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The critical dynamics of the time-dependent Ginzburg-Landau model for a system with quenched random

impurities and nonconserved order parameter is studied in the framework of the a expansion. In contrast to
the situation in pure systems, the dynamic critical exponent z deviates from its conventional value at first

order in &=4 —d. The impurities cause an enhancement of the shape function f„(v) at small frequencies v;

f„(v = 0) diverges as T~ T,. Below T, the equation of state, static susceptibility y, and dynamic response

function G, are studied. A new, purely static correlated function, C ', whose existence is unique to the

random system is introduced. The coexistence curve singularities of C ', y, and G in systems with

continuously broken symmetry are explored. The connection of the quenched-impurity model with "model C"
of Halperin, Hohenberg, and Ma is discussed.

I. INTRODUCTION spin density o,.(x, t),

The question of the influence of quenched im-
purities on phase transitions in magnetic systems
is a long standing one. ' Recent progress in our
understanding of the static critical behavior of
disordered systems has been made with renor-
malization-group' (RG) techniques. The statics
of ferromagnets with random exchange strengths
has been treated using the E =4 —d expansion by
Lubensky, ' Grinstein and Luther, and Khmel'nits-
khii, and in two dimensions by Ha, rris and Luben-
sky. ' These calculations, all of which deal with
"weak" randomness (or systems which are nearly
pure), indicate that the phase transition is sharp
and second order —qualitatively identical to that
of pure systems. ' The phenomenology of strongly
disordered systems on the other hand can be quite
different. Dilute model ferromagnets, systems
wherein some fraction P of the spins is simply re-
moved from the lattice, are, for example, well
known to exhibit the phenomenon of percolation',
for p larger than the "percolation concentration"

P, there is no phase transition at finite tempera-
ture. Systems with randomly mixed ferromagnetic
and antiferromagnetic interactions can undergo
transitions to a spin-glass phase at sufficiently
low temperature. ' The average magnetization
[(S,.)']„vanishes identically in this phase while
the spin-glass order parameter is finite. "

In this paper we shall be concerned with the
time-dependent critical behavior of weakly random
systems. The model we treat is defined by the
equation of motion satisfied by the n-component

I' =
2

' d(x[& (o)x]'+r, o(x)+-,' u[o'(x)]'

+ p(x)o'(x)),
where

r, =a(T —T,),
and a, u are positive constants. The static random
noise y(x) describes the quenched impurities and
satisfies the configurational averages

[V(x)].„=o,

[y (x)rp (x')].„=&5(x —x').
(1.4a)

(1.4b)

This model is the time-dependent Ginzburg-
Landau model (TDGL) with a Gaussian static noise
p and a nonconserved order parameter. It is the
simplest dynamical model available for treating
quenched impurities. " Impurity effects are pre-

where I" is a bare kinetic coefficient, g,. is a Gaus-
sian noise source,

(1.2a)

(rt,.(x, t)t) (x', t')) = 21'5(x —x') 6(t —t')6, „(1.2b)

and F is the Landau-Ginzburg free-energy func-
tional generalized to include a random term cou-
pling quadratically to the spin
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sumably important in more realistic dynamical
models (like the isotropic ferromagnet, planar
ferromagnets, and isotropic antiferromagnet) as
well but the analysis presented here will not touch
upon these systems.

The physical quantities of interest will be the
linear response functions and the correlation func-
tions. We define the linear response function
G(k, v) as the response to an infinitesimal mag-
netic field k, (x, f) introduced through the addition
to the free energy

F-F'=F — d"'xo,. x h,. x, t .
g=l

In particular G is defined by

[((r,(k, (o))]„= G (k, (u)k;(k, (u) +0 (k'),

(1.5)

(1.6)

where k and ~ label the space and time Fourier
components, respectively. The correlation func-
tion C(k, ar) is defined by

2vb((u+(o')6, „,6, , C(k, (u)

C (k, (u) = (2/(u) lm G (k, (u). (1.8)

We introduce G because it has a more convenient
perturbation-theory expansion than does C. One
can also show" that the static susceptibility can be
obtained as

)t(k) = —C (k, ~) = lim G(k, ~).d(d

2p z"0
(1.9)

According to the dynamical scaling hypothesis"
one can find a characteristic frequency m, (k) such
that in the scaling region

(1.10)

where x =k$, v= ~/~, (k), $ is the correlation
length, and f„(v) is the so-called "shape function. "
The characteristic frequency has the scaling prop-
erty

(o, (k) =k'Q(kt'),

where z is the dynamical critical index.
The static or equal time correlations of our mod-

el are identical to those studied in Refs. 3-5. The
fixed-point structure of the RG for the static pa-
rameters x„u, 4 is in consequence the same as
that found in these references. " For each value
of n there is a single stable fixed point accessible
to the system. For n&n, =4 —4e+O(e') the fixed
point which characterizes the critical behavior of
the pure system is stable. ' In this case the im-
purities have no effect on the phase transition;

=[(o,.(k, (u)&r~(k', (u'))],„, (1.7)

and can be obtained from the response function via
the fluctuation-dis s ipation theorem"

the dynamics of the random system are identical
to those studied in Ref. 11. In particular, z de-
viates from its "conventional" value of 2 only in
O(e'). When n &n„however, the so-called "ran-
dom fixed point, " characterized by nonzero value
of 4, becomes stable. " In Sec. II we investigate
the structure of the dynamical RG in the vicinity
of this fixed point. We find that z deviates from 2
at 0(&); this is the first of several instances in
which the impurities exert a strong influence on
the dynamics.

