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Existence of phase transitions near the ilisplacive limit of a classical n-component lattice model
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Using a new method proposed by Frohlich, Simon, and Spencer, we prove the existence of a phase transition

near the displacive limit of a classical n-component displacement model on a d-dimensional (d ) 3) lattice. In

certain cases, the proof can be extended for d = 2 and n = 1. Moreover, we derive exact lower bounds for the

critical temperature of the spin-s (s = 2, 1, 2, . . .) extension of the Blumo-Capel model.1 3

I. INTRODUCTION

In recent years, there has been considerable
interest in systems undergoing structural phase
transitions. ' ' Qne of the most salient features
of such systems is the existence of the so-called
"displacive limit, ""'' where the critical tem-
perature, as a function of the parameters in the
Hamiltonian, is expected to vanish continuously.
Beyond the displacive limit there is no phase tran-
sition. Slightly below the displacive limit, in the
displacive regime, there is experimental evidence
for a finite critical temperature. Good examples
of real systems undergoing a phase transition in
the displacive regime are SrTiQ3 and LaAlQ3. '
Moreover, molecular-dynamics investigations
have demonstrated the existence of a phase tran-
sition at finite temperature close to the displacive
limit. Far from the displacive limit, in the so-
called "order-disorder regime, '" the existence of
a phase transition has been proven rigorously in a
two- or more-dimensional classical one-compo-
nent displacement model. This was achieved using
correlation inequalities"" or a modified version
of the well-known Peierls argument. " Neverthe-
less, these arguments fail when the displacive
limit is approached, and so far, there is no rigo-
rous result demonstrating the existence of a finite
critical temperature in the neighborhood of the
displacive limit.

The aim of this paper is to use a recent and
powerful method proposed by Fr5hlich, Simon,
and Spencer"'" (FSS) to prove the existence of
a phase transition in the displacive regime of a
classical n-component displacement model. To
explain the method let s~ denote the n-component
displacement of an atom j from its reference
position j. The central idea behind the FSS stra-
tegy is embodied in an a priori bound on the low-
momentum singularity of the two-point correla-
tion function. Specifically, let E(k) be the Fourier
transform of the two-point function (s, s,); this is
a positive distribution of the form

F(k) = cC(k)+g(k),
where, for the symmetric models considered be-
low, c is the long-range order parameter

c= lim (s,. s,.).
I i- j I

(1.2)

Evidently cc0 implies the existence of long-range
order and, hence, of a phase transition. In order
to prove the existence of the transition (c &0) one
needs: (i) an upper bound on g (k) (step A of FSS),
and (ii) a, lower bound on (~ s,. ~') (step B). In all
the cases considered hereafter the upper bound on

g(k) derived by FFS" is still valid and reads
-1

2- g(k)- (2 22) '(2 )
' g(( —sos 2 )

2', =1

(1.3)

where p '=k~T is the temperature, J~ 0 is the in-
teraction strength, and d denotes the lattice di-
mensionality. On integrating (1.1) over k and using
(1.3) we obtain

c ~ (
~

s
~
) —(2 pd) 'q(d), (1.4)

where 0&q(d)&~ for d~ 3. [One may note that in
one and two dimensions the integral over the right-
hand side of (1.3) is divergent. ] To establish the
existence of a phase transition it remains then to
establish a nonzero lower bound on (

~
s,. ~').

The FSS method, although valid for all n, is
evidently restricted to lattices of dimension d =- 3.
Nevertheless, we will show how to use the method
to prove the existence of a phase transition in the
displacive regime of a two-dimensional (d=2),
one-component (n = 1) classical lattice system.
However, for d = 2 and n & 1 no spontaneous mag-
netization or long-range order can exist in the
isotropic model considered below. ""

The main result for d-dimensional (d ~ 3) lattice
systems of n-component displacements (1 & n ~ ~)
is proven in Sec. II. In Sec. III, the case n= 1,
d=2 is considered. Section IV deals with a dis-
crete-spin model, namely, the spin-S extension
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of the Blume-Capel model. ""For this model the
FSS method enables us to derive lower bounds for
the critical temperature.

