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We measured sound-velocity changes for various geometries in the model paramagnet TmSb and in high

magnetic fields. By measuring the c4, mode with propagation direction k parallel and perpendicular to the

magnetic field one finds a field-dependent splitting between the two modes, which should be absent in

noninvariant magnetoelastic theory. This is evidence for the presence of rotationally invariant magnetoelastic

interactions. A recently developed theory by Dohm and Fulde is used to quantitatively account for this effect.

All relevant material parameters are known for TmSb and we can therefore make for the first time a test for

this theory without adjustable parameters. The result is a surprisingly good agreement between experiment and

theory. The inclusion of other higher-order magnetoelastic terms is discussed. A similar effect is observed for

the c»-c» mode, where we can account for the mode splitting with opposite sign to the c44 case and where

we can account for the order of magnitude of the effect with a simplified calculation. We also present

analogous experimental results for paramagnetic Pr,Te4 in smaller fields, which we do not interpret

quantitatively due to lack of knowledge of crystal electric field parameters for Pr'+.

I. INTRODUCTION

We present experimenta1 results of sound-
velocity measurements in high magnetic fields
for various paramagnetic substances and for
special elastic propagation modes. These ex-
periments allow us to make a quantitative test of
rotationally invariant magnetoelastic theories.
We give results for the model substance TmSb for
which all relevant parameters are known. There-
fore, we can make a quantitative comparison be-
tween theory and experiment for this compound
without any adjustable parameters. This results,
therefore, in the first truly quantitative test for
rotationally invariant theories. The result is a
good agreement between theory and experiment.
It also constitutes the first such experiment for
cubic materials.

In the noninvariant magnetoelastic theory' one
has a linear couyling between the symmetric strain
and the quadrupole operators of the magnetic ion.
This theory successfully explains magnetostriction
experiments for various materials' and also the
temperature dependence of elastic constants in the
paramagnetic phase for many rare-earth com-
pounds

However, it was noted by various people that
such a magnetoelastic theory violates the principle
of rotational invariance. ' ' That is to say that
the magnetoelastic Hamiltonian used to describe
experiments such as the ones mentioned above
does not exhibit rotational invariance. Rotationally
invariant magnetoelastic theories were experi-
mentally tested for the first time by Melcher' for
Mnr, in the antiferromagnetic state. He showed
that, due to rotational deformation the c~ mode
measured with respect to different magnetic-field

directions exhibited different field behavior. More
recently similar results were found in the para-
magnetic phase of rare-earth vanadates. ' In all
these experimental tests the magnetoelastic cou-
pling constants and crystal-field parameters were
not known, in fact certain linear combinations of
them were determined from these experiments.
As mentioned above, in certain cubic rare-earth
compounds all these parameters are known from
other experiments. Therefore, with the help of
a recently developed theory of rotationally invari-
ant magnetoelastic interaction in rare-earth para-
magnets, "we can make a quantitative test of these
phenomena. A brief account of part of this work
was given at a recent conference.

In Sec. II we describe experimental details. In
Sec. III we give an elementary account of the ro-
tational invariant theories and derive a11 neces-
sary formulas. In Sec. IV we give the experimen-
tal results and discuss them in great detail.

II. EXPERIMENT

The bulk of the experimental results will be con-
cerned with TmSb. However, we also give results
for Pr, Te~ and we mention Prp 05 Lao 95A12 Since
we know all relevant parameters only for TmSb,
we shall give only a quantitative discussion for
this compound. Many of the relevant facts for
these materials have been discussed previously:
TmSb, ' Pr, Te~ "

Single crystals of TmSb were grown by Bucher
by direct fusion and subsequent solidification in a
sealed tantalum crucible over a large tempera-
ture gradient. This produced crystallites of vary-
ing sizes, depending on the particular rare-earth
compounds. Single crystals were cut out with a
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spark cutter and oriented using an x-ray gonio-
meter. The growth of single crystals of Pr,Te4
is described elsewhere. "

