1-4pp'x)px'+( —', (-24x'-8x+1)+ Q~-2(z —1)px]]px'Z, —~p'xsZ, +8p~x4Z~,

X,= —,
' z [(8x'+ 4x-1)+ 6(z- l)px+ 4pp'x- '—,'p, p'x']px'

+ —',f (12x~+ 6x -—', ) + 10(z —1)px+ p P'x[ —144 x~- -' x+ 2- 80 (z —2)Px])Px Z,

+ [—'(-96x'-32x+ —', )- 8 (3z —4)px]p'x Z, -4p3x Z, + 16p4x'Z;

So xy Sj 2Px Zx ~ Sa= P'+ Zi+4P g Z2&

S3 = -[5(-9x'- 3x+ 1)—2(z —1)px —p,p'x] px'Z, —4 p'x'Z, + 8p'x'Z~,

S,= —', [(12x'+ 6x-1)+ 10(z- l)px+ —', p, (-216x'-32x+ 9)p'x-8(2zp, —4p, +p, )p'x'] px'Z,

+ [-",(-24x'- 8x+ 1)—
—,
' (3z -4)Px] P'x'Z, —4P'x'Z, + 16P"x'Z, .

(2.4b)

(2.5a,)

(2.5b)

We remind ourselves that here we are dealing with
a system with quenched in randomness involving
site or bond dilution. The lower ease c and p de-
note the relative concentrations of the magnetic
atoms and connected exchange bonds, respective-
ly, and x = s S(S+ 1). Other notation is the same as
that used by Collins, ' with z being the coordina-
tion number of the magnetic lattice and p„ the num-
ber of closed nonintersecting circuits of (n+ 2)
neighboring atoms involving both a given atom and
a particular one of its nearest neighbors. Rele-
vant to the lattices considered here, i.e., sc, bcc,
and fcc, these quantities are listed in Table I.
Finally, here Z„denotes the sums of cosines of
the scalar product of k and, starting from the
origin, the end points of all the nonintersecting
walks of n steps leading to neighboring atoms.
These sums are rather tedious and for convenience
they are enumerated for lattices of cubic sym-
metry, in the Appendix.

Correlation length. Collins' has given high-
temperature series expansion for the spin-corre-
lation length defined in our Eqs. (1.4)-(1.6). It is
interesting to examine how the series expression
for the spin-correlation length $(T) varies with

Q -kl'+O (2.6)

The complexity of the factors Z„makes the gen-
eration of this expansion rather tedious. In view
of the usefulness of the coefficients Z„' and Z„" we
have listed them in Table II.

Inserting the expression (2.6} into Eqs. (2.4b) and

(2.5b) and combining them with Eqs. (1.4) and (2.2)
we can write

(2 &)

where 0 is as defined earlier following Eq. (2.2)
and where

spatial randomness caused by magnetic (site and
bond) dilution. To this end, in the following we
generate the appropriate series expansion for $(T).

As is evident from the structure of the series
expansion for the correlation function given above,
the wave-vector dependence of S(k) enters through
the factors Z„, for which detailed expressions are
recorded in the Appendix. Because we need to
represent S(k) in a Taylor's expansion around the
magnetic inverse lattice wave vectors Q, it is
convenient first to write

TABLE I. Parameters z, P ~, and P& for cubic lat-
tices. TABLE II. Parameters &'„and &'„' for cubic lattices.

sc fcc Z) Z~ g I
goal pit

4 1 2
gn

4

z
~i
Pg

8
0

12

12
4

22

sc +6 30 +150 726 + 1 12 +97 672
bcc + 8 56 + 392 2648 + 1 16 + 177 1696
fcc 12 132 1404 147 00 1 24 409 6012
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p„=S'„ for J&0, p„=S'„ for J&0.
We have listed these coefficients for lattices of
cubic structure and for S = —,

' and -', in 'Table III.
Note that for convenience the listed numbers have
not been rounded off and moreover only five-
figure numerical accuracy has been maintained.

