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We have applied a decimation (dedecoration) method to a quantum system in order to obtain a critical
exponent of the twWimensional Ising model. Because the renormalization-group transformation is not exact,
we have used a perturbation similar to the one used by Niemeijer and Van Leeuwen. The calculations were

done to third order. Contrary to the 3-spin-cell method, the second order generates only next-nearest

interaction, while the third order generates the next-next-nearest neighbor, etc. The numerical results are

compared and analyzed. There are oscillations in our calculation, and the perturbation seems to be at least

asymptotic.

I. INTRODUCTION

Recently, Friedman' has applied the Niemeijer
and Van I.eeuwen' method to a quantum system
in order to obtain critical exponents for a three-
dimensional Ising model. His work was based
upon the assumption that the X- Y-type model with
a transverse magnetic field has the same critical
exponents as one-higher-dimensional Ising mo-
del. ' ' This assumption was rigorously proved
by Suzuki' for the two-dimensional Ising model.
Suzuki also has a relation which gives the Curie
point of the two-dimension Ising model from his
one-dimensional quantum model. On the other
hand, Pfeuty' has solved a simpler version of
Suzuki's model exactly and showed that the expo-
nents indeed match. In Pfeuty's model, the Curie
point of the Ising model cannot be obtained. So
far, from the previous work, it appears that the
ground-state vector of a quantum model is related
to the eigenvector of the largest eigenvalue of a
classical Ising model of one higher dimension. '
This phenomenon stems from the correspondence
of the inverse temperature of a quantum model to
the number of spin degrees of freedom of the Ising
model and that of the transverse field of the
quantum model to the temperature of the Ising mo-
del. This last correspondence is readily under-
stood to be true because these parameters are
disorder parameters. The numerical" results
obtained indicate that these correspondences are
probably true.

The aim of our work is to compare the renormal-
ization-group method for a quantum system with
the same method directly applied to the Ising mo-
del. We compare the numerical results. More-
over, since one dimension is simple in geometry,
one can change the size of a cell and the order of
the perturbation with relative ease. Therefore, we
hope to shed some light on the very important
question of the contributions of cell size and the

order of the perturbation for a given accuracy of
the numerical results. One might hope to get some
idea of the behavior of the perturbation theory, as
well.

In this first installment, we present only the
decimation method of Pfeuty's model. In the
sequel, we will give the calculation of the Curie
point from Suzuki's model, and a three-spin
cell calculation of Pfeuty's model.

II. DECIMATION PROCEDURE AND CALCULATION

Pfeuty' considered the following Hamiltonian:

(2. 1)

where o;, o", are Pauli matrices. In our definition,
we leave out the usual one-half factors. Since all
the thermodynamics resides in the ground-state
vector, we will consider, as Friedman did, the
renormalization- group transformation of the
diagonal elements of the ground- state projection
operator (0)«(0(. (0)„ is the ground state of
the exact problem. The decimation' transforma-
tion can be thought of as a two-spin cell trans-
formation, where in each cell, one of the spins is
summed. Here, we will sum every other spin
along a chain; the cells are (0, 1), (2, 3), . . . ,
(N 1,N) and, ther-efore, we take N to be odd.
The summation over odd spins amounts to taking
the trace of every other 2 x 2 matrix in the cross
product expression of (0)«(0(. If (0)«(0( is
expressed as a cross product of 4 ~ 4 matrices,
then we should sum the 2 x 2 matrices located
along the diagonal of each 4 x 4 matrix. We will
denote the decimation operation on (0)«(0( as
Tr' (0)» „(0(, and we will freely use Chagonalhy
equivalent matrices, i.e. , the matrices with
the same diagonal elements, when we express
I» „(oI

FormalLy, the renormalization- group transfor-
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mation is