We investigated three crystals of TmSb and one
crystal of Pr,Te4. Two of the TmSb crystals,
which were used for the c~ mode were cut with
end faces normal to the three cubic axis. The
dimensions of these crystals were 2.49x2.45
x2.20 mm' [TmSb (1)] and 1.5x2.6x4.95 mm'

[TmSb (2)], e.g. , two sides were of the same
length for TmSb (1) enabling us to have the same
geometry with respect to an applied magnetic field
along the two sides. The third TmSb crystal
[TmSb (3)], which was used for the c»-c» mode,
was the one used in the previous investigation'
and had dimensions of 3.24 mm along the [110]
axis, 3.14 mm along the [001], and 2.9 mm along
the [110]axis. Finally, for Pr, Te, the cubic side
lengths were 3.80x3.82x3.70 mm3.

We used a high-resolution phase comparison
method to measure sound velocity, '~ (1 part in 10'
resolution) which was used in previous investiga-
tions. The thermal expansion" and magnetostric-
tion' of the TmSb sample were known and we will
discuss these corrections in Sec. IV.

A superconducting magnet capable of attaining
90 kOe was used for these measurements. We
constructed a sample holder to measure sound-
velocity changes for propagation either parallel
or perpendicular to the magnetic field. For the
temperature measurements we used a capacitive
thermometer (Lake Shore Cryotronics) and a
ca1ibrated germanium thermometer. Most of the
measurements were performed at 2 K with some
at 4 K and higher. However, we only calculated
sound-velocity changes theoretically for low tem-
peratures and we therefore compare only the 2-K
data with theory.

E,&
=-,'(vo + v~, ++„v„,v ~) is the component of the

finite strain tensor, and v, &
is the component of

the deformation tensor. e„=.—,'(v,
& +v&, ), &o,&

=-,'(v, ~
—v~, ) are the infinitesimal strain and ro-

tation tensor components. With the help of Eq.
(1) we could successfully account for the tempera-
ture dependence of the various elastic constants
in many rare-earth compounds. ' '" However,
in order to understand the magnetic field depen-
dence of some symmetry-elastic constants one
has to introduce a rotationally invariant magneto-
elastic Hamiltonian. For example, Eq. (1) pre-
dicts the same magnetic field dependence of the
q~ mode for sound waves propagating parallel to
the field and perpendicular to the field, whereas
the correct magnetoelastic Hamiltonian will give
different magnetic field behavior for the two modes
in agreement with experiment.

Rotational invariance requires the interaction
of a magnetic ion, characterized by J„, with the
strained and rotated lattice to be equal to the in-
teraction of the reversely rotated spin R „',J„with
the purely strained lattice": If one writes a gen-
eral deformation of a lattice point R „as a pro-
duct of a pure strain deformation and a rotation
R'„O„e.g. , (1+v„)R„=R...(1+2E„)'~'5„then ro-
tational invariance means

3C( J„,(1+v„}0„)= 3C( J„,R„,(1+2E „)'~25„)

3C(R Jy(1+2E )~g )

(2)

We apply this principle to the special case of
sound propagation in the g-z plane which is
realized experimentally in our experiment. In
this case we can choose the finite rotation tensor
as

III. THEORY

We give here a simple derivation of the rotation-
ally invariant magnetoelastic interaction and of the
corresponding sound-velocity expressions. A de-
tailed theory, applicable to the case of cubic rare-
earth compounds, can be found in Ref. 10. The
starting point is the crystal field (CEF) and mag-
netoelastic strain (str) Hamiltonian 3C = 3Ccz„
+ + f which are, for cubic symmetry and for
c~ and c»-c» modes, "

3CcFi: =B~(0~+50~) +Bs(06 —2108),
3C„, =

6 G2( E„—E„-E ) 02+-, G2(E, E„,)02—
+G,E„(J,J„+J,J, )+ ~ ~ ~ .

In Eg. (1), the 04, 0„0',, J,J', are the weil-
known crystal field and quadrupole operators, "

