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Specific heat of Ni(NO3)~6NH& between 0.4 and 20 Ke
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The specific heat of Ni(NO, )26NH3 has been measured between 0.4 and 20 K in a mechanical heat switch

calorimeter. A sharp X-like anomaly occurs at the Neel temperature T„= 1.345 K. The experimental entropy

of the transition was determined to be hS = 9.125 J/Kmol, in quite good agreement with the theoretical value

R ln(2S+ 1) = 9,137 J/Kmol for S = 1. Since EPR measurements indicate that the anisotropy in these crystals

is not large, a Heisenberg three-dimensional Hamiltonian has been used for modeling the magnetic behavior.

The mean-field approximation indicates that the antiferromagnetic ordering is of the second kind in an fcc
lattice. A best fit of the experimental data to a high-temperature expansion yields values for the exchange

parameters J, = —0.125 K and J, = —0.38K which are consistent with this kind of order.

INTRODUCTION

Hexammine nickel nitrate, Ni(NO, ),6NH„which
we shall hereafter refer to as NNA, forms face-
centered-cubic crystals with lattice parameter
a =10.98 A. ' The nickel ions occupy the sites of
the fcc lattice, while the six ammonia molecules
form a'regular octahedron centered at each site.
The NO, groups surround these octahedrons and
are disposed in a cubic lattice of edge &a. The
m3 (T„) symmetry attributed to this crystal by
Wyckoff was later contested by Kracek and colla-
borators' who concluded that the NO, groups rotate
inside the unit cell. Yu' performed more complete
measurements using x rays between 80 and 300 K.
He concluded that the triangular-shaped NO, groups
are oscillating with large amplitudes about one of
their edges, and that m3m (0„) is the most proba-
ble symmetry group for this crystal.

The thermal properties of NNA were initially
studied through differential-thermal-analysis mea-
surements performed by Jensen and Beevers. 4

They suggested the existence of a ~-type transition
at -28.6'C. Later, Long and Toettcher' measured
the specific heat between 54 and 300 K in order to
confirm this prediction. A ~-type anomaly is ap-
parent at 243.3 K and was attributed' to an order-
disorder transition of the nitrate and ammonia
molecules. They also reported a small specific-
heat anomaly below 80 K. Recently, Bousquet
and collaborators' studied this anomaly with spe-
cific-heat experiments between 9 and 300 K and
concluded that it always depends on the thermal
history of the sample. Considerable efforts were
spent to explain the high-temperature ~-type tran-
sition. There are several investigations using
dilatometric techniques, ' ultrasonic techniques, '
infrared, ' and EPR.' At present we think that the
nature of this phenomenon is analogous to the
cooperative transition of the ammonia observed

in other well-known isomorphous metal hexam-
mine complexes.

The magnetic properties of NNA were first stu-
died in our laboratory by magnetic-susceptibility
and specific-heat measurements performed at
liquid-helium temperatures. A new ~-type peak
was observed in the specific-heat measurements
at about 1.35 K, where the susceptibility data indi-
cate a corresponding anomaly due to a paramag-
netic to an antiferromagnetic transition. " A H-vs-
T phase diagram from susceptibility measurements
in applied magnetic fields up to VO kOe confirmed
this assumption. " So we decided to build a me-
chanical heat-smitch calorimeter and to undertake
more-detailed measurements of the specific heat
of NNA between 0.4 and 20 K. It is the purpose of
our paper to present the results of this investiga-
tion.

SAMPLE PREPARATION AND APPARATUS

Ni(NO, ),GNH, samples have been obtained by
reacting NiCO, (Baker Analyzed Reagent) with
HNO, (Reagent PA) and adding NH, OH (Berzog PA)
in excess to the solution. Small octahedral blue
crystals of approximately 2 mm along the largest
dimension were obtained in the solution and were
recrystallized once more before separating and
drying. They were dryed in a desiccator over
silica gel in an atmosphere of ammonia to prevent
decomposition by ammonia loss. Ammonia analy-
sis by a distillation process in a micro-Kjeldahl
apparatus indicated the presence of six ammonia
molecules per nickel, within 99.5% of precision.

Samples of about 10 g were encapsulated in a
copper box for performing the specific-heat mea-
surements. The box surface was covered with a
thin covering of gold to prevent any chemical
reactions due to the presence of ammonia in the
sample. A carbon thermometer and heater (a
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Mial metalized resistor) were attached to the sam-
ple box. The heat capacity of the box and its ad-
denda were determined in a separate series of
experiments. The correction for this contribution
was less than 8% at 4 K.

