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In solids containing two nuclear-spin species I and S, the magnetic dipolar coupling causes exchange of order

between and within the different spin subsystems. The dynamics involved are investigated theoretically by

applying the memory-function approach. The experimentally observed line-broadening and line-narrowing

effects in AgF and adamantane (ClpH16) can be accounted for quantitatively by assuming a functional form for

the memory function.

INTRODUCTION

Heteronuclear-spin coupling and decoupling in
solids and its influence on the linewidth of the
nuclear-magnetic-resonance (NMR) signal has
been of considerable interest in the past. ' ' A

variety of NMR double-resonance experiments
have been developed recently using the nuclear
magnetic dipole-dipole interaction between abun-
dant I spins and rare or weak S spins in order to
detect the NMR spectrum of the S spins in
solids. ' " Magnetic dipolar interaction between
I and S spins as represented by the Hamiltonian

Kz~ causes an "inhomogeneous" broadening of the
S-spin resonance line and supplies the coupling
mechanism for polarization transfer from the I-
to the S-spin subsystem and vice versa. Coupling
and decoupling of both spin systems in the rotating
frame is therefore achieved by rf fields applied
close to the resonance frequency of the I and S
spins, respectively. A "modulation" of the inter-
action results, i.e. , K, ~ is rendered time depen-
dent. In other words the effective interaction
Hamiltonian can be manipulated at the experi-
menters will and the full dynamic range of the
interactions involved can be studied. " We con-
centrate in this paper on the case, where a strong
rf field H,I = &u„/y, is applied in a pulsed or con-
tinuous fashion close to the resonance frequency
of the I spins. If the rf field is much stronger than
the coupling of I and S spins (&u„»~~3C,z~~) and is
applied at exact resonance of the I spins, a flipping
of the I spins occurs, which is rapid compared
with

~ ~ 3CI~ ~
[. The time average of 3'~(t) vanishes

and consequently the excess broadening of the S
spin resonance line due to coupling to the I spins
ls zero.

To be more quantitative we ask how strong does
(Iol I have to be in order to average out the hetero-
nuclear coupling'P At first sight it would appear
that we require &u, I large compared with (M~2~)"',

where I, is the second moment of the S spiny due
to the I-S coupling. This would certainly be true,

if interactions among the I spins could be neglected
It is therefore no surprise, that this argument
holds to a certain degree in some alkali halides, 4

where yl/y~=1. However, in the case y, /y~»1
the flip-flop motion of the I spins, caused by the

exchange term in their secular dipolar interaction,
can appreciably modify the heteronuclear coupling
of the two spin systems as was first shown by

Abragam and Winter. "' This flip-flop motion of
the I spins competes with the rf field induced
flipping of the I spins. The coherent motion im-
posed by the rf field can be destroyed by the flip-
flop process between the I spins, reducing the
spin decoupling effect. This would tend to make
the decoupling requirement more severe, since
in order to narrow the S spin resonance line ap-
preciably, the rf field needs to be not only larger
than the I-S interactions, but also larger than the
"local field" of the I spine, i.e
For very large values of y, /y~ where the flip-
flop rate of the I spins becomes far more rapid
than the heteronuclear coupling, a self-decoupling
phenomenon can be observed. This leads to a
narrowed S-spin resonance line, even when no rf
field is applied to the I spins, as was observed
for the ' 'Ag NMR line in AgF. ' The presence of
strong dipolar interaction among the I spins there-
fore considerably modifies the dynamics of I-S
interaction. '

This is observed even more dramatically, when
a strong rf field is applied off resonance, i.e. ,
under a certain angle 8I in the I-spin rotating
frame. " Heteronuclear and homonuclear dipolar
interaction are scaled differently in this case,
thus the full dynamic range of the I-spin flip-flop
motion can be controlled experimentally. This
leads to interesting line-broadening and line-
narrowing phenomena in the case of '"Ag-"F and
in the case of "C-'H in adamantane, as was
shown recently. "'4 These effects are most pro-
nounced when 31 approaches the "magic angle"
54.7 where the I-spin flip-flop motion is quenched.
The observation of heteronuclear dipolar inter-
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action alone is feasible in this case. ' "
In Sec. II, after introducing the interaction

Hamiltonian in the tilted rotating frame, we first
discuss the simple case of heteronuclear I-S in-
teraction alone, i.e. , IIX I

is assumed to be
small compared with IIX« I. The free-induction
decay (FID) and the corresponding spectrum can
be calculated rigorously in this case, since only
"two-body" interactions are involved.

However, if IIX~II becomes large compared
with IIX«I I

"many body" interactions among the
I spins considerably modify the spin dynamics and
no rigorous solution for the line shape can be ob-
tained. In Sec. III we are therefore developing a
line-shape theory, which allows to account for
these many-body interactions by application of
the "memory-function approach. " A certain func-
tional form for the memory function is assumed
as the basic step in the approximation. Experi-
mental details and the discussion of the experi-
mental data are presented in Secs. IV and V.