0 1

+2G, e„~„,(J,'-J', ) . (3)

-(o„0 1--,'co„',

and operate it on Eq. (1}. To second order in &„„
R„,describes a rotation about y axis with angle

In this way the CEF term B,O, = —20B&(J,J,
+ J,'J,') transforms into —20 B,&u„A„

+ (J',J,+J,J„)(J, -J,) and &„=(J,J,+J,J, )
—(J,'-J, )~. Furthermore the strain term
G, q„(J,J,+J,J, ) transforms into
2G, e„&u„(J,'- J,'). For the c~ mode the rota-
tional part of the magnetoelastic Hamiltonian
therefore reads

3C...(c44) = —20 B,&o„,A„+40 B,&o,',X„
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(4)
The contributions of this term we shall discuss
separately.

In an analogous way we derive &„,for the c»-c»
mode re

3C...(c»-c») =- 20B,&u,„A»+ 40B,&u,', X,„
—2G2 (j,J, +J,J„)e„&u„~

In order to calculate the elastic constants we
use the same thermodynamic formulation as be-
fore' except that instead of defining the iso-
thermal elastic constants as cr=(a'F/acr)r, we
now use for the c44 modes

(5)

This result agrees with the result of a derivation
using general relations between tensor operators. "

In Eq. (3) we used only the infinitesimal strain
tensor components q„„~„.The finite strain ten-
sor E,&

in Eq. (2) also gives for the c~ mode con-
tributions involving E„,, E„which leads to the
following second-order Hamiltonian ':

Ecgz
~

2 p Acg~ (6)

Here ~c„,means the elastic constant contribution
due to a v„deformation (propagation vector k„
polarization vector R, ). Previous workers have
shown pictorially how in a v„and a t),„deform-
ation of a plane wave the rotational contributions

&„, and &,„act in the opposite sense, 4" there-
fore giving rise to measurable differences in the
presence of a magnetic field. Furthermore, in

Fig. 1 of Ref. 9 it is clearly shown how the finite
strain term contributions E„„and E„arise which
are responsible for 3C

2l [Eq. (4)].
With3Ccl„, 3C„, and 3C... [Eqs. (1) and (3)], and

the Zeeman term &,=-gp~ J,H, one can calculate
the dependence of the crystal-field energy levels
E(F„)onH, e„, &u„: Z(F„,H, e„,+„). From this,
one can calculate the free-energy density
F = kTNln-p„exp(-E„/kT} and with Eq. (6) Aco.
The result, in agreement with the Green's-func-
tion treatment gives for the c44 mode

(k„R, )Av„/vo=(N/2pvo) f —,
'

X [G3(j,Jg +j,j, ) —20B4A„,] + 20B4(&„g) +G3(j, —j,)),
(k„R,)Av „/vo=(N/2pvo)(4 }t[G~(j,j,+J',j, ) + 20B4A,g]+ 2084(X„,) —G~(J„—j,)j.

Here y is the strain susceptibility defined pre-
viously. ~ ' It arises from the terms linear in

&o„,e„of Eqs. (1) and (3). Terms quadratic in

&„„~„givethe thermal-averaged contributions
( ). v, is theR =0 background sound velocity and

~v the change in the field. p is the density and N
the number of molecules per unit volume.

In the Appendix we give details of the actual
numerical calculation for the c« in TmSb. Various
approximations in the theory and calculations (such
as the neglect of B, in X„,) will be discussed in
Sec. IV.

