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Existence of phase transitions near the displacive limit of a classical n-component lattice model
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Using a new method proposed by Frohlich, Simon, and Spencer, we prove the existence of a phase transition
near the displacive limit of a classical n-component displacement model on a d-dimensional (d > 3) lattice. In
certain cases, the proof can be extended for d = 2 and n = 1. Moreover, we derive exact lower bounds for the
critical temperature of the spin-s (s = %, 1, %, ...) extension of the Blume-Capel model.

I. INTRODUCTION

In recent years, there has been considerable
interest in systems undergoing structural phase
transitions.!™* One of the most salient features
of such systems is the existence of the so-called
“displacive limit,”"**5"® where the critical tem-
perature, as a function of the parameters in the
Hamiltonian, is expected to vanish continuously.
Beyond the displacive limit there is no phase tran-
sition. Slightly below the displacive limit, in the
displacive regime, there is experimental evidence
for a finite critical temperature. Good examples
of real systems undergoing a phase transition in
the displacive regime are SrTiO, and LaAlQ,.°
Moreover, molecular-dynamics investigations
have demonstrated the existence of a phase tran-
sition at finite temperature close to the displacive
limit.! Far from the displacive limit, in the so-
called “order-disorder regime,”! the existence of
a phase transition has been proven rigorously in a
two- or more-dimensional classical one-compo-
nent displacement model. This was achieved using
correlation inequalities'®!! or a modified version
of the well-known Peierls argument.!? Neverthe-
less, these arguments fail when the displacive
limit is approached, and so far, there is no rigo-
rous result demonstrating the existence of a finite
critical temperature in the neighborhood of the
displacive limit.

The aim of this paper is to use a recent and
powerful method proposed by Frohlich, Simon,
and Spencer'® ! (FSS) to prove the existence of
a phase transition in the displacive regime of a
classical n-component displacement model. To
explain the method let '§j denote the n-component
displacement of an atom j from its reference
position ; The central idea behind the FSS stra-
tegy is embodied in an a priori bound on the low-
momentum singularity of the two-point correla-
tion function. Specifically, let F(k) be the Fourier
transform of the two-point function (3; +3,); this is
a positive distribution of the form

F(k)=co(k)+g(k), (1.1)

where, for the symmetric models considered be-
low, c is the long-range order parameter

c= lim (8,°8). (1.2)

li=jl—>e

Evidently c#0 implies the existence of long-range
order and, hence, of a phase transition. In order
to prove the existence of the transition (¢ >0) one
needs: (i) an upper bound on g (k) (step A of FSS),
and (ii) a lower bound on (|3;[?) (step B). In all
the cases considered hereafter the upper bound on
g (k) derived by FFS™ is still valid and reads

0<5(R)< @A S(i-cosk))

(1.3)

where g™'=k,T is the temperature, J= 0 is the in-
teraction strength, and d denotes the lattice di-
mensionality. On integrating (1.1) over k and using
(1.3) we obtain

c={|5;P)- (2 BJ)*q(d), (1.4)

where 0<g(d) <~ for d > 3. [One may note that in
one and two dimensions the integral over the right-
hand side of (1.3) is divergent.] To establish the
existence of a phase transition it remains then to
establish a nonzero lower bound on {|3;[?.

The FSS method, although valid for all », is
evidently restricted to lattices of dimension d = 3.
Nevertheless, we will show how to use the method
to prove the existence of a phase transition in the
displacive regime of a two-dimensional (d=2),
one-component (n=1) classical lattice system.
However, for d=2 and »>1 no spontaneous mag-
netization or long-range order can exist in the
isotropic model considered below.!5"!”

The main result for d-dimensional (d > 3) lattice
systems of n-component displacements (1 < n <)
is proven in Sec. II. In Sec. III, the case n=1,
d=2 is considered. Section IV deals with a dis-
crete-spin model, namely, the spin-S extension
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of the Blume-Capel model.'*!® For this model the
FSS method enables us to derive lower bounds for
the critical temperature.

