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The Niemeijer —Van Leeuwen cumulant expansion is used in the renormalization-group analysis of the critical-

point behavior of the Ising model. Second- and third-order results are obtained for the simple cubic and

square lattices, respectively, for a variety of cell sizes, using a parameter-dependent renormalization
transformation introduced by Kadanoff and Houghton. Although the results in two dimensions are in general

good, there is no evidence of any convergence, with the best values for the critical exponents and critical
temperature being given by the second-order theory. In three dimensions the values found for the critical
temperature and magnetic scaling index for a cell of 27 spins are reasonable, but the corresponding thermal

scaling index is quite poor.

I. INTRODUCTION

Considerable progress in the renormalization-
group theory of critical phenomena has been
achieved using real-space renormalization trans-
formations introduced originally by Niemeijer and

Van Leeuwen' ' and extended by Kadanoff et al."
All of the calculational methods employed in these
real-space analyses involve truncation schemes
in which the error involved in the truncation is es-
sentially unknown. This in spite of the extremely
impressive accomplishments of these methods, in
particular the variational approach of Kadanoff, ~

a fundamental understanding of the nature of these
approximations has not yet been obtained.

One of the simplest and perhaps most systematic
of these calculational methods is the cumulant
expansion originally introduced by Niemeijer and
Van Leeuwen' in their study of the two-dimensional
Ising model on a triangular lattice. Their expan-
sion was essentially in powers of the near-neigh-
bor coupling between spins in different adjacent
cells (each with three spins) and gave a qualita-
tively good description of the ferromagnetic criti-
cal point. This method was subsequently applied'
to the square lattice and gave quite reasonable
quantitative results for a cell of nine spins. The
cumulant expansion has also been extended to
several other problems, including the random-
bond Ising model, ' the self-avoiding walk, ' the
triplet-spin Ising model, ' and the XY model. '
In general the method gives a reasonable qualita-
tive and in some cases good quantitative solution
of these problems.

In view of the simplicity and reasonable success
of the cumulant expansion, it seems worthwhile
to examine in more detail the nature of this trun-
cation scheme, to examine its possible conver-
gence, if any, and to explore the effects of chang-

ing the unperturbed Hamiltonian by changing the
cell size. Some work in this direction has already
been carried out by Hemmer and workers"' who
have calculated the second- and third-order cumu-
lant-expansion results for the magnetic and ther-
mal eigenvalues, respectively, for the triangular
Ising model and cells of either three or seven
spins. Their overall conclusions are that the cu-
mulant expansion seems to be asymptotic, and
that there is possibly an optimal cell size for a
given order of the calculation. We have extended
this investigation to the square and simple-cubic
lattices, respectively, using a parameter-depen-
dent renormalization transformation introduced
originally by Kadanoff and Houghton. " In Sec. II
we present a summary of the formalism and of
two possible criteria for determining the "best
value" of the parameter. We note that in our ap-
proximation scheme this value corresponds to the
transformation introduced originally by Neimeijer
and Van Leeuwen. In Secs. III and IV we give the
results for the two- and three-dimensional Ising
model. We make some concluding remarks on the
cumulant expansion in Sec. V.

II. BRIEF REVIEW OF THE FORMALISM

In this section we summarize some well-known
facts' about the renormalization transformation
and the cumulant expansion. We consider a set of
lattice points with the site spin variable 0, =+1 at
each site i. The Hamiltonian for the system, H(o),
in units of -k~T can be written

H= K,- $ r,
where r sums over all lattice sites, S,.(r) are func-
tions of site spins o,. in the vicinity of r, and K,. is
the corresponding interaction constant. A renor-
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F&G. 1. Schematic repre-
sentation of sites and cells
on a square lattice for a
2 x2 cell.

malization transformation can be written

Kq=R(((K~}}. (3)

Linearizing around the fixed point K',.= K*, , one has

where

eH(g) T/ veHle) (2)

which transforms the site spin Hamiltonian H(o)
to the cell spin Hamiltonian H'(p) on a new lattice
whose lattice constant is l times larger than the
original lattice, where o and p, denote the set of
old and new Ising spins, respectively. A schematic
representation of sites and cells of size 2 x 2 on a
square lattice is shown in Fig. 1. Since H' is in

general of the same form as H, but with different
interaction constants K', (fK&]}, the renormalization
transformation equations can be considered to be

Generally different values of p define different
renormalization transformations. In an exact
calculation the scaling indices should be indepen-
dent"" of p, but in an approximate calculation
they will vary with p. Thus the problem arises
as to how to choose the "best" p. An extensive
discussion of different possible criteria, all valid
for an exact calculation, has been given by Bell
and Wilson, "but we will first consider one pro-
posed by Kadanoff and Houghton. " This criterion
follows from an analysis of the relation between
the site spin and cell spin-correlation functions,
l.e ~)

o'} & a(r I»& H'

tanh p 0, tanh p Of 11

tanh pQ o,. =g W,.(p)S,(r,), (12)

it follows from the analysis of Kadanoff and
Houghton using the relation between the "eigen-
operators" and the 8,. that in the exact theory one
has