/0 &„,,(O /

= Tr' IO& „(Of, (2.2)

where
~

0')», is the ground- state vector of the
newly transformed Hamiltonian K'. In fact, in
order that Eq. (2.2) be an exact symmetry of the
Hamiltonian, we would need infinitely many terms
(nearest neighbors, next-nearest, etc. ) in3C. In
practice, we do a perturbation calculation, and
add a few terms each stage. It is found2's that
the perturbation series seems to be asymptotic
if the Hamiltonian is perturbed around intracell
interactions. In our problem, as Friedman
pointed out, X' must be also perturbed around the
old intracell interactions in order that X' shall
remain form invariant, i.e. , has the same form
as X, with the addition of a few terms. After
the renormalization- group transformation is
carried out, only one spin is left in each old ceB

so the Kp consists of the single spin terms.
Thus, the unperturbed piece Xp of K is

N

3C(&= —cf Q 0'( o( ~
—HQ (r";

f= even
(2 2)

V= —J Q o;o(„.
i=odd

X, can be written as

X0 ——.[Jo0o&+H(o'0+ o&&)]

(2.4)

—[~o «-io «+ H(o «-x + o «) ] . (2.6)

Since all the terms commute, the eigenvectors
are easily found to be of the form v, lsv;,
where i~ = j. , 2, 3, 4,

v~=~2
1

'U0=~
(60 + 1)) & 2

C
V

6 (6'+1)' '
Qy (60+ 1)~) 0

V 4 C, —6+ (6'+ 1)'~'

where

C =2(1+ [6+(6'+1)' ']']' '

C, =2(1+ [-6+(6'+1)' ']'j' '

6= J/2H,

and the respective eigenvalues are

(2.6)

X = —J X = (J'+ 4FP)'

&, = —(J'+ 4EP)'~'.

The ground-state vector is v, (2) Sv, -=jo&
with energy [(N+ 1)/2))( J-'+ 4H')' ' Here
~0)(0~ is a cross product of the 4x 4 matrices.
Since the ground state is nondegenerate, the fol-
lowing perturbation is valid' (up until the third
order):

~ I 0)(ol Vln)(nl T I 0)(ol VIO)(OI Vln)(nl
E0 —E„(E0—E )2

~ 10) (0I Vln) (nl VI 0) (0l ~ I 0) (0I Vlm) (ml Vln) (nl
(E0- E„)2 ~& (E0 E„)(E, Z)-—

)( iV~10)(0~iV~i )( i ( 10)(0)V~I )( iV~i )( 10~it)(le
(V, — )(Z, —0V) „(E,—E„)(E,—E„)(E,—0,)

I l& (l I VI 0) (0 I V I n) (n I V I m) (m I

& l ( I 0) (0 I Vl n) (n I V I 0& (0 I V I m& (m I

p
—

~ p
—E~ Ep —Eg E

~ 10 Ol Vln n1 V1m m1+1p Q1

(E E)(z E )2 +O( ))
m~

(2 7)
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where 7 stands for transpose. From Eq. (2.4),

(31I3 ~ ~ ~ 81

Therefore, for zeroth order, both sides of Eq.
(2.2) yield (-')'""' '18 ~ ~ ~ 81, where 1 is 2&&2

unit matrix. Note that if X' were perturbed any
other way, Eq. (2.2) is not satisfied even for
zeroth order.

A. Firstwrder calculation

362= —H' Q &rz&, V'= J' Q oz&oz (2.9)

with the eigenvectors and eigenvalues

1 (1'I . , 1 (1'I

In Eq. (2.9) one sees the "single-spin" term ex-
plicitly. The ground-state vector is

IO)=&d 8'''s &d

(2.8)

where 1 is 4 x 4 unit matrix, and I' means permu-

tations. Similarly,

lt is easy to see that (Ol VI 0) = 0 and, therefore,
the third term of Eq. (2.7) does not contribute
The typical terms which contribute to the right
of (2.2) are

I 0) (01 V I 1144 ~ ~ 4) (1144 ~ ~ ~ 4 I

2(x, —x,)

(2.10)

I0) (OI VI2244 4) (2244 ' '4l
2(z, —x,)

where I1144 ~ ~ ~ 4) —= v, SviSv4 Sv4, etc. These
terms correspond to Niemeijer and Van Leeuwen's
triangular lattice expansion.