Il. ~-COMPONENT DISPLACEMENT MODEL IN THREE OR
MORE DIMENSIONS

Let 3%, dc ¢, be an infinite lattice, and A a
finite sublattice in 3¢ with |A|=N (|A[ is the num-
ber of lattice points in A). At each lattice site j
there is an n-component displacement (spin) §,
={s;1, +++,5;,,} €ER" (1 <n<e). The Hamiltonian
of our classical system is given by

HPAE)= ian(n'l 15,P)+4 7 (;) 13,-3,F,

(2.1)

where J is positive, (,j) denotes nearest-neighbor
lattice points, and V(z%) has the following proper-
ties:

V(z?)=V,>-» forallze®, (2.2)
fa exp[-nV(nt |SP)+a|§P]dms <wo (2.3)

for all positive a. In (2.1) we neglect the kinetic
energy which plays no role in classical equilibrium
statistical mechanics. Such a Hamiltoniandescribes
a system of N-coupled anharmonic oscillators
when §; is interpreted as an n-component displace-
ment around the reference position j.*™® If §; is
interpreted as an n-component classical spin, the
Hamiltonian (2.1) describes a ferromagnetic sys-
tem.?° The Ising model (r=1), the x-y model
(n=2) and the classical Heisenberg model (n=3)
are special cases of (2.1).

Corresponding to the Hamiltonian (2.1) we define
the partition function

zP(p)= [, expl- pE PN

N
X nexp(- €|3;P)d"s;, (2.4)
=1

where €>0 so that Z {"”( g =0) remains finite, and
the “free energy” per site and component,

F{M(B)=(vn)InZ {M( B). (2.5)

The main result in this section is the following:

Theovem 2.1: Let d>3 and 23c®, the smallest
value of z* such that V(z®)=V, for all 2°c ®,.
Then, if 22>0, there is a phase transition with
T.>0 in the model defined by (2.1) for any integer
n (lsnso),

Remarks: (i) By phase transition we mean here
existence of long-range order. We refer to FSS*
for the discussion of the equivalence between long-
range order and spontaneous magnetization.

(i) It is easy to verify that when 23>0 the ground

state is degenerate.
Proof of Theorem 2.1: To prove Theorem 2.1

we need the following:
Lemma 2.2: For the model defined by Hamilto-
nian (2.1), for any n(l<n<=) and for any de€N,;

lim n"(|3; ) > 22. (2.6)
B—>x
Then, using (1.3), and the approach explained in
the Introduction, theorem 2.1 is a straightfor-
ward application of the FSS method.'% !4

Proof of the Lemma: (see FSS'* Lemma 3.2).
For all J= 0 we can write

Z{"(B) < exp[- BNnV(22)]

S [2ygn
x[mnﬁexp(—elsjnd s;

=exp[- BNnV(22)|(me)¥"/2, (2.7

To get a lower bound for the partition function, we
restrict the domain of integration in the partition
function. Let, namely, DC ®" be the following set:
D={8c®"|zy-as<s,<z,ta; l<as<n} (2.8)
and
D¥=DxDX...xXD (N factors). (2.9)

Then,
n
|'§‘_'§j|2= Z;(sm—sm)2$4na2 (2.10)
a=
for all §;,5,€ D, so that

“Zj:) |3,-3,F=4dNna? (2.11)

for all §,e D,i=1,...,N. (Without loss of genera-
lity we consider here simple cubic or hypercubic
lattices with 2 — d nearest neighbors.) Moreover,

nt[8; P < (z,+a)? for all §,eD. (2.12)
Now, when a is small enough and if §; € D, one has
Vit |8, P) < V((zo+ @)= V(22)+g (@),  (2.13)

where

2(a)= ; (22"‘” Al 5(—:%, V(z2), (2.14)
so that
lim g(a)=0. (2.15)

a=>0

Therefore, we get the following lower bound for
the partition function:

