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We calculate the multispin correlation functions away from T, of a two-dimensional Ising lattice along the

diagonal. We also present the result for a four-spin correlation function in the scaling limit. These results

show that with slight modifications, the operator reduction formulae of Kadanoff hold.

I. INTRODUCTION where ~t
~

' is the correlation length, given by

The multispin-correlation functions in the two-
dimensional rectangular Ising models have been
studied by many authors. ' ' In particular, Kada-
noff' has studied the 2n-spin correlations along a
line at T= T,. These results suggest the operator
reduction algebra. "' In order to check these re-
duction formulae away from T„we shall compute
a few cases of the multispin correlation functions
exactly. The first calculation is for two groups of
spins, when their separation is much larger than
the correlation length and each group contains odd
number of spins. Secondly, we shall present'
the rigorous result for the four-spin correlation
function (aoa~„,„o„,„,~) in the scaling limit, that
is the limit when aQ the distances between the four
spins M, N, and I. approach infinity, and T goes
to T .

II. ODD-ODD SPIN-CORRELATION FUNCTIONS

Let o, denote a spin on the (l, l) sites along the
diagonal of the rectangular Ising lattice, so that
0, = a, , The spin-correlation function is an N x N
Toeplitz determinant, ' ' while the ratio
(aoap„,a„)/(aoo„) is the lth diagonal element of
the inverse of this finite Toeplitz matrix. ' When
T & T„N»

~
T/T, —1

~

', the spin correlation is
known' to behave as

e~zlt t

f=k«& k ~~occT/T

k, =(sinh2K, sinh2K, ) '.
(2}

(3)

where B, is the ratio" (aoa, o, „)/(oo} for T& T„
and is given by

(aoaiai+ioz}8, = lcm
n (aoan)

ko"(- o ).(o).
(n!)' (6)

in which

(a)„=I'(a+ n)/r(a) = a(a+ 1) ~ ~ ~ (a+ n —1), (7)

while

When / is much smaller than N, the ratio
(ooa,o„,a„)/(aoa~} can still be calculated by the
same technique used by Wu. ' In particular, we
f ind

(aoa, o,a„)= (a,a„)(1 ——,'ko)tl + (4vN'
~
t

~ ) 'e '"'"
x [1+0(1/N( t ] }]j,

(4)

in which k, is defined in (3). More generally, we
have for l«N,

ko"( )„~ko'(- ); k o' r(l+ —)1'(l+ —)F(-l, —'; —';1 —k)F( l, —'; ——', 1 —ko)-
(6)

where F(a, b; c; e) denotes the hypergeometric func-
tion. The particular values of Bt and bg

At T= T,(k, = 1), the sum in (6) can be evaluated
exactly to yield

b, =ko ——,'ko, b2 = ko —4 ko —~ko ~

This shows even though the expectation values
(aoa, a, „)and (oo) vanish at T„ their ratio re-
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mains finite. Furthermore, by comparing (11)
with (8) we find for k, = 1 b, ),= (B,),. Conse-
quently, in the limit l« t ', b, -B„. the cor-
relation function of (5) has the simpler form

(gp, o„p ) B(=,, )()~,~ ). og)

Thus, we find that the product of three spins be-
haves as a single spin.

It is also easy to evaluate the multispin correla-
tions,

((r,(r, a, (r, (r,a„)= (a,a„) ((1 ——,
' k',)' —(ga k,')

&aoagag+ga«&=Bg (a'oa«)+ b, (gg)oa»&

ti/4e- &Itl
+0 eI

(18)

When T & T„ the spontaneous magnetization is
zero; this means that the Toeplitz determinant
(aoa„) vanishes in the limit N —~. This in turn
means the semi-infinite Toeplitz matrix is not
invertible, "'" and here we would need to calculate
its inverse elements (a,a,a„,&/(a, )!.This dif-
ficulty is overcome by using the method of Wu, '
and we find

e- 2&l t I

X ].+ (13)

(a,(r, (r,a,a4a«, (r», a«&

= (a,a„) ((1 ——,
'

k,')' —-' k,') (1 ——,
' k', )

for T& T„where'

& a,a„) = (1 —k, ')g «k; "[r(N —,')/r(-,')r(N)]

xF(-, N--„.N. k '}+P(e»ggg)
- (2 ~f ~)

/ e '(grN} '/

x [1+ (8N If I) '+ ] (20)

3e-2zl t I

4''I t I

(aoagag ga»- -g»- a«& =& oa»&

(14)
while

&gg) (r ) -(1—k o)g /4k «[I'(N ——')/21'(-'}I'(N)]

XE(o, N —o;N, ko )

(2N}- g (2
~

f
~ ) g /4e- «I g ( («N)- g /2

(B,b +B b, }e o '"
8+It I

(21)

(15)

for f, m «N, in which Bj, and bj, are given by (6)
and (8), respectively. These results show that the
correlation function of any two group of spins, each
of which contains an odd numbers of spins, has the
same form.

Next, we shall show that the correlation function
still has the same form when no pair of spins are
neighbors of each other as in the above examples.
We find that it is possible (but more tedious) to
compute (a,a,a„a») for l+m «!t

~

', and

me-'N'"(...,......&=~(....&()+ ...
' ).4' It I

(16)

where D, denotes the ratio (aoa, a, , &/(ao& for
T& T,. It can be expressed as an m xm determi-
nant

in which the constant B; and b; are given as

B+; & aoagag+ ga»&

& aoa»&

1+1 2ggf

(fg} 1(g) Q 0 ( o/n

n=0

~ k. ' '"(o).(- ~o)...
n!(n+ 1}!

b, =(l!) '(g) ~ ko (- o)o(l+ —n)

n=0 Pl t

with the particular values

b; = —'(4k, ——,'k, ' ——,'k, ' ——'k ') .