From these tables it is evident that because the
leading term in the series for P(T) is proportional
to the concentration (of magnetic spine or of mag-
netic bonds, as the case may be) and moreover is
of the order 0 ', therefore the spin-correlation
length approaches zero as the inverse of the sys-
tem temperature and/or the magnetic concentra-
tion is reduced toward zero. Indeed, on physical
grounds we know that if the magnetic concentra-
tion fell below the percolation concentration (for
the given lattice), the macroscopic eonnectivity
of the magnetic lattice would break down and as
such the spin correlation length would reduce to
zero. This critical feature, however, cannot be
expected to be evident from the simple series ex-
pansion given here. Rather, one would need to
carry out a careful Pads approximant representa-
tion of the series from which, if the series were
reasonably long, such critical features may
emerge. Quite obviously, the present series is
too short to yield to such an analysis successfully.
In our opinion, procedures for the generation of
series expansions"' are now sufficiently well de-
veloped to generate a series of adequate length
for P(T) as long as the value of the wave vector
is, unlike in the present work, not kept arbitrary
and the computation is focussed so that only the
second moment, i.e., the terms proportional to
~

k —Q
~

', are computed.

III. NUMERICAL RESULTS

As stated above, our series is too short to pre-
dict with any precision the details of the various
critical effects. It is, nonetheless, reasonable
to inquire as to whether we can get a qualitative
measure of the simplest of the critical parameters,
namely the magnitude of the transition tempera-
ture and, moreover, to see how the correlation
function, the susceptibility, and, if possible, the
correlation length might depend upon the system
randomness, the lattice connectivity, etc., in the
extreme paramagnetic region where the conver-
gence of the present series is good and also in the
intermediate region to which some plausible ex-
trapolation may be effected.

Because the available longer series" for the
uniform susceptibility have been used to give rea-
sonable estimates of the magnetic transition tem-
perature, it is convenient to begin with the ex-
amination as to how well the corresponding esti-

mates from our present series agree with these.
In the present work we have employed the [2, I]
Padd approximant for g(k=Q) to compute Tc(ran-
dom) from the uniform susceptibility and T„(ran-
dom) from the staggered susceptibility. In Figs.
1(a) and 1(b) we show a typical set of results.

It is clear that our estimates for the magnetic
transition temperature are reasonable when im-
purity concentration is not too large. Indeed,
looking at other lattices (not shown here) we come
to the conclusion that, roughly speaking, as long
as the magnetic concentration is higher than a
point approximately intermediate between unity and
the percolation concentration, the present esti-
mates for transition temperatures can be assumed
to be within a few percent of those one might ex-
pect to obtain from series with eight or nine terms.

It should be mentioned here that since the cor-
relation length f(T) is expected also to diverge at
the same temperature, one might also calculate
the transition temperature using the series for
$(T). Not unexpectedly, it turns out that the esti-
mated transition temperatures from these two
methods, namely the divergence of the suscepti-
bility and the correlation length, are different.
The differences between these two estimates are
non-negligible for small $, though for large S the
relative differences become small. (Because of
the greater accuracy of the estimates provided by
the susceptibility, in what follows we use these
estimates unless we explicitly specify to the con-
trary. )

Let us examine first the generalized susceptibil-
ity. For convenience of display we normalize the
susceptibility at T -~. Figures 2(a) and 2(b) refer,
respectively, to ferromagnetic coupling with site
dilution and antiferromagnetic coupling with bond
dilution. The wave vectors for the two plots are,
respectively, along the (1, 1, 1) diagonal and the
cube edge (1, 0, 0). At high temperatures the nor-
malized susceptibility is unity for all k vectors.
For finite temperatures, the susceptibility is seen
to be a strong function of the wave vector, peaking
at the wave vectors of the magnetic reciprocal
lattice, i.e., at k=Q. Furthermore, as is well
known, the susceptibility is seen to peak to higher
values as temperatures are lowered toward the
transition temperature. The new result of the present
paper is that for given value of the ratio T/T«»
the normalized susceptibility for k vectors close to
Q is highe~ for the random system. In a sense,
this result has a physical counterpart at low tem-
peratures, where the k-0 spin-wave stiffness is
known to get softer faster than the rate of dilution
as the system randomness is increased. "Be-
cause the low-temperature generalized suscepti-
bility has an inverse relationship to the spin-wave
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T~LE lg. parameters W„and W„' for cubic lattices, with ferro- and antiferromagnetic nearest-neighbor exchange
couplings, respectively, and with site and bond randomness. Here S indicates the spin values and c and p refer to
magnetic site and bond concentrations, respectively.