In Sec. III we perform a perturbation-theory cal-
culation of the scaling form of the response func-
tion to O(e). Computing the characteristic fre-
quency ur, (k) and the shape function f„(v), we find
that the impurities lead to an enhancement of f„(v)
near v =0; f„(0) grows like x' ', diverging as x
=kg becomes very large.

The static and dynamic properties of our model
for T & T, are discussed in Sec. IV. This is, to our
knowledge, the first RG discussion of the proper-
ties of a system with quenched impurities below
T,. We discuss the equation of state, the static
susceptibility, and the dynamic response function,
and study a new, purely static spin-spin correla-
tion function C"'(x) whose existence is peculiar to
the random problem. The Nambu-Goldstone modes
in the system (for n &1) lead to infrared diver-
gences in the longitudinal susceptibility and re-
sponse function on the coexistence curve. We
analyze these singularities in a manner analogous
to that of Brezin et al."and Mazenko" in studies
of pure systems.

The final section is devoted to a short discussion
of our results and their relationship to those of the
model "C" studied by Halperin, Hohenberg, and
Ma (HHM). "

II. RENORMALIZATION-GROUP ANALYSIS AND

c EXPANSION

A. General considerations

p, = (r„u, A, 1'). (2.1)

The RG is a set of tra. nsformations {R~;1~ b &~].
on the space of p, ; R, transforms the set p, to a
new set p.

' via the following steps:
(i) Write Eq. (1.1) in terms of Fourier com-

ponents 0~. Solve the resulting equations for 0,
with A/b &q &A, substitute the solutions into the
remaining equations for o„k&A/b, and average

The RG analyses of the TDGL model and the
static Ginzburg-I. andau model have been extensive-
ly discussed in. the literature. '" The RG analysis
of our model proceeds along identical lines, which
we summarize briefly. The model (1.1)-(1.4) is
defined by the set of parameters
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over gqf keeping p fixed throughout.
(ii) In the rema. ining equations make the substi-

tution

o„(f)- b' "~'o„(fb ') (2.2)

These equations are then expressed in the form
(1.1), thus enabling us to identify the "renormal-
ized" kinetic coefficient I" and the renormalized
coefficients x,'(x) and u'(x), respectively, of the
quadratic and quartic terms of I'. These new coef-
ficients are functions of x, and u, and functionals
of y(x). Averaging over all possible configurations
of the impurity field y(x) we define the renormal-
ized parameters ro, u', and 4' as ro —= [r,'(x)]„, u'
—= [u'(x)],„, and 5(x-x')d'=[[r,'(x) —xo][r,'(x')
—r']]„. The set p, '=-(ro, p, ', b', I") is thereby de-
termined in terms of p.. The relation

p,
' =R~p, (2 8)

defines the RG transformation R,.
Just as the RG procedure for statics generates

couplings of arbitrarily high order in I', ' so too do

steps (i) and (ii) generate equations of motion far
more complicated in structure than (1.1). Many

more parameters should be included in the set p,

to provide a complete description of Rb. It is,
however, straightforwa. rd to show (again aping the
usuaP' arguments for statics) that the four pa-
rameters we have considered are sufficient to
specify the dynamical critical behavior to 0(e).

B. Recursion relations to O(e)

The parameters x„u, and 4 describe static
properties. Their transformation under R, has
been worked out by Lubensky. ' To 0(t) the results
are

I" '=O' 'I" '(1+K 6 Inb). (2 5)

It follows from (2.5) that the dynamical critical
exponent z is given by

z = 2+K4 &* (2.6)

at a fixed point. Thus when n &n, there are 0(e)
corrections to the conventional theory result z =2

Since the leading corrections to the conven-
tional result occur at 0(e') in pure systems, the
presence of quenched impurities has a significant
effect on the value of z; to 0(e), for n &n„

static index t) =0(e'). Equations (2.4) lead to the
familiar quenched static results. In addition to
the trivial Gaussian fixed point these relations
possess three nontrivial fixed points of 0(e), sum-
marized in Table I. One of these, the "unphysical"
or "n =0" fixed point is not accessible to the real
physical system since it has a negative value of
b and 6 is, according to (1.4b), an intrinsically
positive quantity. The other two fixed points are
the isotropic n-component fixed point which char-
acterizes the critical behavior of the pure n-com-
ponent system and the "random" fixed point. Only
one of these two fixed points is stable for any given
value of n; for n&n, =4 —4@+0(e') the former is
stable, while the latter is stable when n &n,. Note
from Table I that the random fixed point becomes
singular at n =1. This is symptomatic of the fact
that the random Ising system has a static fixed
point of 0(e'~') rather than of 0(e).' One must re-
tain cubic terms in the recursion relations (2.4b)
and (2.4c) in order to see this 0(e'~') fixed point.

The additional ingredient needed for dynamics is
I', whose transformation can be obtained by fol-
lowing the above steps defining R,":

ro =5'(r, +[(2n+1)u —4]K, [z A'(1 —b ') —x, lnb]],

(2.4a)
4-n

+8( 1)e+0(e ). (2 't)

(2.4b)u' =5'u/I —[(—'n+ 1)u —6&]K, lnb},

6' =b'd (1 —[(n+ 2)u —46]K, lnbj, (2.4c)

where K, = I/8m'. Here we have recorded only the
lowest-order terms in u and 4, and assumed the

C. Feynman-graph expansion to O(e')

At 0(e') it becomes inconvenient to compute crit-
ical exponents by means of recursion relations
since, just as for static calculations in pure sys-

TABLE I. Static fixed points to O(q).