The sample box was held by a nylon thread inside
a vacuum chamber, beneath the liquid-'He reser-
voir. A hinged lever, which acts as a heat switch,
was attached to the bottom of the reservoir, in
good thermal contact with it. This lever could be
commanded by a thin stainless steel wire con-
nected to the top of the cryostat. The lever press-
es the sample capsule lid to cool it through ther-
mal contact with the 'He bath. There is also a
spring to ensure the opening of the heat switch
when one needs to break the thermal contact.

Between 0.4 and 4 K we used a Speer carbon
thermometer (470 0, —, W) for our calorimetric
measurements. The calibration of this thermom-
eter was achieved with 4He vapor-pressure mea-
surements (1.2-4.2 K) and the use of a magnetic
cerium-magnesium-nitrate thermometer (below
1.2 K) in each experiment. The cerium-magne-
sium-nitrate salt was attached to the liquid-'He
reservoir and the calibration was processed after
closing the mechanical heat switch. The Speer
thermometer was well described by the Balcombe
et al."equation

T =C, /(lnR —C2) ',
where C„C„and C, are adjustable constants;
T is the absolute temperature, and & is the elec-
trical resistance. Between 4 and 20 K we used an
Allen Bradley carbon resistor (270 0, —,

' W). Be-
tween 4 and 14 K this resistor was calibrated by a
magnetic manganous-ammonium-sulfate (MAS) ther-
mometer and a Ge thermometer which were previous-
ly calibrated in liquid hydrogen between 14 and 20 K.

Our R-vs-T points were well described by the
Clement-Quinnell" law

T =a/(lnR + &/lnR —c),
where a, b, and c are adjustable parameters. All
the adjustable parameters were determined in a
best fitting computer calculation using all the ex-
perimental data. Additional details of the appara-
tus and the experimental procedures were de-
scribed elsewhere. "

RESULTS AND DISCUSSION

The heat capacity C~ of NNA was determined ex-
perimentally between 0.4 and 20 K. The results
near the transition point are shown in Fig. 1. All
the experimental specific-heat data presented in
Fig. 1 and in other figures are representative of
a large number of experiments on several inde-
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FIG. 1. Specific heat vs temperature in the paramag-
netic-to-antiferromagnetic trans ition region. The
4.76& law shown at the low-temperature side is the
extrapolation of the magnetic contribution. The 5.78
&10 & law at the high-temperature side is the lattice
contr ibution.

pendently prepared specimens. The sharp ~-type
peak characteristic of a paramagnetic to anti-
ferromagnetic transition establishes the Neel tem-
perature as T„=i.345 +0.005 K. The specific heat
at this temperature is 10.02 +0.05 J/Kmol. These
values are average results over several runs, and
the associated uncertainties reflect differences
among these runs. A Noel point of this magnitude
is consistent with previous results from magnetic
susceptibility measurements. " The value of
dX/dT near T„shows an anomaly at the same Noel
temperature indicated by the specific-heat ex-
periments.

Now we wish to describe a more complete in-
vestigation of the specific-heat behavior. For this
purpose we measured again the specific heat be-
tween 0.4 and 3.0 K and obtained new data up to 20
K.

At low temperatures earlier experiments indi-
cated the beginning of an increase of the specific-
heat values for decreasing temperatures below
0.4 K. This is also consistent with our new data.
Since the susceptibility measurements rule out
any contribution from new magnetic degrees of
freedom to this anomalous behavior, we are led
to attribute it to the tunneling of the ammonia
molecules, similarly to what has been observed by
Van Kempen and others" in isomorphous nickel
hexammine halogenides. From 0.5 to 0.9 K we
were able to fit the experimental specific heat data
to the power law C~ =4.76T'. This fitting which
takes into account the magnetic contribution for
T «T~ is shown in Fig. 1. The points which were
not fitted at the low-temperature end of the curve
are related to the tunneling effect of the ammonia
molecule s.

In the transition region the lattice contribution
is small, as plotted in Fig. 1, becoming important
only at high temperatures. For T»T„ it is possi-
ble to describe the specific heat by the equation
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Cq =aT3+bT ~,
C&(J/K mol)

where the first term represents the contribution
of the lattice vibrations to the heat capacity
(Debye's law} and the second term is the high-
temperature magnetic contribution. In this last
term we consider the Schottky contribution, due
to the splitting of the spin levels brought about by
the distortion of the cubic crystal-field symmetry,
and the dominating high-temperature term due to
short-range spin-spin interactions. A best fitting
of the data yields the values

a =5.78x10 ' J/K'mol, b =24 JK/mol.
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FIG. 2. Cp T -vs-T plot showing the straight line
&p &~=24+5.78 x10 T5. The linear coefficient is the
value corresponding to the magnetic contribution for
&'» 7'z, and the angular coefficient is the value cor-
responding to the Debye &3 law.