Wg

(a) Simple cubic —site dilution
Ferr omagnetic coupling

W4 w,'
Antiferromagne tic coupling

w', W3 W4'

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.5000
0.4499
0.4000
0.3499
0.3000
0.2500
0.1999
0.1500
0.0999
0.0499

1.2500
0.9899
0.7600
0.5600
0.3899
0.2/00
0.1399
0.0599
0.0100

—0.0100

3.5000
2.5173
1.7373
1.1366
0.6920
0.3802
0.1779
0.0621
0.0093

—0.0036

4.9166
2.8440
1.4742
0.6345
0.1755

-0.2864
-0.8073
—0.0598
—0.0217

0.0012

—0.500 00
—0.4499
-0.4000
-0.3499
-0.3000
—0.2500
-0.1999
—0.1500
—0.0999
—0.0499

1.7500
1.4399
1.1600
0.9099
0.689g
0.5000
0.33gS
0.2099
0.1100
0.0399

-2.5000
-1.7073
-1.0973
-0.6466
-0.3320
-0.1302
-0.0179

0.0278
0.0306
0.0 136

7.3333
4.40 14
2.3849
1.0828
0.3176

—0.0651
-O.lg 60
-0.1827
—0.1090
-O.Q357

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

2.5000
2.2499
1.9999
1.7499
1.4999
1,2500
0.9999
0.7499
0.4999
0.2499

36.2500
29.2499
23.0000
17.5000
12.7500
8.7500
5.5000
3.0000
1.2500
0.2499

464.833
336.270
233.700
154.211
94.899
52.859
25.183
8.965
1.299

—0.719

5215.416
3331.670
2005.217
1114.945
554.449
231.939
70.241
6.807

—6.283
—2.328

—2.5000
-2.2499
—1.9999
—1.7499
—1,4999
-1.2500
—0.9999
—0.7499
—0.4999
-0.2499

38.7500
31.4999
25.0000
19.2500
14.2500
10.0000
6.4999
3.7499
1.7499
0.4999

—439.833
—316.021
—217.700
—141.962
-85.900
—46.609
—21.183
—6.715
—0.300

0.969

5730.834
3699.591
2256.383
1276.564
650.198
281.966
91.1.58
11.698
—7.866
-4.365

{b) Simple cubic —bond dilution

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0 ~ 1

0.500 00
0.4499
0.4000
0.3499
0.3000
0.2500
0,1999
0.1500
0.0999
0.0499

1.2500
0,9899
0.7600
0.5600
0.3899
0.2500
0.1399
0.0599
0.0100

—0.0100

3.5000
2.5173
1.7373
1.1366
0.6920
0.3802
0.1779
0.0621
0.0093

—0.0036

4.9166
2.8561
1.4913
0.6517
0.1899

-0.0182
—0.0743
—0.0566
-0.0206

0.0013

—0.5000
-0.4499
—0.4000
—0.3499
—0.3000
—0.2500
—0.1999
-0.1500
-0.0999
—0.0499

1.7500
1.4399
1.1600
0.9Q99
0.6899
0.5000
0.3399
0.2099
0.1100
0.0399

—2.5000
-1.7073
—1.0973
—0.6466
-0.3320
—0.1302
-0.0179

0.0278
0.0306
0.0136

7.3333
4.3892
2.3678
1.0657
0.3032

—0.0755
-0.2024
—0.1858
-0.1101
—0.0359

3
2

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