IV. RESULTS AND DISCUSSION

A. TmSb: Material constants

TmSb is a paramagnet which does not exhibit
any magnetic or structural phase transition. It
has the following further attractive features: It
has a cubic NaCl structure. The Tm ion is in a
definite Tm" (j=6) valence state Exchan.ge be-
tween ions is negligible. This was deduced from
susceptibility measurements in the system
Tm„Y, , Sb. This result was confirmed by in-
elastic neutron scattering experiments. " These
experiments also gave CEF parameters g4 = 13+0.2
mK, g, =0.0286+0.0026 mK, therefore, the wave
functions are known22 (see the Appendix). It is
seen that jp, is much smaller than g4. This per-

mits us to neglect 8, terms compared to B4 terms
in our analysis of Eq. (3), etc. , as has been done
in Sec. III and in the literature. ' This is justified
although the matrix elements for 0, operators are
substantially larger than for 04 operators. An
estimate for a typical matrix element gives"
B,(6 j p,'( 6)/B, (6 ) p,'( 6) =0.06. Therefore we
expect to make at most a 10% error in neglecting
g, terms. For our numerical calculation we take
&4=13 mK.

The values of &4, g, lead to the following level
scheme (number in parentheses in degrees Kelvin}
r, —F,(25) —I",(56) —r, (115)—r', (187) —r, (200).
At 2 K the thermal population of the exc'ted levels
is smaller than 10 ' and therefore negligible. One
has only to consider matrix elements out of the
ground state. In the Appendix we have listed
matrix elements for a number of magnetic field
values.

The magnetoelastic coupling constants we de-
termine from the fit to the temperature depen-
dence of the c44 and c» c» modes. " In Fig. 1 we
show the temperature dependence of c4, for two
of our samples: TmSb (3) was the one we investi-
gated previously and TmSb (1) is the one which
was used to measure the rotational contributions
to c«discussed below. It is seen from Fig. 1 that
the elastic constants of the two samples exhibit
the minimum both at S K, however, the sample
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FIG. 1. Temperature dependence of elastic constants

c44 in TmSb for two samples TmSb (1) and (2) (full
circles) and TmSb (3) (open circles). Lines are fitted
strain susceptibilities.
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TmSb (1}exhibits a smaller minimum leading to
a magnetoelastic coupling constant G, 20% lower
than the one for TmSb (2). Such a variation of
magnetoelastic coupling constants is found very
often in these rare-earth compounds. 4 It is re-
lated to similar variations in transition tempera-
tures and is due to slight differences in stochio-
metry, impurities, etc. For our purpose it is
therefore important to use the coupling constants
measured on the actual sample, because the ro-
tational effects are a sensitive function of G,. For
our analysis belom we use for Q, = 20 K for the c,4
mode. The elastic measurements give only l G, l.
The sign of G, we took from the point-charge
model (PCM), because the sign and magnitude of

Q, as determined from magnetostriction agrees
very well mith PCM for the whole LSb series. "

B. TmSb: Rotational effects for the e44 mode

In Fig. 2 we show relative velocity changes
av/vo for sample TmSb (1)' for the c~ mode in
the two geometries k„R„and k„,R,. TmSb (1}
and TmSb (2) gave the same result within 10%.
For the zero-field velocity we take v, =1.VV km/
sec p =8.57 g/cm'. One notes a clear effect of
rotational contribution: at 60 kQe there is 0. 5'gyp

difference between the modes which mould be
degenerate in noninvariant magnetoelastic theory.

We first discuss possible experimental cor-
rections:

(i) Magnetostriction correction. The magneto-
striction along [100] direction at 2 K in TmSb isM

5l/l =10 ' for H =15 kOe. With anH' extrapolation

H (Jae)
FIG. 2. Relative velocity change in large magnetic

fields for c44 mode in TmSb at T=2 K, full circle is
mode k)( H polarization vector R& H, open circle
k & H, R )( H . Dashed-line calculation [Eq. (7)] using
G 3 24.8 K, solid- line calculation using 0 3

——20 K,
dotted-line calculation Eq. (7) with X contributions
included. b, , 9', 30 MHz.

as an upper limit, we get 1.6x10 4 for 60 kOe.
This gives in the scale of Fig. 2 a change of 0.016%
for nv/v, at the highest field which is practically
negligible. Because of the same side lengths, the
same magnetostriction correction applies for both
modes, for TmSb (1).