II. n-COMPONENT DISPLACEMENT MODEL IN THREE OR

MORE DIMENSIONS

Let 5~, d c X, be an infinite lattice, and A a
finite sublattice in 3 with

I
A

I
=N (IA I

is the num-
ber of lattice points in A}. At each lattice site j
there is an n-component displacement (spin) s~
={s,.„.. . , s&„jc 6i" (1 & n & ~). The Hamiltonian
of our classical system is given by

V(z') ~ V, &-~ for all z c &a,

Jt exp [- n V(n '
I
s

I
) + a

I
s I»] d "s &~

(2.2)

(2.3)

for all positive a. In (2.1) we neglect the kinetic
energy which plays no role in classical equilibrium
statistical mechanics. Such a Hamiltonian describes
a system of N-coupled anharmonic oscillators
when s~ is interpreted as an n-component displace-
ment around the reference position j." If s& is
interpreted as an n-component classical spin, the
Hamiltonian (2.1}describes a ferromagnetic sys-
tem. " The Ising model (n = 1}, the x-y model
(n=2) and the classical Heisenberg model (n=3)
are special cases of (2.1).

Corresponding to the Hamiltonian (2.1}we define
the partition function

zt"((()=I axy( ((((~"l(»))]

N

x ]/exp(- z
I s,. I'}d"s„

where z&0 so that Z„'"'( p =0) remains finite, and
the "free energy" per site and component,

(2.4)

H „'"'({s])= nv(n '
I
s, I')+ —,

' d Q I
s, —s, I',

=1

(2.1)

where J is positive, (i,j) denotes nearest-neighbor
lattice points, and V(z') has the following proper-
ties:

lim n '(
I s,. I'} ~ z', .

B~
(2 5)

Then, using (1.3}, and the approach explained in
the Introduction, theorem 2.1 is a straightfor-
ward application of the FSS method. "'"

Proof of the Lemma: (see FSS" Lemma 3.2).
For all J~0 we can write

Z'„"'( p) exp[- pNnV(z', }]

exp —z s,. ' d"s,.

= exp [- pNn V(z')](«-')"" ' (2 'I)

To get a lower bound for the partition function, we
restrict the domain of integration in the partition
function. Let, namely, Dc N." be the following set:

D={sc6Plz,-a& s &z,+a; 1«).& n) (2.8)

D"= D x D x. . .x D (N factors) .
Then,

n

I
s& —sgI = Q(s&~ —sg~) & 4na

a=1

for all s„s&eD, so that

(2 9)

(2.10)

Z Is, s, l
=4dN (2.11)

for all s, c D, i=1, . . . , N. (Without loss of genera-
lity we consider here simple cubic or hypercubic
lattices with 2 —d nearest neighbors. ) Moreover,

n ' Is,. I' - (zo+ a}' for all s, c D . (2.12)

Now, when a is small enough and if s, cD, one has

V(n 'I s, I')- V((zo+ a)') = V(zo)+g(a), (2.13)

where

(ii) It is easy to verify that when z', &0 the ground

state is degenerate.
Proof of Theorem 2.1: To prove Theorem 2.1

we need the following:
Lemma 2.2: For the model defined by Hamilto

nian (2.I), for any n(1 & n & ~) and for any d cot;

F "
( P}=(Nn} 'lnZ&")( P). (2.5)

" (2z a+a')» 8»
r( )=Q '~, ,(.). ('(*!), (2.14)

The main result in this section is the following:
Theorem Z.l: Let d ~ 3 and z~ cS, the smallest

value of z» such that V(z') = Vo for ail z' c 6I,.
Then, if zp& 0, there is a Phase transition arith
T, &0 in the model defined by (Z.l) for any integer
n (1&n«).