II. SIMPLE THEORETICAL CONSIDERATIONS

Let us consider an abundant I-spin system with
magnetogyric ratio yr dipolar coupled to S spins
which are dilute and/or have a small gyromag-
netic ratio ys, so that dipolar interaction among
the S spins may be neglected compared with the
I-S and the I-I interactions. A &m pulse is applied
in the y direction of the S spin rotating frame in
order to induce a FID, whereas the I spins are
continuously irradiated with an rf field H»
= (d, l/yl with frequency (dl close to their Larmor
frequency &vol. The following transformation (TR)
leads now to the tilted doubly rotating frame:

Xrr contains the nonsecular terms, i.e. ,

[i., x,*,]~0; [I., x,', ]=o

X'q ——Q B;lIg, S,l, (7a)

(»~)
Xrs ~ +sj I») Sgj

s,j
B„=-2yl y~ fir, ,'P, (eose;,.) .

(Vb)

(7e)

(s„(t))= (s, I p(t))/(s, I p(0)),
where p(t) is the time-dependent spin-density
matrix in the TR frame and p(0) its value imme-
diately after the application of the rf pulse. We
use here the notation"

(8)

(A IB) =- Tr(AtB),

where A~ is the adjoint of A. We shall also use
the Liouville-operator definition" '"

XIA) = I[X,A]) (10)

for any vector IA) in Liouville space. Within the
"high-temperature approximation, "which is valid
for nuclear spins above 1 K at standard laboratory
fields (=6 T), Eq. (8) reduces to"

Here r, j is the distance between spins i and j and
~„.is the angle between the vector r, , and the
magnetic field IIo where P,(cos6) is the second
Legendre polynomial. Note, that X» does not com-
mute with X, and Xs respectively. The I and S
spin reservoirs are therefore coupled by X».

The normalized free-induction decay of the S
spins after the application of a —,'& pulse in the y
direction of their rotating frame is given by"

ei&rly
7

B=RR 3 -e ' 7"g B =e ' s'"I sy 7 S

Defining

(1)

(2)
c(t}= (s, Is(~) Is,)/(s„ls, ),

where

S(t) = exp(-ttX), (12)
2 = 2 2++I ~OI ~1; ~el = ++I+ ~&1 ', t~el = ~sl/~~It

(3)
the total Hamiltonian in the TR frame is given by

and X is given by Eq. (4}.
The corresponding line shape J(ol) is obtained

by Fourier transformation of Eq. (11):
X Xr + X$ + X7$ y

with

(4) z( ) fdto(t)tot t. =
0

(13)

Xl = -(t)ol Ig+ P2(cosel)Xs+Xll t

Xs 600 SS»

Xrs co s~sXrs sln~rXrs

where

Xll = Q A;, (3I,lI,l —T, T,),
j& j

A „= yl fir, l'P, (cos9,l)-.

(6a)

(6b)

(5c)

(6a)

(6b)

However, Eqs. (11) and (12) cannot be solved
exactly, because of the many-body character of
the dipolar interaction Xrr among the I spins.
We will therefore have to resort to approximation
schemes.

In order to demonstrate the essential difference
between the two cases of strong or negligible
dipolar coupling among the I spins, we shall treat
the easiest case first, i.e. , we neglect I-I spin
couplings. This case is met in practice to a
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and Eq. (11) as'

~ Tr[cos(B&ti„))
Is = PL (2I+ 1)

where G,~(t) refers only to I Scou-pling.
We obtain in this case for different values of I

(14}

I=-, : G, (t) = II cos(-, B,t), (15)

certain degree, when I-S coupling is much stronger
than the I-I coupling. If no radio-frequency field
is applied to the I spins, the interaction among
the I-S spins as represented by X,'~ governs the
S spin FID, which can be calculated rigorously
by using

S(t) = exp(-it Xp,),

Rz~~~= sinai, g B',,S~z [P,(cose, )I„,'
CueI 4,

—cose, sine, l„.] . (24)

Higher-order terms may be calculated in a similar
fashion. It is easily seen, that X'~" does not con-
tribute to a decay of the S-spin magnetization in
the case of spin S=-„since [S', , S„]=0. For the
analogous reason, all odd-order terms in the
Magnus expansion Eq. (12) do not contribute to
the decay for S=-,'. If we restrict ourselves to
spins S= & we may ignore Kl~~" for integer k

altogether, although cross terms with higher-
order contributions have to be considered in
principle. We now use the expression for X» to
discuss two limiting cases of interest in spin de-
coupling.

I = 1: G~~(t) = II—,'[1+ 2 cos(B,t)], . (16)
A. Off-resonance, with w,j &) jj Xz& jj

I = -': G, (t) = II '[cos-(-'B, t) + cos(~B,.t)] . (17)

It is straightforward to calculate the FID of the
S spin resonance for other I-spin quantum num-
bers according to Eq. (14).