Since one can expand any function of the local 0,. in
terms of abasis,

g 1Y~(p&4i (13)

The scaling indices and left eigenvectors of T,.f are
denoted by

6 = ye~(d —ya& .
We will choose T(p, o) in the renormalization

transformation [Eq. (2)] to be

T( p, , o) = II — 1+ p,, tanh p g o,
1

a fCa

(6)

as originally introduced by Kadanoff and Hough-
ton, "where p.,=+1 denotes the cell spin variable
for cell a and the product is over all cells. In the
limit p- ~, T(p, o) reduces to the original
¹iemeijer-Van Leeuwen transformation

1 /

T(p, , o)=Pg — 1+ p, , sgn g o,
a fCa

(10)

(6)
5

where y~ and y„are the largest thermal and mag-
netic scaling indices, respectively, and determine
the critical indices through such relations as

o. = 2 - d/y r

Thus one can use this equation as a second inde-
pendent method of calculating y„. This solution
will be called F„from now on. In the exact theory
this must yield the same scaling index as that cal-
culated from linearizing the recursion equations
[ Eq. (3}], but in an approximate calculation both
scaling indices depend on p and in general differ.
One could therefore choose as the "best" p its
value for which the two scaling indices are the
same. If there does not exist such a p, one could
altex'natively choose the "best" p as the value for
which the difference between y„and F„ is a mini-
mum. Unfortunately, as we will see in Secs. fH
and IV, the difference between these two scaling
indices as calculated via the cumulant expansion
is relatively large in most cases. Whether the
lack of an intersection for the two curves y„(p)
and Y„(p) is an indication that the cumulant ex-
pansion determines the eigenvectors @";(p) rather
poorly is not clear. In lieu of being able to apply
the Kadanoff-Houghton criterion we therefore use
an alternative one, originally proposed by Bell and
Wilson. " Their suggestion is based on the pos-
sibility of finding a range of p for which the indices
essentially remain constant in which case one
chooses these values for the indices. In our case
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types of interactions which arise in this third-
order perturbation expansion are represented
diagrammatically in Fig. 2, in which the odd and

even interactions are explicitly denoted by h, and

K, , respectively. A typical fixed-point solution
for the third-order equations is

K*= (0.3291,0.1198,-0.0122,

-0.0037, 0.0001,0.00253)

h3 h6 6 h7

FIG. 2. Diagrammatic representation of interactions
up to third-order cumulant expansion for the square lat-
tice.

where

(16)

then the basic recursion equations are determined
from

eH ((( ) —Z (~}(ev)

The cumulant expansion then yields

ff' = lnZ, + (V),+ (1/2})((V'), —(V),')

+ (1/3! )((V~)0 —3 (V')0(V)0+ 2(V)zo)+ O(V~) .
(18)

Further details about the cumulant expansion are
given in Hefs. 1 and 3.

the p dependence is quite small over a wide range
of p extending to infinity and we choose the p -
results as our "best" values.

In the cumulant expansion one writes the Hamil-
tonian as the sum of two terms

H=H +V,
where Ho includes only interactions within each
cell and V includes only interactions between cells.
The latter is then treated as a perturbation. If we
denote

TABLE I. Two-dimensional results for yz, g, and
I|~ for 2x2, 3x3, and 4x4 cells in the limit P

Order of
Cell size perturbation

2x2 1.006
1.051
1.072

2.146
1.979
1.975

0.5186
0.4300
0.4319

for the 2 x 2 cell in the limit p - .
As we noted earlier our "best" results occur in

the limit P- ~, so we will discuss these first. The
results for the scaling indices y~ and y„as well as
the critical temperature as given by K, are listed
in Table I for the three different cell sizes con-
sidered. The following results are worth noting.
First, the most accurate results are given by the
second-order theory, where the scaling indices
for both the 3 & 3 and 4 & 4 cells agree with the
exact results to within 1%. Second, there is no
evidence of convergence, since the third-order
results are somewhat poorer than the corre-
sponding second-order results. Third, the criti-
cal temperature is given accurately for all cell
sizes in both second- and third-order perturba. —

tion theory and seems to be a relatively insensi-
tive test of the calculation. We should also note
that K, is obtained from Eq. (4). Finally, the best
values of the critical exponents determined in this
work are given in Table II, where the results of
other calculations are also listed for comparison.