Z{M(B)=(2a)"" exp[ - 2 BdJ Nna?
— BNnV(22) - BNng(a)
- €Nn(zy+a)]. (2.16)
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From (2.7) and (2.16) we get for the free energy
B In2a-2a%dJ - g(a) - B re(z,+ a)’ - V(z2)

SBIFEP(B)IS-V(2) -2 gt Ine+3 g7l Ing
(2.17)

for all positive a and €. Letting first g— and
then a and € -0, we get

lim B'F{M(B) == V(23). (2.18)

B>

Now, F{”(g) is a convex function of g and the
following relation is true:

F{(B)-Fi’(zB) _ dF(8)

zB dag
(n) (n)
<EW@A-FV(B) (5 19)
B
Using (2.18) we therefore obtain the result
(n)
lim 4Fy(B) - V(z2), (2.20)
B—>x dﬁ
so that
. dF{(B)
- V(23)=1lim —¥ -~
(23) lim —s
=lim [- (V™ |8, ) = dan (|5 )
B—>x
+dJJn (5, 5]
< - lim (V(n™*|§,P). (2.21)
B—>
In the latter step we used the Schwarz inequality
(8,8 < (|5, . (2.22)
Therefore,
lim (V(n™|3,]?)) < v(22). (2.23)
B>
On the other hand, by hypothesis,
(V|8 ) = v(22), (2.24)
so that finally,
Tim (V(n™ |8, P) = V(22) . (2.25)
B—>w

If the value 22 which minimizes V(z?) is uniquely
determined, (2.25) requires that

J

lim (|, [»)=22. (2.26)
B—>w

When there is more than one value of z> such that
V(2?) is minimum, and if 22 is the smallest one,
then
lim 7| ;) = 22. (2.27)
B—>
This completes the proof of the lemma.
Consider, as an example, the case!’'® where

V(2%) = (B/2p)z*"+ (3 A)2*, (2.28)

where B is positive, A a real number, and pe®,
p>1 (p can be ©). In this case, the displacive
limit is defined by A =0,"56 and phase transitions
are expected when A<0. For A negative, V(z?)
reaches its minimum value for

22= (= ABLH D50, (2.29)

Theorem 2.1 states that a phase transition exists
for all negative values of A.

[II. ONE-COMPONENT MODEL IN TWO DIMENSIONS

It is well known that in two dimensions the iso-
tropic model defined by (2.1) has no spontaneous
magnetization at any finite temperature as long as
the number of components » is larger than 1.}5°7
We therefore consider the case d=2,n=1. For
simplicity look at the following function:

V(2?)=(3 B)z*+ (3 A)z%; B>0; Ac®. (3.1)

In two dimensions, the FSS method fails.!*
Nevertheless, we can prove the following:

Theovem 3.1. Let d=2, n=1 and V(2°) given
by (3.1). Let J be small enough positive. Then,
the model defined by Hamiltonian (2.1) exhibits
Spontaneous magnetization at finite temperature
for all A<0.

Proof. Note first that the Lee-Yang theorem?!
is true for n=1, d=2, and V(z) given by (3.1).%2
Therefore a lower bound on the long-range order
parameter is also a lower bound on the spontaneous
magnetization. Now, let J;;=J when i and j are
nearest-neighbor sites and J;;=0 otherwise. The
magnetization per site corresponding to (2.1) is
given by

m(B,B,8,J;;)=2Zy fa" skexp(— gZJw(si‘sf)2>ﬂexP(— 3—43‘ si= % S?)“’S,-- (3.2)

Putting s, =1"'x;, 1<i<N, we can rewrite (3.2) as follows:

- . - 8 B axz
m(B,B,A,d;;)=23 LN Alx, exp (— '2@ x? ;Jij(xi‘xf)z) JIJexp(—- B 2 x5 - 2 x2.>dxj

=X"'m(34g, B, A, X3,)) .

