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A model of a single rare-earth atom in a transition metal is derived, and terms describing screening of charge

fluctuations in the resonant 1 = 3 scattering channels by the I = 2 channels are included. Using the Tomonaga

approximation, in which charge fluctuations are represented by bosons, the screening channels are replaced by

a boson field, and the model takes on a particularly simple form, the Anderson model of a magnetic impurity,

now coupled to the boson field. The mean-field theory of this model suggests that, unlike in the original

Anderson model, the impurity can be in a state of slowly fluctuating valence, which we identify with the

mixed-valence phenomenon in certain rare-earth materials. These results suggest that the mixed-valence effect

may be purely electronic in origin.

I. INTRODUCTION

Rare-earth atoms in certain solids are found to
be in an unusual electronic state called "mixed va-
lence"' where the valence of the atom is slowly
flue tuating between two dif fe rent charge s tates, on
a time scale such that x-ray photospectroscopy
measurements (7'= 10 " sec) indicate a random
"alloy" of the two configurations, and resolve the
characteristic spectrum of each, while Mossbauer
measurements (r = 10 "sec) show all the rare-
earth atoms in the sample to be identical, with
properties intermediate between those of the two

pure conf igurations.
The mixed-valence state is understood to occur

when the Fermi level is pinned to the narrow high-

ly correlated band derived from the atomic transi-
tion f"=f" '+e . The phenomenon has attracted
much recent experimental and theoretical interest,
but its nature has not yet fully been resolved; the
review cited as Ref. 1 contains an extensive sur-
vey of the literature.

Two aspects of the problem may be separated:
one is that of the nature of the metal-insulator
transition from magnetic semiconductor to mixed-
valence metal exhibited by chalcogenides such as
SmS; the other is the understanding of the elec-
tronic state of the mixed-valence metal itself, best
exemplified by alloys such as CeAl„' YbAl„' etc.
Here we will be concerned with this latter question:
the work presented here is part of an attempt to
identify simple model systems that behave in mays
that reproduce the experimental behavior of mixed-
valence materials.

The model we present is an impurity model; we
hope to learn about the properties of a rare-earth
solid by examining the "dilute limit" of a single
rare-earth impurity in a d-band material. If the f
level is near the Fermi level, the behavior of the
system will be dominated by resonant scattering

in the l =3 channels. The important new feature of
this model, which will be shown to give rise to
mixed-valence effects, is the inclusion of screen-
ing effects due to the f c 3 scattering channels (in
particular l =2, as the conduction band of the me-
tal is a d band); this stabilizes l =3 charge fluctua-
tions, greatly enhancing their lifetimes.

Tc justify studying a model with a single rare-
earth "impurity, " and thus ignoring interactions
between rare-earth atoms on different sites, we
cite the experimentally observed behavior of
CeAl, .'-As the material is cooled, the resistivity
rises spectacularly to a maximum of 140 0 cm at
37 K. A crude calculation of the maximum possible
resistance of this material due to incoherent scat-
tering at each site by resonance with the f orbital
gives 188 0 cm. Only at lower temperatures, be-
low 10 K, does significant coherence between va-
lence fluctuations on different sites develop, and
the resistivity drops, eventually vanishing as T'
when the material enters a Fermi-liquid regime.
Unlike normal rare-earth materials, there is no
apparent transition to magnetism at any tempera-
ture.

The interpretation we put on these observations
is that two competing processes are at work, each
with its own characteristic temperature: one in-
volves valence fluctuations of the rare-earth atom,
and may be studied in an impurity model; the
other involves interactions between rare-earth
atoms on different sites. In most materials, this
has the higher characteristic temperature, which,
as this process usually leads to magnetism, is the
Neel temperature. The onset of magnetism sta-
bilizes the configurations of the rare-earth atoms
against spin fluctuations.

In mixed-valence materials, the fluctuations
processes dominate, and, as the material is
cooled, the fluctuation regime intervenes before
any transition to a magnetic state is possible; in
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this regime, the material can be regarded as a
superposition of essentially independent impuri-
ties. One goal of a study of a single-impurity
model should be the determination of the charac-
teristic fluctuation temperature in terms of the
model parameters. This involves difficulties
similar to those encountered in the Kondo prob-
lem, and is postponed for later study.