Under the influence of the radio-frequency field,
the I-S interaction becomes modulated in a co-
herent fashion, leading to "coherent averaging"
of the Hamiltonian X»." The FID of the S spins
according to Eq. (11) is then governed by the
time evolution operator

p)=peppe(-' et'ee(e )), , '
0

where T is a time-ordering operator and

X~@(t)= cosel Xi~

(18)

S(Nt, ) = exp(-iNt, (3Ciz)),

where

(3Cgg) Xig + 3Cgg+ Qg + ~
(o) (l) {2)

(2o)

(21)

is given by a Magnus expansion. "
A lengthy but straightforward calculation leads

to

(22}

Xz~ = sine& B2,S2~(costi„——,sine I„.),
ftl i .q

—sinai (XI~P~cos~,it+ X,"~'simo, ,t) . (19)

Applying coherent averaging theory" to Eq. (18)
leads to a time evolution operator S(t, ) given at
integral increments of the cycle time t, = 2m/&u, z

by

5/6, = cos6I = n&u/(n&u'+ &u'„I)'", (25)

where 5o is the full undecoupled S linewidth. No
special line-shape theory has to be applied, since
the corresponding line shape can be calculated
rigorously be using Eq. (14) and replacing B& by
cosB,B,. In the case that ~„ is not large com-
pared with j ~Xi& ~ ~

higher-order correction terms
in the Magnus expansion may be taken into account

B. On-resonance, i.e, , A~ = 0,81 = 90'

Note that X'~0 vanishes in this case and the ef-
fective Hamiltonian may be written, according to
Eqs. (23) and (24) as the sum of the two leading
terms

(l)X = — ~B;,I„S, (26)

(z) ~ M 3 3» —
2 z ~ &c~I.'Se,-.lI

Since Xz' and other odd-order terms in the(l)

Magnus expansion do not contribute to the decay
of S spin magnetization in the case of S=-,', we
may calculate the FID by using just the leading
term X» . The Magnus expansion however does(2)

(2V)

Ignoring all higher-order terms is legitimate
in this case and leaves as the leading term in K»..

Xlg = COSTI Klg.(o) I

This is identical to the case of no rf irradiation
except for the costi term. Thus the same FID
and corresponding S-spin line shape as in the
case of no rf irradiation are expected but with the
time and frequency axes scaled by costi or its
inverse, respectively. Thus the linewidth 5 of the
S-spin line can be expressed by
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not converge rapidlyfor(d)u & II3Czsll. We therefore
have to distinguish two limiting cases, namely,

(a) ~„-II3C,.II ~«b) ~ - ll3C. II in case (a)
we may proceed according to Eqs. (11) and (12)
with X,~ as the leading interaction Hamiltonian.

Under this assumption Gz~(t) can be readily cal-
culated as described above, which in the case of
S=-,' results in

~ Tr[cos(Bftf„)]. (28)

with

B,* =B, a(Bg/2(t)tz) (29)

B,. = e,.B),
where

g,. = A. /(1+ A, ),

(30)

(31)

which gives the correct FID in the two limiting
cases of ~,.»1 and ~,.«1 and may be a reasonably
good approximation for &,. = 1. The line shape and
its width may be calculated from Eqs. (28) and

(30) numerically. However it may be more con-
venient in practical applications, to have a simple
formula for the linewidth. We therefore assume
a Gaussian FID with the second moment

i.e. , each lattice parameter B~ is scaled by the

factor &&
= ', (B&/2ur»)-'. Note that within this ap-

proximation (truncation of the Magnus expansion
at R") the FID of the S-spin resonance and cor-
respondingly the line shape can be calculated rig-
orously for a given spin system, by using just the
lattice parameters B,. Equation (28), on the other
hand, represents the FID in the case of no rf
irradiation when B,*. is replaced by B, We there-
fore propose, to use Eq. (28) over the full range
of ig values, by expre ssing B,*. as

decay, which contains a kernel K(t), sometimes
called the "memory function" since it represents
memory effects in the interaction. ""This
memory function is discussed for different ex-
perimental situations and approximated only in
the final step, by choosing a certain functional
form, fitted to the correct second moment. We
note that for certain experimental conditions, the
memory function can be calculated rigorously as
will be seen later. Using the projector"

Is,)(s„l
(s„ls„)

we are able to obtain an integrodifferential equa-
tion for the FID of the S spins as follows" ""

G(t) = — dt' K(t')G(t —t'), (35)

with the memory function

(s„l3c„s(t)x„ls,)
(s, l s„)

with

S(t) = exp]-it[3C, + (I -P)X, ]},

(38)

(37)

Z(z) =[z+K(z)] ', (38a)

~(z) = Z[G(t)] (38b)

where 3' and Xzz are given by Eqs. (5) and (7).
The free-induction decay is therefore fully de-
termined by the knowledge of K(t). If the memory
function K(t) is known, whether exactly or in
some degree of approximation, the NMR line
shape J'(&u) may be calculated by Laplace inversion,
as foQows

M, = ,'I(f+ 1)g e2B'—,
j

(32) K( ) =Z[K(t)], (38c)

~v- 0.3756M (33)

III. LINE-SHAPE THEORY

Whereas the line shape of the S-spin NMR signal
could be calculated rigorously under the condi-
tion of negligible I-I coupling as shown in Sec. II,
we shall have to apply approximation schemes,
when we calculate the line shape under the con-
dition of strong I-I coupling. Dramatic effects
will be seen on the S-spin resonance signal due
to I-I coupling. We shall derive now an exact
integrodifferential equation for the free-induction

resulting in the linewidth at half height of 5
= 1.18M,'~' or with nv = 5/v for the full linewidth at
half-height in hertz as

from which the NMR line shape according to Eq.
(13) may be calculated as"

~( )
K'((u)

[~ -K"((u)]'+K"((u) '

with

K'( ) = f dt K(t) sss t
0

K ( ) fdtK(t)sts t . =
0

(39a)

(39b)

(39c)

Note that an exponential FID and a Lorentzian
line shape results, if K(t) is a 5 function. For
illustrative purposes, we have plotted in Fig. 1 a
Gaussian and a Lorentzian FID G(t) together with
their memory functions K(t). The memory func-
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(a)
Winter' in the case of '"Ag in AgF. Walstedt-'
has given a theoretical account of the dynamics
involved in a slightly different manner than is
described here.