This law is well observed between 5 and 10 K, as
it is indicated by a plot of G~T' vs T' shown in
Fig. 2. The angular coefficient of this straight
line gives the value of a, while b is given by the
linear intercept.

The experimental C~ data at the high-tempera-
ture side are shown in Fig. 3.

It is well known that specific-heat data provide
valuable information about short-range magnetic
interactions. So we should be able to analyze our
measurements and to extract additional details
beyond the simple term b/T' Howeve. r, we have
initially to consider the magnitude of the Schottky
effect produced by the distortion of the crystal-
field symmetry.

Infrared' and EPR" measurements made by our
group indicated that the crystal field at the ¹i"
ion is cubic with trigonal distortion. This distor-
tion is a consequence of the arrangement of the
NH, molecules in the crystal. It splits the S =1
spin state of nickel into a doublet and a singlet with
an energy difference D =0.841 K. We obtained this
value through EPR measurements performed at
liquid-nitrogen temperatures and assumed that it
remains practically unchanged at lower tempera-
tures. This is a small value compared with the

FIG. 3. Experimental specific heat vs temperature
above the transition. The full dots are our measure-
ments and the crosses are from Ref. 6.

Weiss temperature e =-3.3 K obtained from the
susceptibility measurements, ' and makes it possi-
ble to consider NNA as a crystal of small aniso-
tropy. This small anisotropy and the fcc structure
of NNA support the three-dimensional Heisenberg
Hamiltonian as a good approximation for modeling
the antiferromagnetic interactions.

In fcc crystals a given ion has 12 first neighbors,
and one of these has always two neighbors among
the same set of 12 ions. It is geometrically im-
possible to produce an antiparallel order of all
these 12 ions. So it is necessary to consider inter-
actions between first and between second neighbors
to understand the antiferrornagnetic order, no
rnatter the magnitude of the second-neighbor inter-
action. As a consequence, we need to take into
account more than two sublattices. The inclusion
of the second neighbors makes the solution of the
Hamiltonian considerably more laborious. The
inclusion in the Hamiltonian of the anisotropy term
DS', leads to additional complications. However,
this last trouble is not important if the value of
D is small. In this case we can subtract the
Schottky contribution from the specific heat and
assume that the remaining magnetic interactions
are essentially described by the Heisenberg
Hamiltonian

H=-2J, Q S( 'Sq —2' Q S~'5, ,
(ki1)

where the first sum is over pairs of nearest neigh-
bors, and the second sum over pairs of next-
nearest neighbors.

This Hamiltonian is usually studied within the
framework of the mean-field approximation.
Smart" divides the fcc lattice into eight sublat-
tices and uses the mean-field approximation to
identify three kinds of antiferromagnetically or-
dered ground states (AF1, AF2, and AF8}, corre-
sponding to particular patterns of spin arrange-
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ments. The existence of these arrangements was
confirmed experimentally by neutron diffraction
techniques in fcc crystals like MnO, FeO, CoO,
NiO, and n-MnS. " This encouraged us to use the
same mean-field results to interpret our specific-
heat data.

The specific-heat data can be integrated to yield
an experimental value for the magnetic energy of
the ground state. This value has to be compared
with the mean field predictions for the three dis-
tinct types of spin arrangements. The magnetic
ground-state energy is

E = C (T)dT,

where C„(T) is the experimental magnetic specific
heat. Between 0.8 and 3.5 K we performed a sim-
ple numerical integration. At low temperatures
(from 0 to 0.8 K) we used the extrapolation law
4.76T' for the magnetic specific heat. At high
temperatures (3.5 K to ~) we used the high-tem-
perature expansion of the magnetic specific heat.
This procedure yields the value Eo =18J, to be
compared with the classical approximation for
the three types of orderings predicted by the mean-
field approximation.

The value of B/T„gives an initial indication
about the type of ground-state arrangement to be
chosen. For NNA it is approximately -2.5, being
consistent with the AF1 and the AF2 types of anti-
ferromagnetism. We decided which order is most
favorable by taking into account the value of the
ground-state energy.