Fixed point K46* Region of stability

"n=0" or
unphysical

lsotropic
n component

Random

2E'

n+8

e/2(n —i)

1—4E'

(4 —n) c/8(n —1)

all n; but inaccessible
to true physical
system

n &n, =-4-4~+O(~')
(see Ref. 7)

n&n
(not defined for n &no)
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tems, ' one must include 0' terms in the Hamilto-
nian in order to find the correct O(c') fixed point.
To carry out the O(c') computation we utilize Wil-
son's Feynman-graph-expansion technique. " The

method can be briefly summarized as follows:
Starting with the equation of motion in an external
magnetic field we find, after Fourier transforma-
tion, the form

o', (q, &o) = o', (q, (u) + G'(q, v)h, (q, v) + 6'(q, &)L ~' gp, o, (q', &o)

I
—G'(q, ~)(k~)& ' g . g o,(q', ~')o,(q", ~")&;(q q' -q",-~' —~"),

c&
(2 S)

where

&';(q, ~) = G'(q, ~)(1/1')n;(q, ~) (2.9)

G qi (0
1

—f~/1'+ X.'(q) ' (2.10)

with X,"(q) =q'+rc. Treating q -O(c'~') and u-O(c)
[in the case n = 1 we treat q -O(a'~') and u-O(a'~')]
we can iterate 0' in powers of o', and 6 h, keeping
only one power of h. After averaging over the
noise and the quenched impurity configurations we
generate a graphical perturbation expansion for
the impurity-averaged response function. This ex-
pansion is a double power series in u and 4; as-
suming that a fixed point of the RQ transformation
in 4- & dimensions exists we expect, following
Wilson, " that there exist particular values, u, and
d, [both of O(e)], of I and 4 for which the per-
turbation series for the response function has the
dynamical scaling form" appropriate to a system
near criticality. With u and ~ set equal to u, and
&„ respectively, the values of critical exponents
and, in principle, the scaling function itself can be
obtained as a power series in E. The problem of
calculating critical exponents to any order in E is
thus reduced to that of evaluating Feynman graphs
and determining u, and 4,. (Note, however, that if

G (q, &o) = G, '(q, &o) —Z (q, ru), (2.11)

we find that Z is given to second order in u, and 6,
by the diagrams in Fig. l. A straightforward
evaluation of the graphs yields

values u, and 4, for which the response function
acquires the scaling form cannot be found, we
must conclude that dynamical scaling is violated.
%'e shall have more to say about this eventuality
later, in connection with HHM model C.)

Since the static critical exponents at the random
fixed point have been computed' ' to O(e'), only s
remains to be determined. It suffices to study the
response function right at the critical temperature
where, according to dynamic scaling, G '(q =0, v)
has the form&' " ' As in the usual static cal-
culations, ' it is most convenient to perform "mass
renormalization. " We first write t'0=-r+ 5r, where
x is the exact inverse static susceptibility and
vanishes at the true transition temperature. We
can then write the bare response function as GD

=(- iv)/I'+0'+r) '. The "mass counterterm" r is
then determined, order by order in perturbation
theory, by the requirement that G '(q =0, &u=0) be
identically equal to x. Since we are working at T„
x can be set to zero. Writing

c c
4

(2.12)

Since u, and 4, are both of O(e), this expression
is of the form (-f~/I')"-""* to O(e') provided only
that

Ifc~c ECgd'p (Kch, ) n+ 2
( )( )d c d c

(2.i3)

A straightforward calculation exactly analogous

to that performed by Wilson" g'ves, and a,. We
find that at the random fixed point,

25m' —248m, + 64
KggCc 2( 1)

1 + 122( 1)2
e

p (2 14a)

105n3 —364g'+ 992n —256
12S(n —1)2

(2.14b)
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when n41, and

K~u, = 4(+, ,«)'»',

K,~, = 3(—,'„«)"'
(2.14c)

(2.14d)

holds to O(e') with

z = 2 —r) +K~&, + 4 (n + 2) (K~ u, )
' ln ~3

+ 2(K,-&,)' —z(n+ 2)(K~u, )(K„E,). (2.15)

when n=1. It is trivial to verify that these values
do satisfy condition (2.13); dynamical scaling thus

Substituting (2.14) and the 0(&') value of q (known
from statics) into (2.15) we obtain

(4 —n)«[192(n+2)(n —1) ln-,' —69n'+104n2 —640n+ 128]z'
2+8(n -1) 1024(n —1)' (2.16a)

for nw1 and

z=2+(—'e)'"
for n=1.