As the result, we get

(—)& +1)/ 18.. .81+(1)&2&+1)/261[(c Sc)81.. .81 P]
[6 (624 1)1/2]4—(—) &iZ+1)/21 8 8 1 ( )

&N 2)/2 6 [(o' So ) 81 ~ ~ S1+P]+4[6~ (624 1)1/2] z z

(2.11)

where, as in Eq. (2.8), P means permutations
of the part within parentheses along the chain.
There are (N+1)/2 terms in each bracket. The
recursion relation is obtained from Eq. (2.11):

6' = 6'[2 —1/2(62+ 1)] .

The numerical solution to (2. 12) yields

5*= 0.61124, A. = 2.121034

(2.12)

(2.12)

for the fixed point and the eigenvalue of Wilson's

M matrix. " These numbers are to be compared
to 6* = 0.5 (Ref. 6) and A. =2 (Ref. 10)of the exact
solutions.

B. Second order

Following Niemeijer and Van Leeuwen, the
second-order contribution of the nearest-neighbor
interaction is to be computed first. The fifth and
sixth terms in Eq. (2.7) generate next-nearest in-
teraction through typical terms like

10) (Ol Vl 1144 ' ' ' 4) (1144 ' ' ~ 4 I VI 1414 ~ ~ ~ 4) (1414 ~ ' ~ 41

4(X, X)'

I 114 ~ ~ 4) (114 ' 4 I Vl 0) (0 I VI 4114 ' ' ' 4) (4114 ' ' ' 41

4(X, —~,)'

(2.14)

Therefore, the next-nearest-neighbor interaction should be included in the first order calculation. The
first-order contribution to the next-nearest-neighbor interaction of the right-hand side of Eq. (2.2) is only
the next-nearest neighbor. Defining L to be the new interaction parameter and y =L/2H,
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(
—')&3[+»/21S ~ ~ ~ Sl+(—')&3[+"/ 5'[(o So )S1S ~ ~ S1+P]+(2)"' ' (y'+25' )

x [(o SLSo,)S1" Sl+P]+(2)&"""25"[(o,So,)S» "S(o So.)SL+NP]

g+ i@+1»~21~ig
(-,')&&+»/21S. ..SL (2')&&-»/2 ' ' ' ' '

[(&r, So,)S1 ~ ~ 1+P] (--,')'" " '
C'[5+ (5'+ 1)' ']

1252
x [(o,So, )S 1" S1+P]+ (-')'"""' [- 5+ (5'+ 1)"']'+[5+ (5'+1)"']'

[ 5+ (52+ 1)1/2]5+ [ 5+ (52+ 1)1/2]

3 (52+ 1)1/2

[-5~ (5 +()'") +[-5+(5'+()"*]
)3{52+1)

6+ 2y
C4[5 (5'+1)«2)

(g2+ 1)j /' 2]8 1x [(D, So,)Si ~ 8 1+P]+(-')&"-»/' ' ' + ' ' + —[-5+(5'+1)'/']4
C,' [5 (52+ 1)1/2]2 [5 —(5'+ 1)' ']

[5 (524 1)1/2]3 1 [5 (52+ 1)1/2]4

2 (5'+)"' 2 (5'+1)' '[5+ (5'+1)' ']

x [{g,So,)S1 ~ ~ ~ 1 So, So,S 1 ~ 1+N], (2.15}

where NP means nonoverlapping permutations of
the two.

Simplifying Eq. (2.15), we obtain
2(5'+ 1) y' ' (5'+ 1)"' '

2

5 5 2
(

2 )
+ 4y(5 + 1)

Q2

2+25 —
(5 (5, (), , ([-5+(5'+1) )

+ [5+ (5' + 1)'/']'

2' 3 (5' ~ ()"')'

(2.16)

(2.17)8, ,(, 2 1-2" '" '3(o' ()"')

2 2(5'+()) '

The numerical. results of Eq. (2.17) are

5*= 0.50102, y» = 0.065421, X = 2.18278. (2.18)

%e see that 5* is highly accurate, while X has
drifted off a little from the exact value.