For the AF1 kind of order, Smart's results indi-
cate ~, »J„such that we can consider only first-
neighbor interactions for the theoretical deter-
mination of Eo. The energy of the eight antiparal-
lel and the four parallel first neighbors of the
AF1 kind of order gives E0=-4R(J,/k)S'. From
this expression we obtain J, =-0.54 K. However,
this value is not in agreement with the value
~, =-0.21 K obtained from the expression for the
Weiss temperature

B = [2S (S +1)/3K] (12J, + 6J ) .
Now B depends on ~, and ~„and the experimental
value, given by the magnetic susceptibility mea-
surements, is not enough for checking the values
of the exchange parameters. Instead of using the
mean-field expression of 8 for testing this type
of spin arrangement, we turned our attention to
the high-temperature specific-heat data. The best
fitting of the specific data to the high-temperature
expansion yields J, = -(0.125 ~ 0.002) K and 4,
=-(0.38 +0.02) K. Despite neglecting the effects
of zero-point spin-wave motions, the predictions
from the mean-field expression of the ground-state
energy agree very nicely with this latter value of
J,. Also, the ratio &,/J, obtained from the values
produced by the high-temperature fitting to the
specific-heat data is consistent with the AF2 type
of order. So we suggest that the spins in NNA

order according to the AF2 type of antiferromag-
netic arrangement.

Now we wish to make some comments about our
best fitting of the specific-heat data with the high-
temperature expansion. Dalton calculated several
terms of an expansion for the free energy of Ising
and Heisenberg ferromagnetic models using first-
and second-neighbor interactions, for several spin
values, in different kinds of lattices. " At the
present day his work contains the longest available
expansions for model Hamiltonians with first- and
second-neighbor interactions. Using these results
we derived an expression for the specific heat in
our particular case: an antiferromagnetic Heisen-
berg model, with S =1, in an fcc lattice. The
specific heat per spin is

where the coefficients C„, are C„=32, C„=16,
C =309.3333, C, =512, C =0, C =-16, C
=2346.6666, Csx —7850.6666, C22=2901.333~ Cps=0,
C(~ 64' C50 19 757 0370' C41 79 075 5555~ C~2

B =aJ,S(S+I)/3k, l5
C (j/K mol)

where e comes from the magnetic susceptibility
measurements. This disagreement is an indication
that AF1 is not the kind of order suitable for NNA.

In the AF2 type of order, each ion has six paral-
lel first neighbors and six antiparallel first neigh-
bors. So the energy comes entirely from the in-
teractions between the six antiparallel second
neighbors, that is,

Z, = -6R(d, /k) S'

from which we have J, =-0.36 K. For this type of
order the Weiss temperature is given by

0
0

I
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FIG. 4. Specific heat vs temperature. The dots are
experimental values and the curve comes from the the-
oretical model.
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d J.specific heat we obtain the parameters J, and
In Fig. 4 we show a theoretical curve for the
specific heat, including the contributions from the
series expansions, the Schottky anomaly, and the
lattice vibrations. The fitting is very good down to
3.5 K. Below 3.5 K the theoretical expression be-
gins to deviate from the experimental data. New
terms of the high-temperature expansion must
probably be included or maybe the three-dimen-
sional Heisenberg model is not really adequate

FIG. 5. Entropy of magnetic transition versus tempera-
ture. The curve is the experimental value. eThe circle

he dashed lineon this curve indicates the Noel point. T e a
indicates R ln3, which is the theoretical value of the
entropy at T=~.

close to the critical point. It is important to re-
mark that since D is small we are treating the
Schottky term and the Heisenberg Hamiltonian
separately. This approximation makes it possible
to perform series analysis of the Heisenberg mod-
el with first- and second-nearest-neighbor inter-
actions. However, the agreement at high tem-
peratures, when the truncated series should work
best, is really very good.

Below T„ the dependence of the specific heat on
T is an unexpected fact. Kubo' obtained a T'
law for the specific heat of a two-dimensional
model using spin-wave theory. Three-dimensional
crystals with no anisotropy exhibit a T' law. Our
experimental data are not sufficient to give an
ultimate conclusion about the T' variation and we
did not make any study to verify the possibility
of a two-dimensional behavior.

An important test of our conclusions is the com-
pariarison between the experimental and the theoreti-
cal values of the entropy change through the tran-
sition. The total theoretical entropy of transition
is given by AS =R ln(2S +I), where S is the spin
value. In Fig. 5 we show the experimental graph
of 4S vs T. Most of the entropy is between 0.4 an
3.5 K, where this graph was obtained through a
numerical integration. The extrapolated value
below 0.4 K amounted to about 10% of the total
entropy. Above 3.5 K it was possible to use the
high-temperature series for a more-reliable ex-
trapolation (about 5' of the total value). It is pos-

'bl t bserve that the experimental 4S curve
=R ln3tends smoothly to the theoretical value bS = n

=9.137 JjKmol. The total experimental entropy
is nS =9.125 +0.015 J/Kmol, about 0.13% below
the theoretical value. This close agreement lends
additional support to the assumptions of our work.
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