2.5000
2.2499
1.9999
1.7499
1.4999
1.2500
0.9999
0.7499
0.4999
0.2499

36.2500
29.2499
23.0000
17.5000
12.7500
8.7500
5.5000
3.0000
1.2500
0.2499

464.833
336.270
233.700
154.211
94.8999
52.8593
25.1832
8.9656
1.2999

—0.7197

5215.416
3333.214
2007.349
1117.08S
556.249
233.242
71.041
7.201

-6.149
-2.309

—2.5000
—2.2499
—1.9999
-1,7499
—1.4999
—1.2500
—0.9999
—0.7499
—0.4999
—0.2499

38.7500
31.4999
25.0000
19.2500
14.2500
10.0000
6.4999
3.7499
1.7499
0.4999

-439.833
—316.021
—217.700
—141.962
-85.900
-46.609
-21.183
—6.715
—0.300

Q.969

5730.834
3698.076
2254.246
1274.420

648.398
280.663
90.358
11.304
-7.999
-4.383
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TABLE III. (Continued)

(c) bcc lattice-site dilution

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.500 0
0.4499
0.4000
0.3499
0.3000
0.2500
0.1999
0.1500
0.0999
0.0499

2.5000
2.2499
1.9999
1.7499
1.4999
1.2500
O. 9999
0.7499
0.4999
0.2499

1.7500
1.3950
a.0800
0.8050
0.5699
0.3750
0.2199
0.1049
0.0300

-0.0050

48.7500
39.3749
31.0000
23.6250
17.2500
11.8750
7,4999
4.1249
1.7500
0.3749

6.5833
4.7516
3.2946
2.16S7
1.3340
0.7447
0.3593
0,1348
0.0286

-0.0020

866.916
629.050
439.033
291.513
181.14g
102.599
50,516
19.559
4.383

-0.355

15,9S99
9.8019
5.5713
2.8485
1.2339
0.3880
0.0310

-0.0566
-0.0346
-0.0256

14 128.33
9125.14
5578.14
3174.68
1639.85
736.21
263.80

60.a8
0.400

-3.011

-0.5000
-0.4499
-0.4000
-0,3499
-0.3000
-0.2500
-0.1999
-0.1500
-0.0999
-0.0499

-2.5000
-2.2499
-1.9999
-1,7499
—1.4999
—1.2500
-0.9999
-0.7499
-0.4999
-0.2499

2.2500
1.8449
1.4800
1.1549
0.8699
0.6250
0.4199
0.2549
0.1300
0.0449

51.2500
41.6248
33.0000
25.3750
18.7500
13.1250
8.50QO

4.8749
2.2499
0.6249

-5.250Q
-3,6716
-2.4413
-1,5163
-0.8540
-0.4114
-0.1459
-0.0 148

0.0246
0.0153

-833.583
-602.051
-417.700
-275.180
-169.150
-94.265
-45,183
-16.559
-3.050

0.688

21,6666
13.6611
8.0393
4.2891
1.9579
0.6536
0.0436

-0.1443
-0.1226
-0.0437

15 133.33
9848.28
6077.31
3501.16
1838.35
844.82
3 14.05

76.98
2.06

-4.74

(d) bcc lattice-bond dilution

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.5000
0.4499
0.4000
0.3499
0.3000
0.2500
0.1999
0.1500
0.0999
0.0499