(22)

(23)

(24}

(25)

g I g ~ j I g&(, j& gem-g

whose elements are"'" k,"'"(--')g .(o)j .
(i-n)! (j-n)!

This again shows that the correlation function
(a,a,a„a„)has its leading term proportional
to the spin-spin correlation (ao(r») .

(18)

Again, at T = T,(ko = 1), we can evaluate the sums
in (22) to obtain

(a,),„„r(-,')r(-,') (f!}'

(26)

On comparing this equation with (11), we find
(B;),= (B,), This shows tha.t the expression in
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(22) for &aoata„,&/(a, ), which is an inverse ele-
ment of a noninvertible Toeplitz matrix, is cor-
rect. The sums in (23} for ko =1 can also be
evaluated exactly yielding

(b;),=(B;), or bt =B I+0(tl) .

When l, m «N and
I
t

I

' «N, we have

&aoatat, taN- aN- aN& Bt'BN( attaN&

(27)

-(a,a, & +(I tlst ')

x (2ltll} 'e "' '[1 —(ltll) '+ ] (29)

&aoarat+t&

r&r,

+ —(2ltll) se~ ' ' -- +" (3o)

which together describes the behavior of the spin-
energy correlation.

These results show that the operator reduction
hypothesis holds away from T,. More specifically,
we find that the product of any odd number of spins
can be written

2n-1

]$ a, Ba„+b-Q„,
iI- P

(31)

where Q„denotes a less singular operator. From
the equations

&a a ) ne'""
(32)

+ (B't b'+B' b;)&aottIN& (28)

for T& T, with constants B; and b.; def. ined in (22)
and (23).

The equations (5), (19) for (a,a,a, „a„)and
(15), (28) for (a,a, a, „a„,a„„a„)are still valid
expressions even for l, m- ~,

I
t I-O, with It Il,

I
t Im-0(1). In this limit we find

&aoatat+ t&

&a) r& t

with n«
I tl ', we can see that the leading term in

the multispin-correlation function, given by (4},
(12)-(16), (19), or (28), is independent of the choice
of r except Ir —i

I
&

I
t

I
'. The constant B is de-

termined by the ratio

(34)

while the correlation &Qoan& can be deduced from
these equations as

(a&se-sNI tl
&Qoa.&" N. ~t~

ltl(&a.a.&-&a&') «»&T.

(35)

[ t (
-1/4e sill

&Qoatt&oo s~, ~N '&aoan& for T&T, . (36)

However, it is worthwhile to note that &Qoan&
st&QNao&. It is because from (12), we have

III. FOUR-SPIN CORRELATION FUNCTION

Now, we shall present the result of our analysis
of the four-spin correlation function
(a,a„a„,„aN,„,~& in the scaling limit. Let us put

x, =tN, xs=tL& X= Itl(M+sN+ sL), (39)

with t defined in (2). We find the four-point cor-
relation function can be expressed in terms of
these scaling variables

0 N N+N N+N+L& y' ( x X)
& a,a„)&a,a,&

+ O((N+L)t lnlt
I

(N+L)/I'}

(40)

(a,a,a,a„)-B,(a,a„)(1+e '"" /4ttN'Itl+ ~ ~ ),
(37)

while (16) yields

& a N+ saoasas)-= & aoatasaN&

=B ( sao&a(1N+2e '""'/'4ttN Ill+ ~ - ).

(38)

& a aN „)- (aoaN) —n& aosoN&+ for T & T, ,

(33)
where I 4(x„x„X)is the scaling function, which
has the asymptotic expansion

I 4(x„x„X)=1+ —,
'x x,[1 —-', xA, —-', xA, + —,'x', A', + —,'x'A', + —,

'x x A, A, ——„(x',+x')](K,'-IP)
+ —' x xs(x, + x )(1 —-'x A, —-'xsAs)(IP, —K~s) +,—'„x xs(IP+K Ks -K, IPo)+,—' xsxs(x, + x,)-
x (K,Ks+ 3IP, + 2IPo —2K+s)+ O(x,' lnx, K„(X)K4 „(X)), (41)
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On using the results'

(42)

where K„=K„(X)are the modified Bessel function',
while

relation function behaves as

where

err= osos —(o o ),

(46)

(49)
&o,a„&/&a,o„&'=1+-', x,A, +—,', x,'+ O(x,')

&o,o„&/&o,o~&'= i+ -', x,A, + —,', x,'+ O(x,),
we find the scaling function f~ defined by

& oooNorr+rrorri rr+ L& (oQ N&(ooor &

(oo& (o o )'

has the incredibly simple form

f,(x„x„X)- —,'x, x, (K', -K', )

+ —,', x,x, (x, +x,)(K', -K+,)
+,28 x~x2(IP, +K,K~ Ko - K-2)

(43)

(44)

(45)

we can see from (45) and (46), that the reduction
formula for T 4 T, must be modified as

a,o„=&ooo„&+ (&a,o„&'/&o,o,&')Ne„r, + O(N't, ,),
(50)

where the superscript denotes values at T = T„with
( oo0'g &

= 2/rr .
Even though the final result is so simple, the

mathematical difficulties involved in this problem
are enormous. We have used the theorems on the
generalized hypergeometric functions extensively,
which enable us to estimate the errors accurately.
This analysis shall be published elsewhere. '

+,—'„x,x,(x', + x,')

x(K~K3+ SIP, —21PO —2K+2) . (46)

All the terms involving lac, and lax, disappears
in this expression. At T = T„we find

NL NL(N+ L)2 3N I.2 t NL
4 4R, +

l6R4 32R4

with R =M+ &N+ & L, which agrees with the re-
sults of Kadanoff. ' Since the energy-energy cor-
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