We conclude by discussing the effect of the pa-
rameter p in the transformation. A characteristic
result is displayed in Fig. 3 in which the results
for the scaling indices y» y„, and Y„as deter-
mined from Eqs. (6) and (13) are plotted as a func-
tion of p. One finds in this case that the difference
between y„and Y„does not vanish. Although this

III. TWO-DIMENSIONAL ISING MODEL ON A SQUARE
LATTICE

We have evaluated the recursion equation through
third order in the cumulant expansion in Eq. (18)
for three different cell sizes, 2 && 2, 3 x 3, and
4 x 4. These nonlinear equations for K, are compli-
cated and will not be written here." The different

3x3

4x4

Exact

0.927
1.002
1.080

0.932
1.009
1.083

1.0

1.943
1.884
1.899

1.914
1.883
1.914

0.4697
0.4302
0.4314

0.4607
0.4330
0.4305

1.875 0.4407



15 STUDY OF THE CUMULANT EXPANSION FOR. . . 2691

TABLE II. Two-dimensional critical indices obtained by present work, Kadanoff and
Houghton, and Sudbgf and Hemmer (from their second-order results for a cell of seven
spins). Scaling laws are assumed in determining these critical indices.

Present work

Kadanoff and
Houghton

Sudbg and
Hemmer

Exact

0.018

0.000 07

0.134

0.116

0.124

0.113

0.125

1.75

1.75

1.64

1.75

16.1

15.1

15.5

15

0.249

0.242

0.25

0.991

0.999 96

0.932

difference decreases as the order of perturbation
increases, it is still very large for a wide range
of p. It therefore does not seem sensible to use
the Kadanoff-Houghton criterion, as noted earlier.

IV. THREE-DIMENSIONAL ISING MODEL ON A

SIMPLE-CUBIC LATTICE

In this section we present the second-order
cumulant expansion results for two different cell
sizes, 2 x 2 & 2 and 3 x 3 x 3, respectively. The
cumulant expansion for the 3 x 3 & 3 cell is not a
practical way of performing a renormalization-
group calculation since it involves evaluating sums
over 2" states, but the program has been carried
out as an overall test of the method. The method
of solving such problems is outlined in Ref. 18 and

no details will be given here. The interactions
generated in a second-order calculation are K„
K„h„h, as are shown in Fig. 2.

In three dimensions the "best" results again
correspond to the limit p- ~. These results for
y~, y„, and K, are listed in Table III. The second-
order perturbation theory for the 3 ~ 3 x 3 cells
yields quite a good K, and a reasonable y„as com-
pared with the expected values from series expan-
sions. " However, the thermal scaling index is
quite poor in all of the calculations and yields a
nondiverging specific heat whose first derivative
diverges. The corresponding critical exponents
for the 3 x 3 x 3 cell are listed in Table IV, to-
gether with the series-expansion results and the
results obtained by the Kadanoff variational meth-

2.0

1.875

1.8

y3
~h

1.6

1 ~ 4
lf 2

FIG. 3. Scaling indices
of 4x4 cells vs p. Super-
scripts denote the order of
cumulant expansion.
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2.0

1.60

2
FIG. 4. Scaling indices

of 3&3 x3 cells vs p.
Superscripts denote the
order of curnulant ex-
pansion.

2

1.0
0.2 0.4 0.6 0.8

P

1 ~ 0

od. The dependence of the scaling indices on the
parameter p is shown for 3 x 3 x 3 cells in Fig. 4.

V. COMMENTS

The overall conclusions about this work have al-
ready been given in Sec. I and in more detail in

Secs. III and IV. It might be worthwhile here,
however, to make some general remarks about
the cumulant expansion. First, there is no evi-
dence at the moment to suggest that the cumulant
expansion in its present form converges. Second,
the calculational procedure of treating the higher-
order interaction constants self-consistently as
suggested originally by Niemeijer and Van Leeuwen
seems valid since the fixed-point values of these
interactions are correspondingly small with re-
spect to the nearest-neighbor value. Third, the
nature of the perturbation expansion imposes a

TABLE ill. Three-dimensional results for yz, ~, and
Kc for 2x2x2 and 3x3x3 cells in the limit P

rather severe truncation of the recursion equa-
tions for the interaction constants. This limita-
tion is quite possibly the reason for the poor
thermal eigenvalue obtained in all of our three-
dimensional calculations, since even for the
3 x 3 x 3 second-order calculation there are only
three interaction constants in zero magnetic field.
Finally we would like to comment on a fundamental
problem involved in all of these real space cal-
culations, namely, the difficulty involved in esti-
mating the error associated with a particular
truncation. In this regard the variational approach
seems to be better since one can show' that the
error in the free energy is of second order in the
coupling constants. This is essentially owing to the
fact that in this approach one "moves interactions
around" rather than simply dropping them. On the
other hand, in its present form the error involved
in the cumulant truncation scheme is, loosely
speaking, first order in the interaction constants
since some interactions are simply set equal to
zero in a given order of calculation.

Order of
Cell size perturbation

2x2X2 1.246
1.209

2.788
2.599

Kc

0.2978
0.2468

TABLE IV. Three-dimensional critical indices ob-
tained by present work and variational calculations.
Scaling laws are assumed.

3x3x3

Series expansion results
(Ref, 19)

1.165
1.185

1.60

2.531
2.455

2.50

0.2599
0.2371

0.2217

Present work —0.532 0.460
Variational 0.113 0.337
Expected 0.125 0.31

1.61 4.50 0.09 0.844
1.21 4.60 0.07 0.629
1.25 5.0 0.04 0.64
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