Remarks: (i) By phase transition we mean here
existence of long-range order. We refer to FSS'4
for the discussion of the equivalence between long-
range order and spontaneous magnetization.

so that
lim g(a}=0.
a~p

(2.15)

Therefore, we get the following lower bound for
the partition function:

Zs&"'(P) & (2a) "exp[-2 Pd JNna'

—pNn V(z', }—pNn g (a}
—e Nn(z, + a)'] . (2.16)
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From (2.7) and (2.16) we get for the free energy

P
' ln2a- 2a d J—g(a) —P 'z(zn+ a) —V(z,)

lim P 'E (n)( P) = —V(z'}
B~co

(2.18)

Now, F(„")(p) is a convex function of p and the
following relation is true:

F ( )( p} F (n)(L) p) dF (n)( p)
1

p dp.F'"'(2p) —F'"'( p)
P

(2.19)

- p 'F("'(p)- —V(z;)--.' p 'In~+-,' p-'I s

(2.1&)

for all positive a and e. Letting first p-~ and
then a and e -0, we get

lim n '&
~
s,. ~'& = z', .

When there is more than one value of z' such that
V(z') is minimum, and if z', is the smallest one,
then

(2.26)

lim n '(
~
s,. ~'& o- z', .

B-+ ()o

(2.27)

This completes the proof of the lemma.
Consider, as an example, the case"' where

V(z') = (»2p)z" + (z &)z', (2.28)

z2 ( g B-l)1/(/e 1) & 00 (2.29)

where B is positive, ~ a real number, and pcS,
p& 1 (p can be ~}. In this case, the displacive
limit is defined by ~ =0,"'and phase transitions
are expected when 6 &0. For 6 negative, V(z'}
reaches its minimum value for

Using (2.18) we therefore obtain the result

lim " P = —V( ')
dP

so that

dF(n) s)—V(znn} = lim
dp

=»m (- «(n 'le; I'}&-«n '&Is

+ de '( s, .s,&]

- —lim (V(n '~s,. ~'&.

(2.20)

(2.21)

Theorem 2.1 states that a phase transition exists
for all negative values of 4.

III. ONE-COMPONENT MODEL IN TWO DIMENSIONS

V(z')=( B)zn+(z 6)z', B&0; z)(=(R. (3.1)

It is well known that in two dimensions the iso-
tropic model defined by (2.1) has no spontaneous
magnetization at any finite temperature as long as
the number of components n is larger than 1.""
We therefore consider the case d = 2, n = 1. For
simplicity look at the following function:

In the latter step we used the Schwarz inequality

(s, s,&~(is, i'&.

Therefore,

lim (V(n '
~
s, ~')& - V(zn) .

Qn the other hand, by hypothesis,

&V( 'P;~')&=- V( l),
so that finally,

lim (V(n '
~
s,. ~')& = V(z', ) .

B~~

(2.22)

(2.23)

(2.24)

(2.25)

If the value z', which minimizes V(z') is uniquely
determined, (2.25) requires that

In two dimensions, the FSS method fails."
Nevertheless, we can prove the following:

Theorem 3.1. I et d = 2, n = I and V(z ) given
by (3.1). Let J be sr~all enough positive. Then,
the model defined by Hamiltonian (Z. l) exhibits
spontaneous magnetization at finite temperature
for all &&0.

Proof. Note first that the Lee- Yang theorem"
is true for n=1, d=2, and V(z) given by (3.1).""'

Therefore a lower bound on the long-range order
parameter is also a lower bound on the spontaneous
magnetization. Now, let J,, =J wheni and j are
nearest-neighbor sites and J,, = 0 otherwise. The
magnetization per site corresponding to (2.1) is
given by

(p, n, e, d, ,)=z,exp - pl, d, ,(,. —,.)* ] )exp(- e
',. —

x
-',)d, .

gN (3.2)

putting s,. = )( 'x, , 1 & i & N, we can rewrite (3.2) as follows:

(p, n e, d, ,)=Z ' f , X', exp (- —X' I d, ,(, ,)' ] exp — *',. — H)d*,.