(2.16b)

is the contribution due to impurities. Note in par-
ticular that Z~ depends on frequency but not on
wave number. It is convenient to separate out the
static part of the self-energy, Z, (q) =Z(q, m =0),
which is given by

III. CORRELATION FUNCTION TO O(e) FOR T~ Tc

In this section we carry out a perturbation-theo-
ry calculation, valid in the scaling region, for the
correlation function. This amounts to keeping the
first-order self-energy graphs in Fig. 2 and setting
u and 4 to their fixed-point values while keeping
q, v, and r finite. We obtain directly from Fig. 2

that, to O(e), the self-energy defined by (2.11) is
given by

Z.(q)=(6-2(n 2l) 2' A' —r, 1 '
)0

We can then introduce the exact susceptibility

r =G-'(O, O) =r, Z, (O) (3.3)

and consistently eliminate r, in favor of r to O(e).
We then have

z(q, v) =z„+z„
where

(3.1a) G '(q, (o) =q'+r —Z(q, (u) +Z(0, 0) —i(u/r, (3.4)

where

d d(dZ„=-"—(n+2), G'(q, ~)H 2 (2w)
(3.1b) z(q, ~) z(o, 0) = ~(i~/r)Q((u) (3.5)

is the usual Hartree term and

z, (&o) =a
( ),G'(q, ur) (3.1c)

/
~l

n

/
I

X

/
vf v

rt

-'(b)

/
I ~l

(c)
We finally obtain

G '(q, ~) = x '(q) —i~/r(q ~)

where, to 0(«),

I'(q, (o) = I'[1 —d Q((o)].

(3.7)

(3.8)

In the scaling region where &u/rA'« I, r/A'«1 we
can write

FIG. 1. Graphs contributing to the frequency-depen-
dent self-energy Z(q, ~) to 0(e2). The crosses repre-
sent impurities, two crosses joined by a dotted line
represent a factor of 4, solid lines with arrows repre-
sent bare response functions, lines with open circles
represent bare correlation functions, four point vertices
represent factors of I, and the shaded squares repre-
sent factors of &.

Caj
FIG. 2. Graphs contributing to Z(q, co) to 0(p).
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~z,I'(q, a&) =1" 1 — ' ln—
2

(u (q, $) = I'A 2$ 2 '(1+x2) "2&

= I'A '( '(I+x2)'~2. (3.15)

4 g+ ln 1-i—
(3.9)

In the limit x -0, q -0,

~,(~) =rA- ~-,
while in the limit@-~, T-T„

(3.17a)

As this expression stands it is not well defined in
the limit where the two variables (d and x go to
zero due to the logarithms. The sealing properties
for I',

&u, (q) = I'A 'b*. (3.17b)

We now deal with the scaled frequency v = &d/&d, . In
1, to lowest order in z, we can replace v, by v(1
+x') so that

r(q, ~, ~- ) = b-"2- r(qb, &b, b ~-'), (3.10)
G '(q, &d) =X '(q, g)[-iv/F„(v)+1], (3.19)

where $ is the correlation length, follow from the
RG result

with

G '(q, &d, $ ') = b' "G '(qb, orb', b ( ') (3.11)
E,(v) =[(1+x') ' —iv]'~2

and Eq. (3.7). If we successively set two of the
three variables & & ~

' to zero and make appro-
priate choices for b we obtain the scaling relations

1+ . , ln 1-iv 1+x'—2iv 1+x'

(3.19)

r(q, o, o) =(q/A) -'"r(A, 0, 0),

r(o, ~, o) =(~/rA2) &'-"""'r(o,rA', o), (3.12b)

1"(0,0, $ ')=($A) "' "I'(O, O, A). (3.12c)

After performing two exponentiations we can write
correct to O(z),

I"(q, &d) = r(A)) '(1 —iv, )'~2

2 F,'(v)
[v —F"(v)]'+[E'(v)]' ' (3,20)

where E' and E" are the real and imaginary parts
of E, respectively. Let us first consider the case
v = 0. Then

The correlation function C(q, &d) can be obtained
from the response function via Eq. (1.8). Writing
our result in the scaling form (1.10) we can identi-
fy the shape function as

1+ . ln 1 —ivo—22 vo
(3.13) F„(0)= (1+x') '~2(I+y/2) (3.21)

where we have set y'= $
' a,nd defined y =K~4 =z - 2

a,nd v2 = &d/rr Thus.

r(o, ~, o)=r( i~/rA2) ~2,

I"(0,0, $ ') = I'(1+2 y)(A)) '. (3.14b)

Since (z —2 —q)/z=-2'y+O(e2) and -y = —z+2
+O(z'), (3.14a) and (3.14b) are consistent with
(3.12b) and (3.12c), respectively. Equation (3.12a),
on the other hand, is indeterminate since I' is in-
dependent of q. It reduces to 0=0 since I'(A, o, o)
is zero according to (3.13). The vanishing of I' for
small (d and large $ will be discussed further be-
low.

In order to write the response function in the
dynamical scaling form it is convenient to intro-
duce a characteristic frequency. Following the
discussion of Freedman and Mazenko" we define

so that E„"=0and

(3.22)

2 cos(-,'«y) v'~2

v'+ 2v'""sin 2' + v"
ol near v = Oy

(3.24)

In the hydrodynamic regime this is simply 2/(1
+ —,y) while in the critical regime we find f„(0)
-2x'/(1+ 2 y). The shape function evidently blows
up at v =0 as T T,; this divergence is a direct
result of the presence of the impurities since y

Examining the shape function at T, we see
that

F„(v)=(-iv)'~'=(cos2vry —i sin2my)v'~', (3.23)

(3.15)
1

( )
2 cos 2&j'y

vy/2 (3.25)

which can be written Note that this divergence at small v does not vio-
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late any sum rules since f (v) is still integrable
under the assumption that & y &1.

The physical basis for this small-v divergence
rests with the quenched or "frozen" nature of the
impurities. The fluctuations can scatter from
these impurities much like Bragg scattering in a
solid. Since the impurities do not move the inter-
action between the impurities and very-low-fre-
quency fluctuations can be arbitrarily long in dura-
tion. Thus the probability of two low-frequency
fluctuations simultaneously interacting with the
same impurity is large and leads to the build up
of correlation for e-0 that is reflected in the
shape function. We expect an enhancement of this
effect as T-T, and "critical slowing down" de-
velops.