The organization of this paper is as follows: In

Sec. II, we set up a model of a rare-earth impuri-
ty in a d-band metal; in Sec. III, we discuss the

symmetry reduction of models of an impurity in a
periodic system, and in Sec. IV, apply this to our
model. In Sec. V, we discuss the Tomonaga' ap-
proximation (in which charge fluctuations are rep-
resented by bosons) as applied to models of an im-
purity in a Fermi gas. In Sec. VI, we use this to
simplify our model, and obtain it in its final form,
which is just the Anderson' model of a magnetic
impurity, generalized to include a linear coupling
to a boson field. We have previously presented' a,

systematic study of this model in mean-field ap-
proximation, and we summarize the results in Sec.
VII. In Sec. VIII, the discussion and summary, we

indicate the relevance to the mixed-valence prob-
lem and note that a renormalization-group treat-
ment of the model, in the spirit of the treatment
of the Kondo' problem, is required.

II. MODEL OF A RARE-EARTH IMPURITY

IN A d-BAND METAL

To set up a model complex enough to fully de-
scribe a rare-earth atom in a nonmagnetic transi-
tion metal would be a laborious task; the large
number of intra. -atomic exchange terms necessary
to reproduce a realistic configurational spectrum
for the rare-earth atom would only confuse the
simple picture we are trying to convey. Our basic
philosophy is to find the simplest model that in-
cludes enough features to reproduce mixed-valence
behavior.

First, we discard the richness of the rare-earth
atomic structure, and use a nondegenerate Ander-
son-model-type "extra orbital" for the f orbita1. of
the impurity atom. Next, we retain only the d band
of the host metal, regarding it as a tight-binding
band, whose Wannier functions are the atomic d
orbitals. We retain a degenerate band; this will
turn out to be an important feature, as will be the
different symmetries of the impurity-site Wannier
functions (d orbitals) and the extra. impurity orbital
(a nondegenerate s-like orbital masquerading as an

f orbital).
To the Hubbard-type correlation term between

electrons in the impurity orbital which is the key
feature of the Anderson model, we add a Falicov-

Kimball-type' term describing correlation between
the electrons in the impurity orbital and those in
the impurity-site Wannier orbitals. This will give
the screening effect mentioned in Sec. I: the cou-
pling constant will not be left as a free parameter,
but in Sec. IV, we will show how to fix it using the
neutrality condition of the Friedel sum rule to en-
sure that the impurity charge is at all times (at
least approximately) screened.

In the usual second-quantized fermion creation/
destruction-operator formalism, the Hamiltonian
describing the d band is

t
~ka~ ~kng ~knot

kno
(2.1)

c-„„= g e'"'"~A (k)c,. „ (2.2)

where k is summed over the reduced Brillouin
zone; n =1, . . . , d, is a band index, and the fermi-
on operators c~, (n~ = 1, . . . , d, ) create particles
in the dp Wannier orbitals on site i.

The impurity atom is described by

H ~=E En„+Un tn ~+g Eno~naa', (2 2)

H '"= V-„~t:ko.a, +H. e. . (2.4)

It would be incorrect to make the usual sim-
plification V-„, = const; an electron can only hop
from a, to a combination of the cg, having the
san~e point synimetxy as the impurity orbital.
This must be reflected in the k dependence of V~,
and will be of vital significance to the development
of the model; we return to this point in Sec. IV.

Without H '", the Hamiltonian H'+H ' ' is in di-
agonal form, and the charge state of the impurity,

where n„=a,a„no co &cp &, a, creates a parti-
cle in the impurity orbital, and c, , is the impuri-
ty-site Wannier-orbital creation operator. The
correlation terms U, g describe the extra correla-
tion due to the highly localized nature of the im-
purity f orbitals, over and above the correlation
in the orbitals of the d band, which has notionally
been removed from the problem by a Landau Fer-
mi- liquid renormalization.

Finally we must include the small hybridization
term between the impurity orbital and the band
wave functions, which allows particles to hop in
or out of the f level. This will be a very small
term, since because of the different symmetries
of the d and f orbitals, the f (E.lectron can only hop
into the Wannier orbital on a neighboring site, not
the impurity site itself, and the overlap with such
sites is very small indeed. The hybridization term
1s
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n, = 0, 1, or 2, is a good quantum number. If the
multiplicity of the bands, d„ is large, the value of

g necessary to satisfy the Friedel rule is small,
and the individual phase shifts much less than w,

so we can treat the scattering in linear (Born) ap-
proximation. We can then find a single value of g
that ensures overall charge neutrality of the im-
purity, whatever charge state n, it is in. Before
we can find this value, we must first use symme-
try to simplify the Hamiltonian.