= A 'm(V'p, B, X'z), P.'d, ,). (3.3)
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Now, consider the derivative of m with respect to

m( P, B,t), j;;)-=f„((8,B, t), j;,)
BJ]j

where (pj is the set of all configurations of the

p, (1 ( k (N). The analogy with the displacive
case is obvious. Here we shall prove that a phase
transition exists whenever 0.)0. We first note that

= ——,
'

P[(x„(x,. —x,.)')

—&x,&&(»; —x,)'&] (3 4)

Z„"'( p = 0) = (1+2s)"

and that

(4 4)

Pbviously, f. . = f»= f for all pairs of nearest
neighbors. Now fix p, B, n. If f is a positive
function of J,j, for all J,.j, we choose X&1 so that

m(l3, B,A; j,,)) m(P, B, n; V2J, ~}

= V'm(X P, B, X'6; j(t) . (3.5)

In the latter step we used (3.3). Now (3.5) means
that the magnetization at a small value of 4 is
bounded below by the magnetization divided by A. ,
at a larger value of 4. For A. 'p and X'b, large
enough, Nelson" and Kunz and Payandeh" "
showed that the magnetization (3.2) is positive and

in that case the theorem is proven.
If at a fixed value of p, B and b, f is not positive

for all J„., then there are two possibilities:
(i) There is an interval [O, J],J&0 such that

f(p, B, n; J„.)) 0, whenthe j,.&
are in[0, J]. In

that case the argument above can be repeated and
the theorem is proved for J (J, and (ii}
f( p, B, ());J,,) (0 in an interval [0,j],j&0. This
means that the magnetization of the two-dimen-
sional model is bounded below by the magnetiza-
tion of the three-dimensional model. By Theorem
2.1 and by the Lee-Yang theorem, Theorem 3.1
is proven. Proof of Theorem 3.1 is therefore
completed.

Ni,"'( () ) - p em () ~ I ~J
- l ))~ 2 (~; - ~ ) )J=l &i, j&

all k

) c( —P 'ln(1+2s).

Therefore, for n ~ 0,

&p',.&
~ 1 ( p a) ' ln(1+ 2s) .

(4.6)

(4 7)

Now, by FSS,"the long-range order parameter c
is bounded below by

c - &t ';& —(2 Pj) 'q(d)

where

2r -1
q(d) =(2») ' d'(d d — cos~,.

0 j=l

q(d) is finite23'4 for d) 3. For instance, "

(4.8)

(4.9)

(4 5)

Moreover, the "free energy" F„(p) =N ' ln 2„")(P)
is a convex function of p, so that using (4.4},
(4.5), and the Schwarz inequality we get

o &t ';& - (o «)—&~l&+ dj&~.t, &

aS'„( P) F„(P) —F„(0)
dp p

IV. LOWER BOUNDS FOR THE CRITICAL TEMPERATURE

OF THE SPI¹BLUME-CAPEL MODEL

q(3) = 0.505 462 0197. . . .

Setting

(4.10)

As a simple application of the FSS method""
we shall derive exact lower bounds for the spin-s
(s =-,', I, —„.. .) extension of the Blume-Capel
model"" in three or more dimensions. The dis-
crete-spin Hamiltonian is defined as follows:

JI ((u)) = —& Z ~;u;+ ~ g ~!, (4.1)

where p~ (1 ( k (N} may assume one of the 2s+ 1
values 1, s '(s —1}, s '(s —2), . . . , s '(1 —s},—1.
J is positive and b, is a real number. If s =-,',
(4.1) is the conventional Ising Ha. miltonian. Setting

Q. =dJ- 6, (4.2)
the partition function corresponding to (4.1) reads

z„"()))=I exp ))
(~) J-1

t=nJ ', (4.11)

and using (4.7) and (4.8), we obtain the following
lower bound for the critical temperature of the
model defined by (4.1):

kT, ) kT,(t; s)
= 2j[q (d)+ 2t ' ln(1+ 2s)] ' . (4.12)

Note that kT,(t; s) is a linear function of t when t
is small.