2 J
(3.3)
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Now, consider the derivative of m with respect to
Ji
9

ry 2 m(ﬁ,B,A,J”)Ef“(ﬁ,B,A,JU)
od;

=- % ﬂ[(xk(x, - xj)2>
- <xk)<(x| - xj)z)] . (3-4)

Obviously, f;;= f,, = f for all pairs of nearest
neighbors. Now fix g,B,A. If f is a positive

function of J;;, for all J;;, we choose A>1 so that

m(B,B,A; J,)=m(8,B,8a; N2,
=Xtm(X48, B, A3 d,) . (3.5)

In the latter step we used (3.3). Now (3.5) means
that the magnetization at a small value of A is
bounded below by the magnetization divided by A,
at a larger value of A. For X™?gand XA large
enough, Nelson'® and Kunz and Payandeh!!s!?
showed that the magnetization (3.2) is positive and
in that case the theorem is proven.

If at a fixed value of g,B and A, f is not positive
for all J;;, then there are two_po_ssibilities:

(i) There is an interval [0,J],J>0 such that
f(B,B,4;J,;;)=0, when the J;; are in [0,J]. In
that case the argument above can be repeated and
the theorem is proved for J < :I', and (ii)
f(B,B,4;J,;,)<0 in an interval [0,J],J>0. This
means that the magnetization of the two-dimen-
sional model is bounded below by the magnetiza-
tion of the three-dimensional model. By Theorem
2.1 and by the Lee-Yang theorem, Theorem 3.1
is proven. Proof of Theorem 3.1 is therefore
completed.

IV. LOWER BOUNDS FOR THE CRITICAL TEMPERATURE
OF THE SPIN-s BLUME-CAPEL MODEL

As a simple application of the FSS method** 4
we shall derive exact lower bounds for the spin-s
(s=%,1,3, ...) extension of the Blume-Capel
model'®!® in three or more dimensions. The dis-
crete-spin Hamiltonian is defined as follows:

H({u})=-J(§) u,-u,+Aﬁ:u3, (4.1)

where p, (1<%<N) may assume one of the 2s+1
values 1, s(s-1), s(s=-2), ...,s(1-s),-1.

J is positive and A is a real number. If s=3,

(4.1) is the conventional Ising Hamiltonian. Setting

a=dJ-A, (4.2)
the partition function corresponding to (4.1) reads

Z(s) = ( 2
(8) %exp Bag‘, u?

_%ﬁJZ (N-i"#j)z), (4.3)

where {u} is the set of all configurations of the

W, (1<k<N). The analogy with the displacive
case is obvious. Here we shall prove that a phase
transition exists whenever a>0. We first note that

ZP(p=0)=(1+2s)", (4.4)
and that
N
2(p)> 3 em(pad wi-3p7 3 (u,—u,>2)
Lp=l =1 (iy )
all k
= gBa (4.5)

Moreover, the “free energy” Fy(g)=N"'InZ{’(B)
is a convex function of 8, so that using (4.4),
(4.5), and the Schwarz inequality we get

a(ud) > (a-dJd)(udh+dJ (o,

_ dFy(B) > Fy(B) - Fy(0)
ap B

>a-B"1In(1+2s). (4.6)

Therefore, for a=0,
(u3=1-(Ba)*In(1+2s). (4.7)

Now, by FSS,' the long-range order parameter ¢
is bounded below by

c=(ud - (28J)"q(d), (4.8)

where

q(d)= (277)-4J;2'ddw <d—i coswl.)1 , (4.9)

1

q(d) is finite**?* for d> 3. For instance,?

¢(3)=0.5054620197. .. . (4.10)
Setting
t=aJ, (4.11)

and using (4.7) and (4.8), we obtain the following
lower bound for the critical temperature of the
model defined by (4.1):

ET,> kT (t; s)

=2J[q (d)+ 2+ In(1+2s)]. (4.12)

Note that ki‘c(l; s) is a linear function of ¢/ when ¢
is small.