As shown above, we only have to find the cor-
responding memory function K(t), from which
the line shape J(&o) according to Eg. (39) may be
calculated. With co„=0, 3, = 0 we obtain from
Eg. (5),

IS +IS'

This may be inserted into Egs. (36) and (37) in
order to obtain the corresponding expression for
the memory function. Before we discuss the func-
tional form of K(t) in more detail, we proceed to
the next more-general case (B), from which ca.se
(A) may be obtained in the limit of 6I = 0.

B. Strong rf irradiation: ~tl&& II &gg II; II &yg II

The time evolution operator S(t) according to
Eg. (37) is now expressed by

S(t) = exp(-it[ ~„I,+-P,(cos&, )3CI',

0.2
+ 3CP~+ (1 —P)cos3I K~~]), (41)

—0.2
0

s(t) = s, (t)s, (t}, (42a)

where the corresponding Hamiltonians are defined
by Egs. (5)-(7). This propagator may be formally
split into a product form as follows-'.

FIG. 1. Free-induction decay C'(t ) and corresponding
memory function K(&) as calculated according to Eq. (40).
(a) Gaussian FID 6(&) =e ~~; (b) Lorentzian FID C,(t)
=[1+~x]q

with

S,(t) = exp(it&a„f, ) (42b)

tion K(t) in each case was determined numerically
by using the following iteration procedure":

t
s(i) re p (-, =su x(v)),

0
(42c)

t
K(t) = — dt'K(t')G'(t —t') G(t), -

0
(40)

where

X(t) = S, '(t)[P, (cosa, )3C,',

where G'(t} and G" (t) are the first and second
time derivative of the free-induction decay G(t).
Figure 1 shows that K(t) has a zero crossing in
both ca,ses, whereas G(t) is a monotonic function.
In general, K(t} will have more nodes than the
original function G(t). A further general aspect is
clearly demonstrated in Fig. 1, i.e. , the rapid
decay of K(t) on a shorter time scale than G(t)
Let us now discuss some special experimental
situations,

A. No rf field applied to the I spins (~&&= 0,61= 0)

This corresponds to the ordinary NMR line
shape of 8 spins, governed by the I-S dipolar in-
teraction with abundant I spins. This case has
been investigated experimentally by Abragam and

+ (1 -P)cosa, X,', +3CP, (t) + 3C(,(t), (43}

where the nonsecular parts oscillate with frequency
~,I and 2~„, respectively. Because of the con-
dition coel I 13C~I I

I'
I 13C,', l l

the first-order contri-
bution to the average Hamiltonian in a Magnus ex-
pansion of S,(t} becomes rather small and we may
approximate K(t} by the time averaged Hamilton-
ian, "which results in

+ Kzz+ (1 —P)cos6zKzz] S,(t) . (42d)

The interaction Hamiltonian 3C(t) which is modu-
lated by e„may be separated into a time-indepen-
dent (secular) and a time-dependent (nonsecular)
part

3C(t) = P, (co spaz)X,',
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S,(t) = S,(t) = exp]- tt[P, (cosset)3'',

+ (1 P—) cos 8, X,',]) . (44)

After some algebraic manipulation, the memory
function K(t) according to Eq. (36) may now be ex-
pressed by'

10

K(t) = cos'3,K,(t) + sin'S, K„(t) coerce,zt,
with

(,} (s„ix,',s,(t)x,', is, )
(s„ls„)

(45)

(46) -600 -400 -200 200 400 600 f (H zi

(s, ix,',*'s,(t)x,',*'is, )
(S.l S.)

(47)

FIG. 3. Powder line shape J(~) under the condition of
quenched ~-I interaction (dq =54.7') in the case of Ag
resonance in AgF.

Under the condition ~,&
~

I lx]z I l~ I lx» I I
discussed

here, the second term of K(t) in Eq. (45) does not

contribute appreciably to K(&u) and K"(ur) and will
be neglected here. It is, however, straightfor-
wardly included if this is felt to be appropriate,
e.g. , when co„ is not large enough and neglecting
this term is not justified.