1.7500
1.3950
1.0800
0.8050
0.5699
0.3750
0.2199
0.1049
0.0300

-0.0050

6.5833
4.7516
3.2946
2.1697
1.3340
0.7447
0.3593
0.1348
0.0286

-0.0020

15.9999
9.8383
5.6225
2.9000
1.2771
0.4192
0.0502

-0.0472
-0.0314
-0.0021

-0.5000
—0.4499
-0.4000
-0.3499
-0.3000
-0.2500
—0.1999
-0.1500
—0.0999
-0,0499

2.2500
1.8449
1.4800
1.1549
0.8699
0.6250
0.4199
0.2549
0.1300
0.0449

—5.2500
-3.6716
-2.4413
-1.5163
-0.8540
-0.4114
-0.1459
—0.0148

0.0246
0.0153

21.6666
13.6246
7.9881
4.2376
l.9148
0.6224
0.0244

-0.1537
—0.1258
-0.0442

1.0
0,9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

2.5000
2.2499
1.9999
1.7499
1.4999
1.2500
0.9999
0.7499
0.4999
0.2499

48.7500
39.3749
31.0000
23.6250
17.2500
11.8750
7.4999
4.1249
1.7500
0.3749

866.916
629.050
439.033
291.513
181.14g
102.599
50.516
19.559
4.383

-0.355

14 128.33
9129.70
5584.54
3181.11
1645.25
740.11
266.20

61.37
0.800

-2.955

-2.5000
-2.2499
-1.9999
-1.7499
—1.4999
-1.2500
—0.9999
-0.7499
-0.4999
-0.2499

51.2500
41.6248
33.0000
25.3750
18.7500
13.1250
8.5000
4.8749
2.2499
0.6249

—833.583
—602.051
-417.700
—275.180
-169.150
-94.265
-45.183
-16.559
-3.050

0.688

15 133.33
9843.73
6070.91
3494.73
1832.95
840.92
311.65

75.80
1,66

-4.80
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TABLE III. (Continued)

{e) fcc lattice-site dilution
Ferromagnetic coupling

Wg W2 W W4

1
2

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.5000
0.4499
0.4000
0.3499
0.3000
0.2500
0.1999
0.1500
0.0999
0.0499

2.5000
2.2499
1.9999
1.7499
1.4999
1.2500
0.9999
0.7499
0.4999
0.2499

2.7500
2.2050
1.7200
1.2949
0.9299
0.6250
0.3799
0.1949
0.0700
0,0049

73.7500
59.6248
47.0000
35.8750
26.2500
18.1250
11.5000
6.3749
2.7500
0.6250

15.4166
11.1371
7.7319
5.1015
3.1460
1.7656
0.8606
0.3313
0.0779
0.0007

2037.754
1481.238
1036.366
690.658
431.649
246.869
123.850
50.121
13.216
0.665

68.9167
43.6133
25.9574
14.2405
6.9688
2.8619
0.8544
0.0947

-0.0545
-0.0164

52 41V.86
34 064.17
20 996.83
12 091.39

6358.09
2940.77
1117.14
298.82
31.31
-6.03

{f) fcc—bond dilution
Antiferromagnetic coupling

W( W2 Wg

1.0
0.9
0,8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
1.O
0.9
0.8
O.V

0.6
0.5
0.4
0.3
0.2
0.1

0.5QOO

0.4499
0.4000
0.3499
0.3000
0.25Q0
0.1999
0.1500
0.0999
0.0499

2.5000
2.2499
1.9999
1.7499
1.4999
1.2500
0.9999
0.7499
0.4999
0.2499

2.7500
2.2050
1.7200
1.2949
0.9299
0.6250
0.3799
0.1949
0.0700
0.0049

73.7500
59.6248
47.0000
35.8750
26.2500
18.125O
11.5OOO

6.3749
2.7500
0.6250

15.4166
11.1641
7.7746
5.1505
3.1940
1.8072
0.8926
0.3523
0.0886
0.0037

2037.754
1481.913
1037.433
691,883
432.849
247.911
124,650
50.646
13.483
0 ~ 740

68.9167
43.6922
26.0790
14.3765
7.0983
2.9713
0.9360
0.1467

-0.0289
-0.0094

52417.86
34 094.69
21044.66
12 145.87

6411.01
2986.31
1151.82
321.39
42.67
-2.87
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stiffness, i.e., it increases with a decrease in the
spin-wave stiffness, one might interpret the pres-
ent results as also indicating that whenever ran-
domness is increased a softening of the magnetic
system occurs against magnetic field perturbations
with wave vectors close to the relevant Q vectors.
Moreover, the rate of this softening is faster than
the rate of reduction of the critical temperature
[which is the reason it is noticeable in Figs. 2(a)
and 2(b) which are plotted for given e valuesj.