Without the quenched impurities, the shape func-
tion for the TDGL model is simply (I+v'[I
+O(e')] j ', which does not diverge at v=0. The
details of the 0(&') terms can be found in Ref. 11.
The case of annealed impurities with very long
relaxation times (i.e. , nearly frozen) is discussed
in Sec. V.

IV. PROPERTIES BELOW Tc

A. Magnetization

For T &T, we expect a nonzero average mag-
netization in zero external field. Assuming the
spontaneous field points in the "1"direction we
have

A third correlation function,

C', ,(x-.x', t-t )=C,,-(x-x', t-t )

+5, ,5, ,C&"(x-x ), (4.5)

G~ for i=1,
G =

6, for i41.
(4.7)

Consider the situation where there is a small
uniform magnetic field pointing in the 1 direction.
A static uniform 5h perpendicular to h is effective-
ly a rotation of k by an angle 5k/k. Thus the total
magnetization must follow the same rotation, i.e.,
[(o,(x, t))]„/M = 5k/k. We then ha.ve

is simply [(r/i, (x, t)g&(x', t')))„. The Fourier trans-
form C', ,.(k, &u) is the dynamic structural factor ob-
servable by scattering experiment, which contains.
a 5(&u}c"'(k) piece. We shall also be concerned
with the response function

G, i(x —x', t —t') = 5[(g, (x, t))],„/5kj(x', t) i„,.
(4.6)

Note that since one established the fluctuation-dis-
sipation theorem for any given fixed configura-
tion, y(x) of the impurities, the theorem relates
6 to C rather than to C'. Because the isotropy of
spin space is preserved in the presence of im-
purities, G, , is diagonal in i and j and we define

M = [m, (x)],„, (4.1) G, (k =0, ~ =0) =[(o,(x, t))].,/5k =M/k. (4.8)

P, (x, t) =o,.(x, t) -M5, .„ (4.2)

where m, (x) =—(o';(x)). It is useful to work in terms
of the field

This result is well known for the pure system, and
is preserved here because the impurities do not
affect the invariance of the Hamiltonian under spin
rotations.

whose average value [(g;(x, t))]„vanishes identi-
cally and to define the correlation function

C, ,(x-x', t —t') —= [([o,(x, t) —m, (x)]

x [o,(x', t') —m, (x')])]„,
(4.3)

which is the analog in the random system of the
correlation function commonly treated in pure
systems. A unique feature of the quenched prob-
lem is the existence of a second correlation func-
tion which becomes long ranged as T approaches
T, from below. This correlation function, a pure-
ly static quantity, is defined by

-=[[m,.(x) M5, , ][m,.(x') —M5, , ]],„. (4.4)

G'(k) =(r+k') ',

G', (k}= (k/M+0') ',
(4.9)

where r -=Gz(0) ' and k/M = G, (0) '. Note that for
purposes of calculating the equation of state we
have set all frequency variables to zero.

8. Equation of state

The equation of state relating r„h, and M can
be obtained by calculating [(P,)],„with fixed m and
h and then setting the result to zero as required by
(4.2). In the case n~ 2, the equation of state can
also be obtained by calculating G, (0, 0) and then
setting the result to M/k as in (4.8}. We perform
a straightforward perturbation expansion in y and
u using the bare response functions
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The expression for [(g,)],„ to first order in & is
represented graphically in Fig. 3, where each
wiggly line represents a factor of M. Although
both u and A are of 0(e), the quantity uM' is readi-

ly seen to be of 0(1),"so some care is required
in accounting for all diagrams which contribute to
0(e). A direct evaluation of the graphs in Fig. 3
leads to the expression

uM' h K~, A' Ku, A' h A'M—
so+ ——= ' A' —r ln —— ' (n+2)A' —3r ln ——(n —1)—ln

2 M 2 ~ 4 r M h

3K,~, A'
4 uM2 -1+ln—

'y
(4.10)

The value, xo, of r, corresponding to T, is determined by setting M, x, and h to 2'ero:

r o
= o K~A A —~ K4 u (n + 2)A'. (4.11)

Defining r=lro —vol IT 'Tel we obtain

2 y 3 n-1 h h——+—(—,u —A)r ln ——~K AuM' ln ———,K AuM'+ K u —ln
2 M 2 A2 4 A2 4 4 4 M MA2

=0.

By eliminating r from (4.12) in favor of r, M, and h we obtain the equation of state. Only the 0(1)
expression

(4.12)

y= 2

is needed to produce the equation of state to 0(e):

(h/M)(1 —(—,K,u —2K,A) ln(-, uM' 7) —,'K, u(n —1)—in(&uM —r)].