We summarize now, by stating that under the
condition of strong rf irradiation close to the I-
spin Larmor frequency, the memory function may
be represented by

(s„ix,',s,(t)x,', is, ) (48)

1.0

0.5

0
-800 -400 800 f(Hz)

FIG. 2. Calculated line shape J(~) of an "isolated "
S spin surrounded by abundant J spins in NaC1-type cu-
bic lattice for three different orientations of the magne-
tic field Ho under the condition of quenched I-~ interac-
tions. The frequency axis is chosen for the case of

~Ag resonance in AgZ.

with S,(t) given by Eq. (44).
Note that Ko(t) is the corresponding memory

function of the 8-spin line shape when no rf irradi-
ation is applied to the I spins as discussed in
case (A), with S, = 0. Qn the other hand, K, (t)
vanishes identically, if 8, = 90'. The correspond-

ing line shape is a 5 function with zero halfwidth,
i.e. , the I spins are completely decoupled. A
further interesting limiting case is reached, when

Bz equals the magic angle, where P, (cos8z) = 0,
i.e. , cos'6, =-,'. In this case the FID can be cal-
culated rigorously as was shown in Sec. II:

G, (t) = (s, I
epx(-it/&3 x' ) is, )/(s„l s,), (49)

with G»(0}= 1, and which results in

~ Tr[cos(B,3 "'tl,q)]
Grs t LL (2I + 1)

In the case I = -, we obtain

(50)

G, (t) = g cos(-,'3 "'B,.t). (51)

The corresponding rigorous memory function
K»(t} can be calculated numerically by using Eq.
(40).

The pure I-S dipolar spectrum (i.e. , with no
I-I couplings) in a NaC1-type lattice has been cal-
culated for three different orientations of the mag-
netic field Ho as displayed in Fig. 2. For the
[100] orientation of the magnetic field, a discrete
pattern emerges due to the six nearest neighbors.
This structure is still partially retained in a
powder average (Fig. 3), where different spectra
for a random distribution of magnetic field orien-
tations are averaged. No simple functional form
can be assumed for the memory function K,~(t) of
the I-S dipolar FID Gzz(t} as is demonstrated in
Fig. 4 in the case of II, parallel to the [100]di-
rection. K,z(t) in Fig 4has be.en calculated nu-
merically by the procedure outlined above [see
Eq. (40)]. It should be noted, that the correspond-
ing spectrum J (&u} as shown in Fig. 2 can be ob-
tained by Fourier transformation of Gzz(t} or by
using Kzz(t) and applying Eqs. (38) and (39}.

However, the full memory function K (t) accord-
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evaluation of the corresponding lattice sums S, ,"

0.5

-05
0

I

10

2

Mrs
~~ I(I +1)dss

Mrsrs
s I (I +l)d

x [—,'(3ls+3I —1)ss+l(I +1)(S', —Ss)],

&'"' =&[3I(I+1)]'d'(r /ws)'(S -s )

with

d =yrys h/a',

where a is the lattice constant and

(58)

(58)

(60)

(61)

FIG. 4. Free-induction decay G, ~(t) of the S-spin
resonance (dashed curve) under pure I-S interaction as
calculated according to Eq. (15) for an NaCl-type lattice,
with the magnetic field in the [1001 direction. The
Fourier transform of C zz(t) is represented in Fig. 2.
The corresponding memory function &z&(t ) (solid line)
was calculated according to Eq. (40). The time axis is
drawn in units of [(1/4

3)(pity&4/a

)]

ing to Eq. (48) cannot be calculated exactly, and

we are setting out to employ some approximations
in the following. We note, that an expansion of

Ko(I) in powers of I can be performed rigorously,
which leads to"

K (I) =K(0)Q l N„, (53)

with

K(0) = cos'3I (s„l&,",, Is, )
X X

= cos2~s Ms~s (53)

and where

(S,~36IS[P, (COSTI)XII +(1 P)COS3I3CIS]"-3trs)s„)

bI, =M,"[P', (cos3I)y, +cos'ar(p, -1}].,
where

MI IIs MI $ Is
4 4

(M" )' "' (bf" )' '
2 2

with
A A A

Mrrrs (Sx~+rs +rr +zs~sx)
(s,ls, }

Mrsrs (Sxi .isis@)
(S„s,)

(55)

(56)

(57)

The second and fourth moments M, and M, are
readily calculated for a specific spin system by

(54)

It can be shown, that the moments N„vanish for
odd n. For the second moment we obtain

S, =gb; , S, =. gb;,

SS =Zblrb bl S.=Ebl bIl.

with

b; =Ps(coss;) r, ',

b, , = P(c os 6, ,)r„',
where &, is the distance between I and S spins and

&,, the distance between I, and I,. spins, defined
in units of the lattice constant a.

Higher-order even moments may be obtained by
a tedious, but straightforward calculation. ' How-

ever, this usually employs considerable computa-
tional effort and we prefer to approximate the
memory function Ko(t) by using just K(0) and the
second moment bI, according to Eq. (55)."

Before approximating the memory function
K,(I), let us take a look at the correlation time ~,
of the I —S coupling due to the spin flip-flop mo-
tion of the I spins. With"

1/7', = P(sc os')r' v/'„,

where

1 /7 2 M IIIS/3 Ml S

(63a)

(63b}

a =M~'7, ,

with

(64a)

the correlation time can be scaled at the experi-
menters will by varying the angle ~~ of the effective
field in the rotating frame of the I spins. Espe-
cially at the magic angle ~~ =54.7' this correlation
time becomes infinite and the flip-flop motion of
the I spins is quenched. In Fig. 5(a) we have plot-
ted ~, vs ~, in the case of AgF for three different
orientations of the magnetic field according to Eq.
(63). The divergence of &, at the magic angle is
clearly evident. The orientational dependence of
&, is not very pronounced.