It is interesting to look at the behavior of the
susceptibility away -."rom k=Q. Here the corre-
sponding low-temperature observations are again
relevant. For example, it is observed' that the
relative decrease in the spin-wave energy (for a

randomly diluted ferromagnet) for k vectors near
the zone edge (i.e., in the opposite limit to k = Q)
is in direct contrast to the k-/= 0 case, i.e., it
is much slower than the rate of dilution. Again,
we find that an analog for this phenomenon, at
T & Tc, exists and that (see Fig. 2), as one pro-
ceeds away from k=Q, the relative susceptibility
for the random system becomes smaller than that
corresponding to the pure system. For different
relative temperatures, the cross over occurs at
different k values (and indeed for infinite tempera-
ture no changes occur at all).

1.0

3.0
bcc bond dilution

J+0 s= 12

k= t "im "im "'n]

Site ditution

S =1/2 N 20
p= 1.0

----- p = 0.6

0.5-

Tc(c )

~C(1)

=C

0.3 0.4 0.5

1. 0

[2,1] f.A.

0.6 0.7

---- [5,3j P. A.
Rushbrooke et al

0.8 0.9 1.0

1.0

0
0

I

0.5

Tc =1.5

1.0

k/Tr,

1.5

(b)

2.0

3.0— bcc bond

0.5

~c(P)

c(1)

2.0-

k= [ "IK "~K

--——c =0.

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

FIG. 1. (a) For the quenched, site-diluted fcc ferro-
magnet with S = ~, the normalized Curie temperature,
T~(c)/Tz(1), is plotted as a function of the magnetic
concentration c. The thick unbroken curve is obtained
by using the [2, 1] Pads on the present short series, the
broken curve shows the result of [5, 3] Pads approximant
on the longer series given by Rushbrooke et al. (Ref.
5). The corresponding mean-field, virtual-crystal ap-
proximation result, marked NF, is a straight line which
lies higher throughout. (b) This figure corresponds to
(a) with the difference that here exchange bonds are di-
luted. The broken curve shows the results of Brown
et al. (Ref. 6) using a [4, 4] Padd on a much longer
series.

0
0

I

0.5
I

1.0

k/m

I

1.5 2.0

FIG. 2. (a) Generalized susceptibility, for the bcc
lattice for J & 0 with S = 2 and bond dilution, is normal-
ized at T =~ and is plotted as a function of k/x, where
k= (k, k, k). The curves for the nonrandom case, p =1,
are drawn continuously while the broken curves are for
magnetic bond concentration p = 0.6. The appropriate
T/Tc values are marked. (b) Same as (a) with the dif-
ference that here we have a site random system, i.e.,
c instead of p, and a negative J and k=(k, 0, 0).
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Of course, the behavior of the generalized sus-
ceptibility and the correlation function is roughly
similar. Therefore for brevity, we do not include
the corresponding plots for S(k). Instead, for
completeness, we include Figs. 4(a} and 4(b},
where S(k) for a site-diluted, simple cubic sys-
tem with positive and negative exchange coupling,
respectively, is shown in terms of the unrenor-
malized units ksT/~J~. Here we notice that ex-
cepting for the extremely narrow region in the
immediate vicinity of the wave vector furthest
from k=Q, i.e., k=0 for the antiferromagnetic
coupling, and temperatures near the transition
point of the pure system, the absolute value of
the T-~ normalized correlation function is
smaller for the random lattice. (note that these
remarks refer to temperatures where both the
pure as well as the random systems are paramag-
netic. )