(4.13)

= —r+ 2uM'[1+(-, K,u —2K,A) ln—(-', uM' —r)]. (4.14)

The critical exponents P and 5 are readily extrac-
ted to 0(e) from (4.14); setting h =0 we obtain 7

-M"' wit

Substitution of the critical values for K4u and K44
given in (2.14) yields, in agreement' ' with scaling
laws,

p = 2 (1 —o K~ u + 2 K~&),

while with v =0 one finds h-M' where

, K,u(n+ 8)5=3+2 4

2

(4.15a)

(4.15b)

1 (8 —5n)e
P-2 1

16(n 1)
0(')

5 = 3+ e +0(&')

whenn41, and

(4.16a)

(4.16b)

8 = k [1—k(~e)"'+0(~)],
5= 3+0(e)

(4.16c)

(4.16d)

for n= l.
Equation (4.14) is easily cast in the scaling form

h/M ' = 2 uf[r/ ,' uM ') '~ '—o]
where the scaling function f(x) is

(4.1Va)

f(x)=l x ', K,A+ (1 -x)[4—K,u(n+8) —3K,A] ln(u/2A')

+(-.'K', u --,'K,&)(inl3-x l-x lnA')

+ (1 -x)[-,'K, u(n —1) lnl 1 —x
l

+ o K.(ou —A)»13-x I]+O(e2). (4.17b)

FIQ. 3. Qraphs contributing to f(g&))~ to 0(q).
Solid lines represent bare static propagators and each
wiggly line represents a factor of j/t'.

This function has the behavior depicted schematic-
ally in Fig. 4; the zero off at x, =—1+0(c) ensures
that M - v ~ in the absence of a field.
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(0)

FIG. 4. Schematic representation of the equation-of-
state scaling function f(x).

C. Response functions —perturbation theory

In developing our perturbation theory below T,
it is convenient to eliminate o in favor of the field
g, defined in (4.2). The equation of motion

=-5, ,M[r, + , uM' q-(x)]-a-, (x, t)

q (x)y,.(x, t)+ 3Mu,.„,y,. (x, t)y, (x, t)

+u, ,„g,.(x, t)g, (x, t) P, (x, t), (4.18a)

(e)
FIG. 5. Graphs contributing to the self-energy

Z;(q, cu) to O(e) below TG. Each wiggly line represents
a factor of M.

graphs contributing to Z,.(q, &o), the self-energy for
G, to O(e) are shown in Fig. 5. The analytic ex
pressions corresponding to these graphs are given
in the appendix.

D. Static correlation functions

with

uijki 6u(5ig5kl+ 5ik5Jl+ il ik)~

)t, '(x-x) = [r, V'—+uM'( —,'+5, ,)5(x-x),
(4.18b)

(4.18c)

The static correlation functions can be calculated
as the m=0 limits of the response functions )(,.'(q)
=G (q, 0)=X';'-E;(q, o)

1. Longitudinal correlation function

The longitudinal susceptibility can be written
and repeated subscripts j,k, l summed from 1 to n
is the direct analog for T & T, of (2.8); iterated in

powers of u and y with zeroth-order propagator
G', '(q, &o) = —ic'd/1'+X, .'(q), it gives rise to a graphi-
cal perturbation expansion for the response func-
tion G similar to that discussed in Sec. IIC, the
only additional feature here being the presence
of the wiggly lines representing factors of M. All

X-,'(q) =r, +-,'uM'+q'-Z, (q, O), (4.19)

where Zz(q, 0) is given in the Appendix. Evaluating
the integrals in the appendix and making use of the
zero-field equation of state (4.14) we obtain

)tz'(q) = A (q) + ,'(n —1)K,(uM )~ ln—(q'/uM '), (4.20)

where

, J A' (x'+4)'~', 9K,EA(q) =q +uM']1 —W 1+in 6K~4 —8K~u+ 2 lnuM2 x x +

with x'= q'/uM' and W—= 4ff', f-(n+8)u —126].
This expression can be exponentiated to yield

g(q) —A-2&(u~& 2M )~&& [1/ f (q2/(uM2)~&& )]

where to O(e), y/P = 2y/P = 2W, in agreement with Refs. 3-5, and

x' '/' x+—
4

(4.21)

(4.22)
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(x'+4)'~', 9Ã,& x' '~' xfs(x') =x2 —W+ Wx InA + x 6K~4-BX4u+ 2
~ ln 1+—x'+4 4 2

Equation (4.20) is thus conveniently written

){~'(q)=A '~(u'~'M)""[fs(x')+ I+-,'(n —I)Ã, u lnx].

(4.24)

The term proportional to e —1 is evidently di-
vergent as q -0 for all T &T,. This divergence is
a manifestation of the coexistence-curve singulari-
ties which are a consequence of the Nambu-Gold-
stone bosons present in a state with continuously
broken symmetry. Such singularities have been
treated in pure systems by several authors. ""

Dealing with the term proportional to lnx (or
lnq) is always somewhat delicate since there is no
unambiguous prescription for exponentiating this
term. In order to reduce the ambiguity somewhat
we evaluate to O(e') the (lnx)' pieces of X~'(q).
These contributions can be obtained from the sec-
ond-order self-energy graphs of Fig. 6. Straight-
forward evaluation of these diagrams yields

X '(q) =A ' (u' 'M)" '

It, (q)=q -K,uM d ——,+e(x)+x
u (x(x)
2 x'

d, o((x)
+ 2x2

wtth o((x) = ln(1 —x ) —x ~ For small qi

it, '(q) =q'[I+-((K, (u —d)],

(4.29)

(4.30)

which explicitly exhibits the expected Nambu-Gold-
stone modes.