Let us define the line-narrowing parameter
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Ko(t} =Krr(i}Kr~ (t},
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(t)
(S, l

r's exp[-i tP2(cos&r)&r'r]&~~lS, )
rr —

(3c' lx' )

and

Krz(t) =cos'sr

(72)

(73)

500

correlation function. This has also been confirmed
in another system. ""

Moreover, Demeo, Tegenfeldt, and Waugh' have
made a detailed analysis of this correlation func-
tion by applying the memory-function approach.
The same approach can be applied to K,(t), but
this amounts to quite a heavy computational effort. '
Excluding the region close to the magic angle it
may be a reasonable approximation therefore to
express K,(t) as a Lorentzian:

Ko(t) =K(0)(l +~N i') ' (69)

An analytic expression for J(&u) is obtained accord-
ing to Eq. (39) by using

K,'((u) =K(0}rr(2N, ) ~'e *, (70}

K,"((u) =K(0)(2N, ) ~'

x [exp(-x) E*(x)—exp(x) Ei(-x)], (71)

with x = &a(2/N, )' ', and where Ei(-x) and E*(x) are
the exponential integrals. " The linewidth & may
be determined directly from the lineshape J(&u).
As we have remarked already this may be a poor
approximation at the magic angle. This is espe-
cially annoying since we have demonstrated above
that the memory function can be calculated exactly
at the magic angle.

We are therefore led to express K (i} by the
product

0 lQ 20 30 40 50 60 70 80 90
54.7'

FIG. 6. Excess linewidth» of ~Ag resonance in

AgF for three different orientations of the magnetic field
versus the angle 8z of the effective field in the rotating
frame of the F spins as calculated by the mixed me-
mory-f'unction approach, where Kzz(t) is Lorentzian
(see text).

C. On-resonance decoupling, 61 = —,7r, w &I arbitrary

We start with Eqs. (36) and (3'1), where we use in
the rotating frame

This results in

with

(
(S„I KiqS(t)3rrq I S„)

(S, I S,) (76)

S(i}=exp(-ri[- ~„i„+X,', +(1 P)X;,]]. (76)

Expressing S(i) analogously to Eq. (42) as a pro-
duct of two time-evolution operators S,(t). S,(t)
leads to

(S,l&,'~ exp[-iicosdr(1 P) &'-~ J&'zlS„)
(S.IS,)

(74)

At the magic angle, K»(i) = 1 and K,(l) is equal to
the memory function Krz(l), which may be calcu-
lated numerically as outlined above [Eq. (40)] and

as is demonstrated in Figs. 1 and 4. For all other
values of 31 this is a good approximation if higher-
order correlations are neglected. Note that Krr(i)
=1, i.e. , is independent of time if all 8,. are equal.
Thus only the difference in the h,. values for two I
spins coupled to the S spin causes a destruction of

K„(i). This fact seems to favor a Lorentzian
shape for Krr(l). For comparison also a Gaussian
form for err(l) has been used. In both cases only
the second moment of K„(i) needs to be evaluated
This mixed memory-function approach [Eq. (72)]
using a Lorentzian or a Gaussian functional form
of Krr(i) and calculating Kr, (t) rigorously is ap-
plied to AgF and adamantane. Figure 6 displays
the linewidth nv= 6/rr of the '"Ag excess line
shape in AgF over the full range of 31 values for
three different orientations of the magnetic field
as calculated by making use of the mixed memory
function approach. The dramatical orientation de-
pendence of the linewidth should be noted and

special attention is drawn to the significant line
broadening, which is observed when 3, approaches
the magic angle. Let us now discuss the case of on-
resonance decoupling.
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K(t) =K,(t) cos~„t,
with

rr/2 ADRF I Decoupling

where

)
(S, I XqsS, (t)Xqs I S,)

(S.I S.)
S Polarization S Decay

t

S, (l) = T exp (- ( I dt' K(t')),
0

(79)

X(t) —e iulltl-„[X( + (1 P)X( ]eiu&»&l

Two limiting cases arise:
(a) (v» « IIX,'sll; II X,', ll, i.e. , S,(t) ~ed~ces to

S,(t) = exp(- tt[X,', +(1 —P)X,', ]}. (80)

K,(t) therefore equals K,(t) according to Eq. (47)
with 31=0. As suggested earlier a valid approxi-
mation procedure would be to assume a Lorent-
zian shape for K,(t) or to use the mixed memory-
function approach.

(b) ~„» II X,', ll; II X,', ll, i.e. , S,(t) reduces to

S,(t) = exp(st —,'X,",),

I
tOI

Mod.

I

Timer—

[ t&& 1 Mod.OS] S

Lp.

—g(—

with (81)

X =-'I""iM"
2x 4 4x

where
A A

Iifllls ( I Is 11 Is I

4* (S IS)
which is readily calculated to be"

M4~»s = [s I(I+ 1)]'d'(yz/ys)'(5S, + 4Ss),

(82)

(83)

(84)

where the lattice sums S4 and S, are defined by Eq.
(62).