As mentioned earlier, our series is too short to
give any meaningful results in the critical region.
However, the convergence of the series is reason-
able for T/Tc ~2 and by appropriate extrapolation,
such as can be done by the use of Pade represen-

tation, we can be reasonably confident that the
qualitative features of our results will be meaning-
ful for T/Tc -1.5, if not even somewhat closer to
T~. In this spirit, we have analyzed the behavior
of the effective correlation length $(T) in Figs. 5,
6(a), and 6(b). We notice that for given T/Tc,
the effective correlation length is longer for the
random system. Also, we notice that this ten-
dency is somewhat more pronounced, for given
dilution, for the site-random system. The latter
fact is not surprising in view of the fact that per-
colation concentrations are larger for the site
system, i.e., that for given dilution the probability
of the occurrence of the infinite cluster is higher
in the bond random system. Therefore, effectively
the bond random system for given dilution seems to
behave like a site-random system of somewhat
larger magnetic concentration.
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APPENDIX

The expressions for Z„, n=1, . . . , 4, i.e.,

Z, = P cosk p, Z, = P g cosk (p+p, }(1—6;- ),
P2

Z, = g g g cosk (p+p, +p, )(l —6 - - )(1 —6
& & )(1 —6 & &,&),

P P2 P3

T.=Z g P Q co«(p+p, +P. +p,)(I —6;,»)(I —5;,, ~)(I —6;~,y, )
P2 P3 P4

&& (1 —6;,-,;,) (1 —5 -;,)(1 —5; -,-„,; ),
for various lattices of cubic symmetry are as follows:

(a} Simple cubic lattice:

Z, = 2(cosk„+ cosk, + cosk, ),
Z, = 2[cos(2k„)+cos(2k, )+ cos(2k, )]+8(cosk„cosk, + cosk, cosk, + cosk, cosk, ),
Z3 = 2[cos(3k„)+cos(3k„)+ cos(3k, )]

+ 12(cosk,[cos(2k,)+ cos(2k, )]+cosk, [cos(2k')+ cos(2k„)]+cosk, [cos(2k„)+cos(2k, )))
+ 48 cosk„cosk cosk, + 8(cosk, + cosk, + cosk, ),

T., = 2[cos(4k, )+ cos(4k, )+ cos(4k, )]
+ 161cosk„[cos(3k,)+ cos(3k )]+cosk, [cos(3k,)+ cos(3k, )]+cosk, [cos(3k„)+cos(3k')] )
+ 96[cos(2k„)cosk, cosk, + cos(2k ) cosk, cosk, + cos(2k, ) cosk, cask, ]
+ 24[cos(2k, ) cos(2k, )+ co~(2k ) cos(2k, )+ cos(2k, ) cos(2k„)]

+ 24[cos(2k, }+cos(2k, )+ cos(2k, )]+64(cosk, cosk, + cosk, cosk, + cosk, cosk, ) .
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(b) Body-centered-cubic lattice:

Z, = 8 cos~p„cos-, &„cos-,p, ,

Z, = 8 cosk„cosk cosk, + 8(cosk, cosk, + cosk, eosk, + cosk, cosk, ) + 8(cosk, + cosk„+ coskg),

Z, =8 cos2k, cos2k cos2k + 24(cos~k, cos~k cos2k, + cos2k cos2k, cos~k, + cos2k, cos~k, cos~k }

+ 72(cos2k„cos2k„cos2k, + cos2k„cos2k, cos —,k, + cos$k, cos~k, eospk, )

+ S6 cos gg„cos 2Qy cos gpss,

Z, = 8 cos(2k, ) cos(2k, ) eos(2k, )

+ 32[cos(2k„}cos(2k, ) cosk, + cos(2k ) cos(2k') cosk„+ cos(2k, ) cos(2k, }cosk„]

+ 128[cos(2k,) cosk, cosk, + cos(2k, ) cosk, cosk„+ cos(2k, ) eosk, cosk, ]

+ 24[cos(2k„}cos(2k, )+ cos(2k, ) cos(2k, )+ cos(2k, ) cos(2k„)]