C"'(q) = (r+q') 'M'4

and in general it is convenient to write

(4.31)

3. Function C~'&(q)

Recall that the function C"'(x-x'), defined in
Eq. (4.4), is unique to the random problem. Its
Fourier transform, C"'(q), is expected to be very
different from the quantity g~(q), which we have
already studied. To lowest order in ~ and u we
have

x [ f„(x') + 1+—,
' e lnx ——,', &' ln'x], C"'(q) = X&(q)'&(q), (4.32)

(4.25)

where we have used the O(e) critical value for K,u
given in (2.14a). Following the treatment of Ma-
zenko" we try to fit this expression with the form

){-((q) P-2((((u( I 2M )('I 8 f (x2)I R C +x-&& (4.26)

with a, c, and o constants of O(1). It is trivial to
show that the choices o = 1, e = 3, and a = 4 do pro-
duce an exact fit of (4.25) to O(e'), whereupon we
finally obtain

where D(q) is represented diagrammatically by the
shaded blob in Fig. V(a). The zeroth- and first or-
der terms of D are shown in Figs. V(b) and V(c),
respectively; since D is a purely static object it is
easiest to adopt the graphical convention used in
Sec. IV 8, where in the presence of a magnetic
field the bare propagators are given by Eq. (4.9).
Evaluation of the diagrams in Fig. 7 then gives
rise to the expression

%hen n = 1 the coexistence-curve singularities
are absent since there are no Nambu-Goldstone
modes and y~'(q) takes on the perfectly orthodox
scaling form A '~(u'~'M)"~8fs(x').

[0) (b)

2. Transverse correlation function

The transverse correlation function is given by

lt„'(q) =q'+ra+ 2 uM'- Z, (q, 0), (4.28)

where the six O(e) contributions to Z,(q, 0) are
given in the Appendix. Straightforward evaluation
and use of the equation of state yields

FIG. 6. Graphs contributing (lax)2 terms of 0(e2) to
x j,'(e).
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(b)

FIG. 7. Graphs contributing to D(q) to 0(q).
FIG. S. Graphs contributing gnq)2 terms of O(e2) to

D(e)

D(q) =M'&[1 ——,'K, (4A —3u) 1n(r/A')+ (3d —3u}Q(r/q')-K, u(n —1)Q(h/Mq')+ DK, u(n —1) 1 (hn/ MA)],

(4.33a)

(1+4m')'('- 1q(x'} =K (1+4'')"' ln4 2x +1

For n = 1 we obtain, setting r=uM'+h/M,

D(q) 6)M—
(
—

) ()(, ((+&))+D(q)

where y —= h/uM'. For n & 1 we find

(4.33b)

(4.34a)

(4.34b)

Like y~'(q)&D(q) contains lnq terms which signal the presence of coexistence-curve singularities. As be-
fore, the logarithms can be exponentiated in many possible ways. Putting h =y = 0 we proceed as before
and compute the (lnq)' terms of O(c') contributing to D(q) All such con. tributions come from the graphs
in Fig. 8, keeping only terms singular as q-0 we obtain

D„(q)=&M' (+q ) „q-(q ) 'q),

Once again assuming that this expression should be fitted by the form a/(0+q —o' ') we find o =Dq, C = D, and
a = ~. Thus5

DD(.g(q) = ~M'
D

'-D. (q &—+q2

whence it follows that for small q

g(q)(q) q-2&+5q(4
q

Sq( &-q
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E. Response functions

%'e turn now to a discussion of the frequency-dependent response functions. For simplicity we mill re-
strict. our analysis to the case q=0 where we expect the collective effects to be largest in the response
functions as a function of frequency.

1. Longitudinal case

Consider first the longitudinal case. Starting with the diagrams given by Fig. 5 we find, after using the
equation of state,

G~'(0, &u)

l(d= ——+uM'+ 34@M'R'~ ln . , + . , ln—~~~'r+~, —~~~'I —~~~'r+~,

We can rewrite this equation in the form [correct to O(e)]

G,'{0,v, ) =uM'(uM'/A') "(I+( 1'V,)(I+-,'AK, InA'/uM')+q, (v,)+-(B41)uK-, ln(- g iv, )],

q~(v, )=-&K4(3 —giv, ) . lnQ- . 'Q' lnQ' — . ', (Q lnQ+iv, ),
9 K. . . 9~K,

—fv() 2fv() 2 —fv~

(4.39a)

(4.39b)

0=1 gvoy

0' = 1 —giVoy

(4.39c)

(4.39d)

G~'(0, v) =g ', -+I+q~(0)
'Yg(v

+-,'(n - ()u«, ( (- l(v)), (4.44)

('d

' IuM'(uM'/A')"' (4.39e)

(o~ = I'uM '(uM '/A') '~ "«4~~'.

Since (d4~-M""«4~ and M- $
~~" [to O(e')] we find,

as expected, that (()~-$ ' since v/P = I+~a and zv/
P = 2+ & + E,~. %e then find that,

v=&o/(d~=v, (uM'/A) «4~" (4.41)

(4.40)

so v=v, to lowest order in &, %'e can then write,
correct to O(e),

G~'(0, v) = $ '[-iv+q~(v)+ I+-,'(u —1)uK, ln(--,'v)],

(4.42)

where we have defined

'=uM '(uM'/-A')"

We can write Eq. (4.42) in the more conventional
form [correct to O(e)]

We note that q~(0)= a4K4 (u --', A). The (uM'/A')'~'
factor in G~'(0, v) comes from the same type graphs
a«or y~'(q). A useful choice for a characteristic
frequency ls

I'~'=-
(

. )G~'(0, (d) (4.48)

is related to y~(0) by

I"~ = I'(uM'/A')'~'y~(0). {4.47)

In the case n&1 we can treat the term propor-
tional to In(-iv) in exactly the same manner as
was used in treating the lnq2 term in X~'(q). We
obtain the result

—iv 8[1+q~(0)]
yi(v) 7+(-kfv) ' ' (4.48)

which is in agreement with dynamical scaling.