(ii) Demagnetizing field: The magnetic suscepti-
bility at 2 K is y = 0.505 cm'/mol which gives an

upper limit for M =14.8IIx10 ' G. For the TmSb
(1) sample we get as demagnetizing coefficients
in the field direction for an inscribed ellipsoid
N =4 mhich leads to an upper limit of the demag-
netizing field of 3.5 kG at 60 kOe, which again
does not give an important correction.

(iii) Since this demagnetizing field is so small,
we can neglect its variation along the axis of the
specimen due to the nonellipsoidal form of the
specimen.

With all these experimental corrections con-
sidered, we can compare our experimental re-
sults with the theoretical calculations. In Fig. 2,
we have plotted theoretical curves, calculated
on the basis of Eq. (7). The material constants
used were discussed in Sec. IVA. The full line is
with the magnetoelastic coupling constant deduced
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from Fig. 1 for the sample TmSb (1) (G, =20 K},
the dashed line with G, from the previous sample
TmSb (3) (G, =24.8 K). It is seen that the the-
oretical curves depend sensitively on G,. Details
of the calculation are given in the Appendix. It is
rather amazing that the best choice of B4 and G3
gives a surprisingly good fit to the experiment,
the deviation being only about 20% for both modes.
In Ref. 11 we performed a similar calculation in-
cluding only the lowest 3 levels I', I', I"',. This
leads to small differences as a comparison of Ta-
ble I rows 7, 8 and 9, 10 show. We now discuss
possible additional contributions:

(i) Inclusions of terms due to the sixth-order
CEF parameter B,. This we believe is the most
serious omission in the theory. In Sec. IVA we
estimated a typical matrix element and found that
it could account for up to 6% of the corresponding
B4 matrix element. However, the calculational
effort involved in including these terms is very
large.

(ii) One has to consider higher-order contribu-
tions to the theory as discussed in Sec. III. We
have considered the second-order Hamiltonian

arising from the finite strain tensor con-
tributions [Eq. (4)]. With G, = —63 K this gives
an almost negligible contribution as can be seen
from Table I, rows 11 and 12, where we have
listed it for various field values. The largest
contribution for 80 kG is -3.6x10 ' for (Av„,
-Av, „)/v3, its contribution is given by the dotted
line in Fig. 2.

(iii) Another second-order strain contribution
comes from higher-order magnetoelastic coupling
constants'9:

30(3) fE2 [g2 g2 3 (g2g2 g2J2)

+ —', (Z, + Z3 ) ——', 7(J + 1)),
where one can estimate f from a PCM calculation.
Since such estimates give f an order of magnitude
smaller than G, and since the expectation values of
the operators change little with field, these terms
can also be neglected. " In any case these terms
do not contribute to the splitting of the two modes.

{iv) There is also a linear strain coupling to
octupole operators possible. 'I Again one can
estimate the corresponding coupling constant only
from PCM calculation, because the temperature
dependence on the elastic constants is weak. "
Again such contributions to the strain suscepti-
bility based on PCM estimates can be neglected. ~
In summary we can say that, with the possible
exception of B, terms, all other higher-order con-
tributions should not effect our calculations seri-
ously. We can state that our calculations should
be correct within 10O/0 and that the agreement with

experiment is very good, considering the fact that
we have no adjustable parameters.

There are three other points worth mentioning:
(i) In the frequency range 10-50 MHz we did not

find any dispersion. In Fig. 2 we give results for
50 MHz and some points for 30 MHz. They show
the same field dependence. For these low fre-
quencies there should not be any dispersive ef-
fects.

(ii} The low-field behavior of the elastic con-
stants is strictly quadratic. This we checked by
separate measurements on an 14-kQe electro-
magnet. Both branches [(k„R,) and (k„R,)] show
an H dependence (Fig. 3) as expected. '3 At higher
fields (where gl2H is no longer small compared to
the CEF splittings) there are deviations from H'
as shown in Fig. 2.