(c) cu, i—- Iles II; IIX&I II: In this case, we may
approximate S,(t) by

S,(t) = exp(- it X,',), (85)

with K,(t) assumed to be Gaussian or Lorentzian.
All three cases do give very similar results and

X~~ = Q A, ,(31„;I„,—1; 1,)
s&d

and where nonsecular terms have been neglected.
The corresponding memory function is now dif-
ferent in structure compared with K,(t) or with

K,(t) for 6, =-,' s [Eq. (46)). However there is a
basic difference in structure, since Kii(t) is con-
stant if all B, are equal, where. as K,(t) with S,(t)
as given by Eq. (81) under the same condition
would just be K(0) times the free-induction decay
of the I spins with a time axis scaled by a factor of
2. In closed-packed cubic solids the FID is close
to a Gaussian. As a first-order approximation we
would therefore assume K,(t) to be Gaussian with
the second moment

FIG. 7. Experimental setup and schematic representation
of the pulse timing as used in a one-shot cross polarization
experiment, followed by continuous decoupling (Refs. 6 and
12). Mod. , Phasemodulator; P. A. , power amplifier; H. P.,
high pass filter; L.P., low pass filter; P.H. , probe
head; MX, mixer; f0I, f z, and f 0&. frequency genera-
tors).

cover the whole range of &u» values. Case (c),
however, seems to be the most reasonable approx-
imation, when compared with experimental data.
Application of this theory to spin-decoupling ex-
periments is discussed in Sec. V.

IV. EXPERIMENTAL

Experiments were performed on AgF and ada-
mantane (C»H„) powder. The samples were used
as obtained from Merck GmbH, Darmstadt. A
Bruker magnet system (2.114 T) and a Bruker
pulse spectrometer (SXP 4-100) in combination
with a home-built double-resonance setup were
used to generate the necessary rf fields. The
NMR signals were observed at the following fre-
quencies: v('H) = 90 MHz, v("F) = 84.6 MHz, v("C)
=22.6 MHz, v('"Ag) =4.2 MHz.

Free-induction-decay signals were stored in a
Datalab DL 905 transient recorder, averaged and
Fourier transformed by a Varian 620 L on-line
computer. The basic scheme for observing the
weak signals of "C and '"Ag under decoupling
conditions was as follows

(a) The abundant spina I ('H or "F)were
"cooled" by adiabatic demagnetization in the ro-
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TABLE I. Parameters used in the calculations for the two different spin systems sAg- F in AgF and '3C- H in

adamantane (C~()H~(;). The motion of the adamantane molecules at room temperature has been taken into account by
a simple model.

Sample AgF

("F) 25 167

(&OsAg) 1244

2.46

sec 'G '

sec G

A

Ada mantane

( H) 26 748

(QC) 6 727

4.725

C)OH)6

sec G

sec 'G

A

Direction
of Ho [100] [110]

Powder
average [10Q] [110]

Powder
average

s(
S2
S3
s4

3.070
2.250
0.058
0.820

0.881
0.114
0.030
0.337

0.152
0.003
0.019
0.063

1.319
0.491

-0.012
0.444

6.940
3.808
9.580

43.876

10.388
26.928

7.457
80.464

11.540
9.504

15.219
123.054

9.698
13.080
7.528

81.912

(rad/sec)' 1.51x 1p' 4.34x 10' 7.46 x 10' 6.5p x 1p' 2.25x 10' 3.36x 1p' 3.74 x 10 3.14 x 1pv

Pg
P,2

Yc0 (@sec

2.52
16.62
89

2.71
81.12
75

2.75
395.89
82

2.64
90.89
74

2.84
5.63
126

2.50
5.34
106

2.86
6.40
91

2.73
6.21
102

tating frame (ADRF).
(h) Then a strong rf field H, ~

= ~,z/yz was applied
at the resonance frequency of the S spins (whether
"C or "'Ag).
The operating mode was "unmatched" Hartman-
Hahn condition (&u»» &u~, ) to achieve maximum
polarization in one shot. "4

(c) After termination of H, ~ a, rf field H, of the
order of 20 G was applied to the I spins and the
free-induction decay of the S spins was observed.

Figure 7 gives a schematical representation of
the pulse timing and the experimental setup. A
review of the different techniques involved may be
found in Ref. 12. It should be noted, that the silver
resonance signal is very weak because of the small
gyromagnetic ratio and many accumulations have
been taken in order to observe the signal.

V. EXPERIMENTS AND DISCUSSION

Experimental spectra of '"Ag in AgF and of "C
in adamantane were taken as described in Sec. IV.
The excess line shape j(&u) due to the I-S interac-
tion was obtained by deconvolution of the observed
spectra with the totally decoupled spectrum. The
linewidth at half-height hv= 5/p in hertz, where
6 is the halfwidth in angular frequency units, was
directly determined from the excess line shape.
The parameters used for the theoretical calcula-
tions are summarized in Table I. Figure 8 gives
a schematic representation of the (010) plane in
the fcc unit cell together with the parameters
used for the calculation of the lattice sums. In

the case of adamantane globular-shaped molecules
have been assumed with radius R = 3.34 A, which
a,re reorienting rapidly at room temperature. The
average over this motion is taken into account by
using'4'25

with

~ =air„,
This implies a simple model for the motion by

assuming the interaction between a point nucleus
and nuclei distributed on the surface of a sphere.
Although this may be a good enough approximation
for the intermolecular "C-'H interaction, it cer-
tainly is not valid for the internuclear proton inter-
action. However the theoretical results are not
expected to change appreciably if a different model
for the proton-proton interaction is assumed.
Since the exact motion of the molecules is not
known anyway, we leave this to a more detailed
analysis.