2. Transverse case

Consider now the transverse case. It is con-
venient to make the rearrangements

y&(v) =I —(1/- fv)[q&(v) —q, (o)].

We note that y~(0) =1+(—,', K4)(20'-9u). In the case
n = 1 one can easily check that G~'(0, 0) =X~'(0) in
agreement mith our previous results. %'e see in
that case that the physical kinetic coefficient
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& '(q, ~) = —i~/F —Z (q ~)+Z (q 0)+X '(q),

(4.49)

Z.(q, ~) —Z, (q, o) = (i~/F)Q, (q, ~), (4.50)

6,'(q, cu) = —(ice/I')[I+ q, (q, (o)]+)i,'(q) (4.51)

= —i~/F, (q, ~) + X,'(q), (4.52)

where the physical wave-number- and frequency-
dependent kinetic coefficient is given by

r, (q, ~) = r[I q, (q, (u)]. (4. 53)

(4.55)

We easily find in the small-q limit, after some
surprising cancellations, that

Q, (0, ur) = -,' K,A [ln(A'/uM') 1] ——,' K,u ln-.',
(4.54)

and we see that Q,(0, &u) is independent of m.

can write I",(q, &u) in the scaling form

phenomena of interest, then for these phenomena
the impurities act just like quenched impurities
with a probability distribution determined by ther-
mal equilibrium. Such a distribution is affected
by the spin fluctuations in contrast to the fixed
Gaussian distribution discussed earlier. How

would the earlier results be modified'P Let us
now treat p of (1.3) and (1.4) as a new degree of
freedom. Define the correlation function and re-
sponse function in the absence of the qo' interac-
tion as

K,(k, ur) =2yA/(y'+(u'),

&.(&, ~) = ~y/(y —i~).
(5 1)

(5.2)

Under the RG, ~ now transforms according to

dl'=O'6{1+[- (n +)2u+(—,'n+4)&]K lnbj, (5.3)

while u still follows (2.4b). Let

In the limit y-0, Ko is, in the space-time repre-
sentation,

K,(~ x', f f') =(q (—x, f)q (x', f')),

Remembering that for small q

X,"(q) =q'[1+-.'K, ( —A)],

we can define the characteristic frequency

(4.56)
(5 4)

Then we obtain from (5.3) and (2.4b) that, for y
-0

~;(q) = F,(0, 0)X,'(q) (4.5Va)

=q'(xA) "4'll+-,'K, [u(in-,'+-,')+-', &]].;

u' =ub'(I -u(2 n+ 4)K, lnb}, (5.5)

A' = A b'$1- [(u+2)u+ (-,
' u 2)A]K, ln b]. (5.8)

and write, for small q and v = &o/&u,
'

G,(q, (o) = [X„(q)/(u,'(q)](- iv+ 1) ', (4.58)

which gives a simple Lorentzian for the shape
function.

V. ANNEALED IMPURITIES WITH LONG RELAXATION
TIMES

The random impurities considered in the above
discussion have been assumed to be fixed and fol-
low a Gaussian probability distribution. Now sup-
pose that we allow the impurities to move, al-
though extremely slowly. In other words, con-
sider annealed impurities with very long relaxa-
tion times. As soon as we allow the impurities to
move, the static critical behavior (observed over
an infinite length of time) is qualitatively the same
as that without impurities. The impurities are
just additional degrees of freedom which can be
integrated out.

If the impurity relaxation time is very long com-
pared to the time of observation of the dynamic

Equation (5.5) is familiar in statics, and involves
no A. It gives the fixed-point value u* = (8v') '2e/
(n+8) for statics. For n&4, we have the stable
fixed point with & =0. For n&4, there is no sta-
ble fixed point. (Note that we require 6~0.) This
conclusion holds also when y =DR', which is the
model C of HHM, as long as y-0. In other words,
there cannot be a fixed point with a*=0. In con-
clusion, we see that the quenched model and HHM
"C"are different. The dynamics for the quenched
model obey dynamical scaling [at least to O(e')]
while HHMC "C"does not. '4

APPENDIX: Z;(q, w) BELOW T

The self-energy Z(q, &u) to O(e) below T, is given
by the graphs in Fig. 5. Denoting the respective
contributions of Figs. 5(a)—5(f) by Z,.' ', where a
runs from 1 to 6, we have
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Z,")(q, (d) = —24uM'(1+ t), ,) «G', (q —q, (())X,(q), (A 1)

Z,"'(q, co) =A
( ), G,.(q, &u),

( ) (M) d q QX (qq ( 1)X(qq
(&w)' —(~/)' ~ )( (ql+)( '(() ~ «) -(ro/r )l, '(«) y, '(q ~ q)) '

Xg(q) +X)(q+q)
(2&)' i(d/r+X '(q)+X'(q+q) '

4
Z ("(q, (d) = &(uM')'(1+ 8t), ,) q)«X,.(q+q)X2~(q),

(A 2)

(A Sa)

(A4)

Z,")(q, (d) =-2u(1+2t);, ) (2 ), X,(q), (A5)

&I')(q, (d) =- —,'ud M'(1+2$, 1)v»(0).

The subscripts I. and & represent [as in Eq. (4.9)] the longitudinal and transverse components, respective-
ly, while

~;&(q) =
2, ,X;(q)X&(q+ q).
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