(iii) If one increases the temperature the mag-
netic field effect diminishes, because of the popu-
lation of higher CEF states. This is also shown in

Fig. 3 where the splitting between the two modes
becomes smaller for T =4.3 K.

C. TmSb: Rotational effects for the cl&-c&2 mode

In Fig. 4 we show similar effects for the cyy cy2
mode, where we have plotted n. v/v, for the two
modes k 11 H and k& H. As explained in Sec. II
crystal TmSb (3) has two [110]and [110] sides
along which the magnetic field was aligned. Com-

Tm Sb C44 —mOde

o 1.9K
~ 4.3 K

01
0~O

( kX3 RZ}

100 200
H (koe~}

FIG. 3. Relative velocity change versus H2 for small
magnetic fields for the same c44 modes as in Fig. 2.
Open circles, T=1.9 K results; full circles, T=4.3 K
results.
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FIG. 4. Relative velocity change versus H for large
magnetic fields and for c&& —c~g mode in TmSb for T
=2 K; full circles, k~) H, R& H; open circles, k&H,
R II H.

parison of Figs. 2 and 4 show that the effect for the

c» c» modes is smaller in absolute magnitude
and also in the splitting of the two modes. Fur-
thermore, in this case the k 11 H mode shows the
smaller effect than the k& H mode, opposite to
what is observed in c~. This is just a consequence
of the different signs of G, and G3.

For this mode we have to calculate CEF energy
levels and wave functions for ff along a [110]di-
rection. This we did only for the truncated level
scheme I', —p4 —I',. For the c,4 mode such a cal-
culation gives very similar results as if one uses
the full CEF level scheme (see the Appendix). The
neglect of, e.g. , I', however, give drastic changes
in the c»-c» strain susceptibility. Therefore, we
only calculated terms from Eq. (5) which give rise
to the splitting of the two c»-c» modes. We only
state the difference between these modes
A =(n, v/v)(k11 H) —(hv/v)(kLH). with this ap-
proximation we obtain for H =40 kOe theoretically
g =0.0284%. This should be compared to the ex-
perimental value (Fig. 4) of n, =0.0825%. Although
the discrepancy is about a factor of 3, the sign of
n agrees with our expectation (opposite sign of
G„G,). We can state that also for the c»-c„mode
the rotationally invariant magnetoelastic interac-
tion gives the correct order of magnitude of the
observed effect. A detailed quantitative analysis,
involving the full CEF level scheme and possible
higher-order interactions, might even improve the
agreement between theory and experiment.

E. Other substances

Similar effects have also been observed in

Prp p Lap 95Al, for the C44 mode in low field. Again
we have to await experiments which determine the
CEF levels before we can make a quantitative anal-
ysis.

SmSb would be another suitable substance to test
rotationally invariant magnetoelastic effects be-
cause the material is well characterized' and the
Sm" (g =-,') ion splits in a cubic field into simple
I",—I', (65 K) states. This case with B,= 0 and

this simple level scheme is therefore very favor-
able for a theoretical analysis, "although the ex-
istence of a magnetic phase transition with

P f'3TQ4

T=2K

0~O

—0.2—)
C]

Q

—O.l—

~ kllH
o klH

H (kOe)

I

10
I

15

FIG. 5. Relative velocity change versus magnetic
field for c44 mode in Pr3Tegat T = 2 K; full circles,
k]( H, RiH; open circles, ki H, R)( H.