III. POINT SYMMETRY AND THE IMPURITY PROBLEM

IN A PERIODIC SYSTEM

In this section, we briefly review the generaliza-
tion of partial wave analysis to periodic systems
with an impurity center. ' Consider a Hamiltonian
of the form

H =H' 2+v(k, k')c-„c-„,,
kk'

H'= Z &(k)c;c-„,

(3.1)

(3.2)

(3.3)

which is invariant under the symmetry operations
of point group 6', of order P. H' is also invariant
under the operations of space group 8, of which (P

is a subgroup. For completeness, we can under-
stand k here in the extended Brillouin zone repre-
sentation, and it is summed over all k space. If P
is an element of d', e(Pk} = e(k), and except at spe-
cial symmetry points of measure zero in k space,
each eigenstate k of H' is a member of a P de-
generate set k*, the star of k. (If 8 contains other
point-symmetry operations not in O', H' has other
degeneracies which in this context are "acciden-
ta.l".) We can analyze k* into irreducible repre-
sentations of P, labeled by I', with dimensionality
dr. To satisfy the group representation theory
theorem.

(3.8)

In the context of a basis that reflects point group
6', this "accidental" proportionality between the
densities of states of different representations is
all that is visible of the underlying invariance of
H' under S.

Since H commutes with the elements of 6', sym-
metry quantum numbers I'p, are conserved during
scattering. Condensing k*, A. into a single index i,
H takes the form

(3.6)

~,r
Hrtt ~ E ri H rp i + ~ vi j c rg i c r~ j (3.7)

d'or„((u) = ——5r((u), 5r(- ~) =0.1 d
7T dt's

(3.8)

As the wave functions do not have the simple ex-
ponential form of spherical waves, ~r has no lite-
ral meaning as a "phase shift. "

IV. SYMMETRY REDUCTION OF THE MODEL

AND THE CHARGE NEUTRALITY CONDITION

Suppose that a', belongs to the (singlet) irreduc-
ible representation I' of O'. Applying the results
of the previous section, the Hamiltonian becomes

H= Q er;nr, ;,+E,pn„+Un, tn, (

r+ g ~ tlo ~ VijCrp, igCrtt jty

As only accidental degeneracy remains in Hr„, the
scattering problem in each symmetry subspace has
the character of a one-dimensional problem. As in
the familiar spherically symmetric case, we can
formally define "phase shifts" 5r(~), through the
change in density of states:

+ v;cro;, cl +H.c. . (4.1)

H = Hr, Hr = e k nr„„*~, (3.4)

where k* is summed over the primitive fraction
I/P of k space, and n is the number operator c c.
The densities of states o'r, (&u) satisfy

each I' must appear dr times in k*. Ea,ch set tc-„j
belonging to k* can be transformed into the new
basis set (c~r, „-*„},where I' labels the representa-
tion and p, = 1, . . . , dr its components; the index X

= 1,. . . , d „is necessary as the representation ap-
pears with the frequency of its dimensionality.

In this new basis, H' takes the form

Using (2.2), (2.3) we find that v, , &0, and

Q v;(5((d —f r;) = o((d), (4.2)

5r((d} = —7t gn, g v, , 5((d —e r,.) (4.3)

where o(&u) is the conduction-band density of states
projected onto the impurity site. In the limit V,. =0
(all i), n, =0, 1 or 2 is a good quantum number. In
Born approximation, for a given n„ the phase
shifts in the different scattering channels are given
by
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In the charged-electron gas, the impurity must
be exactly screened whatever the value of n„ in
our model with uncharged fermions and a short-
range potential that mimics screening, we will
pick g to satisfy the Friedel sum rule as accurate-
ly as possible. We must satisfy

1
n, +— 5r(er) =0.

I ti, ty

(4.4}

H =H'+H", (4.5}

H = Pe„o,.nro, ,+E, gn„+Un, ~n, &

+ g (V, c„a,O+ H.c.), (4.6)

H = «rinr~ity+ g n«
I'WI, g a i ty

and

rX~V ij C I g ia C I'tt je
Ij

(4.'I)

vsa6(~ —e r c) = a((o)

rsr~, ~i~ & &r
(4.8)

We recognize (4.6) on its own as just the non-
degenerate Anderson model; the new feature is H~,
acting in an entirely different subspace to screen
charge fluctuations in the impurity orbital. A na-
ive extension of the Anderson model might omit
this feature entirely; in its usual form the Ander-
son model has been implicitly symmetry-reduced,
and the necessity for the reintroduction of the dis-

From (4.3}, we see that this is achieved in Born
approximation if 2ga(er) =1. When the density of
states at the Fermi level is large, as in a d band,

g will be small and the Born approximation should
be valid. For small V,. this screening potential
will act to effectively neutralize the slow fluctua-
tions of n, .