For the spin-s Ising model, that is, when 6=0
(t = d), we even derive a best lower bound for kT, .
In fact, when 6=0

a

~p
&t)',&=jg (&p', p;u, & &t'&&A);t-&) -)o (4 13)

&i, j&

where the last inequality is a consequence of the
second Griffith's inequality. "'" Therefore,

(4.3)
&&))&8 - &&))&()=0 for ~tt ti - 0 . (4.14)
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Now,

{tz',}s,=(1+2s) "Qtz', = —,'(1+s ').
{I )

(4.15)

for all a such that 0 & a (1. Applying once again
the FSS result" for the long-range order param-
eter, we get

From FSS,"the long-range order parameter c is
thus bounded below by

c( P) - (t(, ',)8 —(2PJ) 'q(d}

=
z (1+s ')+(2Pd) 'q(d). (4.16)

We then obtain the following lower bound for the
critical temperature of the spin-s Ising model
(t =d):

kT, (s) ) kT,*(s)= 2(1+ s ')[3q(d)] 'J.
It must be emphasized that

2J
lim kT,(t;s)= for all s

qd

(4.17)

(4.18)

lim kT*(s) = 2J
S~ oo 3q d

However,

(4.19)

lim kT(t; s) = 0 for all t . (4.20)
S~ oo

Therefore, (4.12) is not good enough to prove the
existence of a phase transition for small t = n J '
in the limit where s -~. Nevertheless, using the
technic developed in the proof of Lemma 2.2 it is
possible to obtain a lower bound for the critical
temperature of the Blume-Capel model when s -~
even at small t. When s -~ the partition function
of the Blume-Capel model can be written"

2az —dt '(1 —a)'
q(d) —2t ' ln[-,' (1 —a)]

(4.26)

for all a, such that o & a ( 1. In the limit where
first o(-~ (t '-0}and then a-1 we recover re-
sult (4.18}. When a is finite we have to find the
value of a which gives the largest value of
kT,(o(;~) in (4.26). This is easy to perform nu

merically. The behavior of kT,(t;~)
-=max, kT,(t;~;a) is given in Fig. 1.

Remark: For the spin-s Ising model (t = d)
Griffiths" obtained the following lower bound:

kT,(s})—,
' kT, (-,'), (4.27)

For d = 3, high-temperature series expansions
give

4 kT, (~z) 1 1277' ~

Here, we find

kT,(t = 3; s) )1.1277j (s ( —,'),
k T,(t = 3 ~) = 0.644@T .

Moreover,

kT*(s) =1.31893(1+s '}d for all s.

(4.28)

(4.29)

(4.30)

(4.31)

c ) a' ——,
' dt '(1 —a)'+ pn '(In[-,' (1 —a)]+ —,

' t q(d)j,

(4.25)

so that the critical temperature is bounded below
by

xj [d~, ,

where x, {=g, 1 & k (Ã. Then

&s( p =0)=2"

(4.21)

(4.22)

V. CONCLUSION

We have proven the existence of phase transi-
tions near the displacive limit of a variety of clas-
sical, three- or more-dimensional lattice models.
In certain cases, we were even able to derive
exact lower bounds for the critical temperature.
All these results are very simple applications of

(i hT~ (t, (0}/3

N

xII dx,
j=l

) (1 —a)"exp[ p o(a'N - —,
'

pdJ(I —a)zN]

(4.23)

2/q (3)

for all a, such that 0 ~ a ( 1. Therefore,

dr, ( p) F„(p) —F„(0)
dp p

) oa' ——,
'

d J(1—a)'+ p 'ln[ —,'(1 —a)]
(4.24)

t

FIG. 1. Behavior of k T~(t, ~) =max~ k T, (t; ~ a) as
a function of t =d -Ch/J. For small t, kV'z(t;~} g(t), -
where g(T~) -T lnT~.
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the recent method of Frohlich, Simon, and Spen-
cer. Some results can be extended in two dimen-
sions. Obviously, the FSS method is very power-
ful and there is no doubt that further results, in
particular for quantum-mechanical lattice models,
can be derived.
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