For the spin-s Ising model, that is, when A=0
(t=d), we even derive a best lower bound for RT..
In fact, when A=0

% WD=d 3 (W2 pu)— 2w N=0, (4.13)

iy d)
where the last inequality is a consequence of the
second Griffith’s inequality.?*?¢ Therefore,

(s> (U2go for all p=0. (4.14)
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Now,

<ui>s=o=<1+zs>-~;ui=%(1+s-*). (4.15)

From FSS,* the long-range order parameter c is
thus bounded below by

c(B) = (uPs- (28J)"q(d)
=3 (1+s™)+(28J)"q(d) . (4.16)

We then obtain the following lower bound for the
critical temperature of the spin-s Ising model
(t=d):

T (s) > kT*(s) = 2(1+ s™)[3¢(d)]"J . (4.17)

It must be emphasized that

- 2J
lim kT (t;s)= for all s 4.18
lim At;8) 7@ (4.18)
and
2J
lim kT*(s)= . 4.19
lim (s) 3@ (4.19)
However,
lim T(t;s)=0 for all ¢. (4.20)

s
Therefore, (4.12) is not good enough to prove the
existence of a phase transition for small t=aJ ™
in the limit where s —~. Nevertheless, using the
technic developed in the proof of Lemma 2.2 it is
possible to obtain a lower bound for the critical
temperature of the Blume-Capel model when s —«
even at small £. When s -« the partition function
of the Blume-Capel model can be written®

Zu(ﬁ)=£'“fexp(BaZ:xi-%BJ(g;)(xe—W)

N
x[Tax,, (4.21)
where x,e ®,1<k<N. Then
Zy(p=0)=2% (4.22)

and

2 )= [+ [ exp(Ba w2 -4 80 T (v, - %)
J [ em(sal; )
x]jdxj

= (1~ a)" exp[ Baa®N - 3 gdJ(1 - a)°N]

(4.23)
for all a, such that 0 <a<1. Therefore,
dFy(B) . Fy(B) = Fy(0)
alx?y= 42N > I N
x? g 3
> ad®-3dJ(1-a)*+ g In[$ (1 - a)]
(4.24)

for all a such that 0 <a<1. Applying once again
the FSS result' for the long-range order param-
eter, we get

cza’-zdt™(1-al+ ga{In[z (1-a)]+5q(d)},
(4.25)

so that the critical temperature is bounded below
by

2a® - dt™ (1 - a)?
q(d) -2t 1In[3 (1= a)]

for all a, such that o <a <1. In the limit where
fivst @ —= ("' ~0) and then a—~ 1 we recover re-
sult (4.18). When « is finite we have to find the
value of a which gives the largest value of
kT (a;«) in (4.26). This is easy to perform nu-
merically. The behavior of T (t; )
= maxaki‘c(t;w;a) is given in Fig. 1.

Remavrk: For the spin-s Ising model (¢=d)
Griffiths®® obtained the following lower bound:

kT (s)= $ kT, (3). (4.27)

kT (t;=;a)d ' = (4.26)

For d=3, high-temperature series expansions
give

TRT(3)~1.1277J. (4.28)
Here, we find

RT (t=3;5)>1.127TJ (s<3), (4.29)

RT (L =3;)=0.6446 . (4.30)
Moreover,

kT*(s)=1.31893(1+s™)J for all s. (4.31)

V. CONCLUSION

We have proven the existence of phase transi-
tions near the displacive limit of a variety of clas-
sical, three- or more-dimensional lattice models.
In certain cases, we were even able to derive
exact lower bounds for the critical temperature.
All these results are very simple applications of

kT (1,0 /3

2P ———— — — — = —

t
FIG. 1. Behavior of k T (t,~) =max, k T, (¢; =a) as
a function of ¢ =d —A/J. For small t, kT (t; =) ~g™\t),
where g(7T,)~T InT,.



the recent method of Frohlich, Simon, and Spen-
cer. Some results can be extended in two dimen-
sions. Obviously, the FSS method is very power-
ful and there is no doubt that further results, in
particular for quantum-mechanical lattice models,
can be derived.
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