FIG. 8. (010) plane of the
fcc unit cell with the lattice
constant a. The necessary
parameters for obtaining
lattice sums are indicated.
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FIG. 9. Measured (points) and calculated pines) '
Ag

resonance excess linewidth M in an AgF powder sample
versus 81 . A real powder average has been performed
in the calculation applying the mixed memory function
approach as discussed in the text. L stands for Lorent-
zian and G for Gaussian memory function, respectively.

for rf inhomogeneity. An application of these
techniques is currently under investigation. The
calculated linewidth using the mixed memory func-
tion approach agrees with the rigorous linewidth
at the magic angle as expected and shows quite a
good agreement with the experimental data in the
other regions of .9,.

The Lorentzian assumption of K2I(t) seems to
represent the data more closely than the Gaussian
assumption. Since the linewidth is strongly orien-
tation dependent, a real powder average for the
calculated line shape has been performed, i.e. , for
each orientation of the magnetic field H, the line
shape was calculated using the mixed memory-
function approach, from which the powder line
shape was calculated by averaging over all orien-
tations. The theoretical linewidth 4v as plotted in

Fig. 9 was then read of the calculated average line
shape directly.

Figure 10 represents similar data as obtained
for the "C linewidth in adamantane (C»H«) powder
at room temperature. The rapid rotation of the
globular-shaped molecules which form a fcc lattice

The calculations in the following have been per-
formed using the parameters given in Table J. The
orientation dependence of the lattice parameters
has been computed for different cubic lattices,
but will be presented elsewhere. Notice, that no
adjustable parameter is used throughout the cal-
culations and only the approximations as described
in Sec. III are employed.

Figure 9 represents the experimental and theo-
retical linewidth hv of the '"Ag signal in a AgF
powder sample for different angles -9, of the rf
field in the I-spin rotating frame. The "natural",
i.e. , undecoupled linewidth is observed for -3, = 0,
whereas for 3~= —,.' p the linewidth vanishes, i.e. ,

complete decoupling. A line broadening is seen to
occur at the magic angle 3,= 54.7". As discussed
above, the linewidth at the magic angle can be calcu-
lated rigorously, leading to a value of 6v = 453 Hz.
The reason that the experimental data do not reach
this value is believed to be due to rf inhomogeneity of
the decoupling field. A crossed coil arrangement
was used in the probehead which produced rf fields
with poor homogeneity. This results in a large
distribution of —,'3, values, leading to a large con-
tribution of the narrower lines from regions 3,
c 54.7' This problem may be circumvented by
applying appropriate multiple pulse cycles" "'"
to the I spins to compensate to a certain extend
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FIG. 10. Measured (points) and calculated (lines) C
resonance excess linewidth» in adamantane I, C&OHfe}
powder vs the angle 8~ of the effective field in the
rotating frame. A real powder average has been per-
formed in the calculation applying the mixed memory-
function approach as discussed in the text. The dashed
line shows the expected linewidth variation if no I spin
flip-flop motion would be present. (L: Lorentzian, G:
Gaussian memory function, see text. )
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FIG. 11. Measured {points) and calculated {lines) C
resonance excess linewidth 4& in adamantane {C&OH&6)

powder versus the on-resonance decoupling field &&

~fJ /pf appl ied to the proton resonance. The theoreti-
cal line is obtained as explained in the text. (H~l .- local
field of the protons. )

has been taken into account. " The line broadening
near the magic angle does not appear to be too
dramatic since the ratio y, /ys is only about 4 in-
stead of 20 as in the case of AgF Hy field inhomo-
geneity at the I-spin resonance does not affect the
linewidth peaking at the magic angle therefore as
drastically as in the case of AgF. In contrast to
Ref. 14, a real powder average has been performed
as discussed above in the calculation of the line-
width b, v as represented in Fig. 10.

We ended the discussion about the efficiency of on-
resonance decoupling in the case of dipolar coupling
among many nuclear spins in the theoretical Sec. III
case (C). The memory-function approach allows us
to solve the problem in terms of calculating the S-
spin resonance line shape and therefore the line-
width, by assuming a functional form for the

memory function. VVe have performed this calcu-
lation for adamantane powder by assuming a Gaus-
sian memory function and using the time evolution
operator S,(f) according to Eq. (85). The calcula-
ted linewidth b, v is compared with the experimen-
tal data in Fig. 11. The agreement is quite good,
although perhaps fortuitous. However, the quali-
tative behavior is not expected to change appre-
ciably, when changing the functional form of the
memory function as was demonstrated in the case
of off-resonance decoupling. Note that the excess
linewidth 4v of the S-spin resonance is reduced
to about its half value, when the rf field applied
to the I spins equals the "local field" H~„which
is defined by

Tr(3C,")= y21 H2~, Tr(f, ) .

The "local field" of the I spins is therefore the
critical value, which has to be overcome by the
external rf field in order to produce appreciable
decoupling between I and S spins. This however
is true only if there is a coupling among many I
spins. In I-spin pairs or triples, for example,
multiple quantum transitions make the decoupling
much more effective, as has been shown else-
where. "
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