D. Pr3Te4

In Fig. 5 we show analogous measurements for
the c~ mode for Pr, Te4 at T = 2 K and in low field.
Rather large effects are observed in this case
g = 0.024% for H = 14 kOe. The sign of the effect
is opposite to the one for the c44 mode in TmSb.
Pr, Te4 is not as well characterized as TmSb. The
particular specimen measured did not show a mag-
netic phase transition down to 1 K, but the param-
eters indicate that it is an almost critically induced
ferromagnet. " The CEF levels are only approxi-
mately known and because of the low point sym-
metry of the Pr" ion in this Th, P, structure the
wave functions are not known. " Therefore a quan-
titative analysis has to be postponed till more data
are available on this compound.
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TABLE I. Calculations for c44 for TmSb.

H (kOe) 20 40 60 80 Remarks

X(AXg)

x(J J.)
pe J/ )
(z„)

&VXS
(%%u)

Vp

Vo)
Vp

-9069.1112
-25.492

0
-84.0062

0

-9203.784
-29.1364
-12.5532
—83.9949
-0.1778

-0.182

-0.1493

-9475.4408
-35.6844
-40.7228
-83.8491
-0.5235

-0.5161

-0.4109

—9754.3416
-41.0784
—73.6376
-83.5530
-0.8384

-0.8034

-0.6152

—10 007.5576
-45.0568

—108.1624
-83.1748
-1 ~ 0842

-1.0278
Full level scheme

(Fig. 2)
—0.7541

XZ
(%%u)

Vp

(%)
Vp

-0.1757

-0.1343

-0.4927

-0.3630

-0.7569

-0.5312

-0.9559
I

2Ouiy r, —r4 —r,
considered

-0.6360

ZL'
(%%u)

Vp

XE
(%%u)

V

-0.1838

-0.1382

-0.5214

-0.4057

-0.8145

-0.6068

—1.0387
I

Full level scheme
Inclusion of 3C

contribution (Fig. 2)-0.7432

T„=2.11 K could lead to additional effects for
T ~ T„. Unfortunately the quality of our crystal
of SmSb was not good enough to warrant a suc-
cessful investigation.

Apart from the cases studied so far and men-
tioned above (MnF„LVO„TmSb, Pr, Te„
Pr, „Lae»AI„SmSb) there exist a calculation
for rare-earth metals. ' Due to the large mag-
netic moment, experiments for these systems are
however difficult to interpret. The experimental
corrections discussed above for TmSb (magneto-
striction correction, demagnetizing field and its
variation along the sound-wave path) are in this
case very important and might mask the effect.
In addition the material parameters are not known
with sufficient accuracy to make a quantitative
test. '4
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APPENDIX

Here we give details of the calculation. In the
case of the c«mode with the external magnetic
field H applied along the cubic [001] axis, we first

calculated energies and wave functions for the CEF
states. We used the tabulated wave functions" for
g = —0.8 which is close to x = —0.78 calculated
from CEF parameters. " With the Zeeman term
K, = —gp. ~HJ' we diagonalized the Hamiltonian

&«, + &, and found new energies and wave func-
tions. This we did for the full )evel scheme. Pre-
viously" we only took the lowest 3 levels I',
—I'~(25)-I's (56 K). In the table we compare the
differences between these two approaches. In
the first 3 rows of Table I we list the contributions
to the strain susceptibility (Eq. 7):

y [Gs(J,J,+J,J, )+ 20B4A„,]

=(20B4) y(A„, ) +G, lt(J, J,+J,J'„)
+ 40 B4G, y (J„J,+O',J„)A„(A1)

for selected magnetic field values and T =0. The
next two rows give the T =0 values of (A.„,) and

(J,' —J,'). Using Eq. (7) we give in the next 2 rows
Av„/v„nv„/ve. This we compare in the next
two rows with Av/v, values calculated only with
the 1",—I'4 —I', levels. One notes that the splitting
of the 2 modes is actually increased by using the
reduced level scheme by approximately 30%.
These results are a1so shown in Fig. 2 for the full
level scheme and in the Fig. of Ref. 11 for the
truncated level scheme.

In the next 2 rows we give Av/v values with the
effects of ~i", Eq. (4) contributions included.
This is also shown as the dotted line in Fig. 2.
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