2 5'+1

The last equation of (2.16}does not Lead to a new
recursion relation because it is obtained from the
first one, if we neglect y, 5y which is in accord
with this order of perturbation. In the same
spirit, one should use the last equation when we
express y' in terms of 5.

Thus, the recursion relations read

C. Third order

From this order on, everything is similar to
the second order. If one calculates the third
order of the nearest-neighbor interaction, one
finds the next-next-nearest-neighbor interaction
is generated. The contributions come from the
seventh and eighth terms in Eq. (2.7). The typical
contributing terms are

I

10) (14414 ~ 41(01 V11144 4) (1144 ~ ~ 41 Vl 1414 ' 4) (1414 I V I 1441 )
8(X4 —X,)3

I 114 ~ 4) (41414 ' ' 1(114~ ~ '
I V I 0) (0 I V I 4114 ' ' ) (4114 ' ' '

I V I 41414 ~ ' ' )
8P.,—~,)3

If one tries to include the next-nearest interaction to the second order, one finds the left-hand side of
Eq. (2.2) generates the next-next-next-nearest interaction. Therefore, in this case, one has to include
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the next-next-next-nearest interaction in the first order. Although this is fairly straightforward to do,
we will not do it here. The recursion relations obtained are

()'=()(()+u)(2—,)) ~ 4y(ti'+()' ' —(,
3/2

y'=a5 2, +, ,„, -6+ 5'+1 ' ' '+ 5+ '+ ' ' ' — '+1 ' '+-, ,(52+ 1 li2

2 2 5'+1

5 5~ «a7 a xiav 95 z» ~5 5 6o(' =— [5+ (5'+ 1)'i'P —[-5+ (5'+ 1)'i ]~-—5(5'+ 1) ——, +—5 ——5' 2—
22 (5 +1) 5 5 5~+1 5 2 2(5~/1

(2.19)

where n = M/2' and I is the next-next-neighbor
interaction strength. The numerical. results are

5*= 0.43675, y* = 0.06436,

e*= 0.04544, X = 2.07508 . (2.20)

6~ now deviates, while X is accurate. The mag-
nitudes of y* and e* are close, and it is well that
our perturbation counted them in the same order.

III. DISCUSSION AND CONCLUSION

Oscillations are apparent in our results, but
since this also happens using larger cells"
(although to a lesser degree), we think that the
two- spin cell procedure is acceptable. In the
midst of this oscillation, the perturbation series
seems to be at least asymptotic. For instance,
the first and third orders give accurate values
for X, while 5* is not as accurate, but the third
order is closer to the exact value. It is probable
that odd orders may converge smoothly without
oscillation in both 5* and X, and similarly for
even orders, up to a certain optimum order.

For the prediction of the critical index v, the
accuracy of (2.20) is comparable to the value ob-
tained by Niemeijer and Van Leeuwen' for their

three- spin cell up to the next-next-neighbor ap-
proximation and also to the value obtained by
Nauenberg and Nienhuis' for four- cell clusters.
However, it is not as good as the nine-spin cell
calculation of Hsu, Niemeijer, and Gunton. '

Qur result seems to confirm the common belief
that the accuracy of the cumulant expansion of
Niemeijer and Van Leeuwen depends on the size
of the cell. Qur result also seems to indicate
that the two-spin cell calcul. ation of this type is
"numerically" close to an approximate four- spin
cell calculation in two dimension.

It would appear from these results that the
accuracy of an approximation scheme is more
directly tied to the number of neighboring cells
included, than to the order of the perturbation.
Qur next calculation of the three-spin cell system
should, according to this conjecture, be compar-
able in accuracy to a nine-spin cell calculation in
two dimensions.
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