+ 96(cosk„[cos(2k,)+ cos(2k, )]+coskgcos(2k, )+ cos(2k„)]+eoskgcos(2k„)+ cos(2k, )]}
+ 72[cos(2k„}+cos(2k, )+ cos(2k, )]+336 cosk„cosk, cosk, + 208(cosk„cosk„+ cosk, cosk, + cosk, cosk„)

+ 112(cosk„+cosk, + cosk, )

(c) Face-centered-cubic lattice:

Z, = 4(cos&k, cos2k, + cos-, k, cos-,k, + cos-,k, eos2k„),

Z, = 8(cosk, + cosk + cosk, )+ 4(cosk„cosk + cosk cosk, + cosk„cosk )

+ 16(cos~k, cos~k 2k )+ cos~2k cosgk, + cospk„cos~k, )

+ 16(cos-,'k„cos-,'k, cosk, + cos-,'k, cos-,'k, cosk, + cos~2k„cos-, k, cosk„},

Z, = 88(cos&k„cos&k, + cos-,'k, cos2k, + eos-,'k, cos2k„)+48(cosk, + cosk, + cosk, )

y 144(cosk„cos-,k, cos-,'k, + cosk, eos-, k, cos-, k, + cosk, cos-,k, cos-,'k, )

+ 48(cosk„cosk + cosk cosk + cosk cosk„)

+ 36[cos-,'k„(cos—,'k, + cos-,'k, )+ cos-,'k, (cos—,'k, + cos-,'k, )+ cos-,'k, (cos-,'k„+ cos-,'k, )]+48 cosk„eosk, cosk,
+ 24[cosk„(cos-,k, cos-,'k, + cos-,'k, cos-', k, )+ eosk, (cos-,k, cos—', k, + eos-, k„cos-,'k, )

+ coskg(cos2k, cos~k + cos2k cos—,k,)]+4(cos~k, cos~k~+ cos2k„cos2k, + cos2k, cos~k,},
Z, = 560(cos2k„cos2k + cos2k eos2k, + cosak, cos~k, )+ 304(cosk„+ cosk„+ cosk )

+ 1088(cosk, cos-,k, cos-,'k, + cosk, cos-, k, cos-,k, + cosk, cos-, k„ eos-, k, )

+ 456(cosk„ cosk + cosk cosk, + cosk, cosk, )

y 384[cos-,'k„(cos-', k, + cos-,'k, )+ eos2k, (cos-', k, + cos-', k„}+cos-, k, (cos-,'k„+ cos—,'k, )]
y 576 cosk„eosk, cosk, + 416[cosk„(cos—,k, eos—', k, + cos-,'k, cos—,'k, ) + cosk„(cos-,k, cos—', k, + cos-,'k cos-,'k, }

+ cosk, (cos —,k„cos~k, + cos —,k, cos—,k„)]

+ 96(cos-', k, cos-', k, + cos—,'k„cos~2k, + cos~2k, cos-,'k„)+ 72(cos2k„+ cos2k, + eos2k, )

+ 192(cos2k„cos—,'k, cos-,'k, + cos2k, eos-,'k, cos &k„+cos2k, eos-', k„cos-,'k, )

+ 64[eosk, (cos2k, + cos2k, )+ cosk„(cos2k, + cos2k„)+ cosk, (cos2k„+ cos2k, )]
+ 96(cosk„ cos —,'k, eos —', k, + cosk, cos-, k, cos-', k, + cosk, eos-,'k„ eos —,'k, )

+ 48(cos2k„ cosk, cosk, + eos2k, cosk, cosk„+ cos2k, cosk, cosk, )

+ 32[cos2k„(cos—,'k, cos~k, + cos—,'k, cos—,'k, )+ cos2k„(cos2k, cos—,'k„+ cos—,'k„cos—,'k, )

+ cos2k, (cos-, k„cos-,k, + eos-', k, cos-, k, )]+4(cos2k„cos2k, + cos2k, eos2k, + cos2k, cos2k„) .
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