The set of impurity-site Wannier functions may
be analyzed into irreducible representations of ~'.
In the event that l' is not contained in this set,
another important simplification is possible, as
then v,"j will be zero when I = I' and there will be
no interference between the resonant scattering via
the f level and scattering in the other channels by
the screening potentialg. This will be the case if,
for instance, (P contains an inversion center, as
then irreducible representations are labeled by
parity, and l =2 ((c~ )) and f = 3 (I') wave func-
tions have opposite parity. If I' is contained in the
set of Wannier functions, the properties of the
model will not be qualitatively changed, but an un-
necessary complication will be introduced. From
here on, we will assume that this is not the case,
and the model takes the form:

V. THE TOMONAGA-BOSON APPROXIMATION APPLIED
TO IMPURITY MODELS

In the Tomonaga4 approximation, the collective
excitation modes of a Fermi gas are represented
by a set of boson modes. The usual formulation4
deals with an interacting Fermi gas in one dimen-
sion, and is mainly used for the investigation of
possible superconducting states of such a system.
Tomonaga formulations of impurity problems"
have previously been achieved by using this "one-
dimensional" formalism, which relies on a spe-
cial type of band structure (a "flat" density of
states with sharp cutoffs, reflecting a linearized
dispersion relation about the Fermi level), and
uses momentum variables. We now reformulate
the method for impurity systems with an arbitrary
density of states, using energy variables.

Consider the general scattering problem

H'= «c'c;, H =a'+ vijc'cj. (5.1)

This is not, in general, soluble in closed form un-
less the scattering potential is separable, v;j
= gv ~ Vj.

We define the charge fluctuation operator p(E)

p(E) = Q v, , 5(e,. e,. +E)(c', c, —(c', c, )„0), (5.2)

carded channels is not explicitly apparent. A mod-
el with a screening term added only in the I' sub-
space has entirely different characteristics, and
will not show the mixed-valence properties we de-
scribe later.

As it stands, H~ is adequate to describe the
screening response, provided g is small enough so
that a linear approximation can be made. In that
case, it is possible to transform H" into a sim-
pler, if less physically transparent, form which is
just as good for representing the effects of screen-
ing in a truly charged electron gas. This is the
Tomonaga approximation, in which fermion par-
ticle-hole pairs in the subspace described by H
are replaced by bosons. If properly chosen, the
boson field used to describe screening will still in-
clude all the infrared problems associated with the
low-frequency response of systems with a free
Fermi surface. (This is discussed in Sec. V.) The
part that lattice relaxation plays in screening in
real materials can also be simply included in the
boson picture.

On these grounds, instead of discussing the mod-
el (4.5)-(4.7) directly, we will make the Tomonaga
transformation. This choice is partly a matter of
taste; no precision is lost by it, as (4.7) is itself
only an approximation to screening, and we feel
that some useful simplification results.
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dE p(E) = P v, , (c'; c, —(c'; c, )„o),
» CO ij

(5.3)

where ( )~ denotes the expectation value in the

system described by H'. This operator has the
properties p (E) = p(- E), and

continuous to a discrete energy variable,

P /
n,. [' 6(E ~,.) =

/

n (E) [
', (5.14)

H=&H)„o+Q ~;P';P, +Q (n;Q;+H. c.), (5.13)

[ p(E} ff']=Ep(E). (5.4} (5.15)

The commutation relations seem complicated:

[ p(E},p(E')] = g v;a v~,

x [6(e, —e, +E)6(e, —e, +E')

—6(e; —a„y E')6(e ~
—e, i E)]c;c,

(5.5)

Nevertheless, they are essentially bosonlike, as
we see by taking the expectation value of the com-
mutator in H '

( [ P(E},P(E'}]}po = 6(E +E ') g ~
v; J ~

'5 (e; —e, + E)

x (&n;)~ —&n, }~).
(5.6)

0(E) = p(E)ln(E)

&[e(E),e'(E')] }..= 6(E -E ),

([0(E),0(E')]}~=o
By comparison with (5.6),

(5.7)

(5.8)

ln(E} I'= Z ~v;;~'6(e; —e, +E)(&n;)Ho-&n, )y).
ij

(5.9)

As E-O, for low temperatures,

In(E) I' ( )
')- const = I +0(T'), -(5.10)

where 6~(&u) is the fermion phase shift of (5.1), in

Born approximation [Eq. (4.3)]. The spirit of the
Tomonaga approximation is to adopt the simpler
"mean" commutation relations (5.8), and treat the

Q as exact boson operators. From (5.4) we see
that H' must take the form (5.11), and the Hamil-
tonian becomes

By normalizing p, we can define the bosonlike op-
erator Q(E), E)0

To test the Tomonaga approximation, we note

that the separable-potential problem is exactly
soluble in both formulations: We find that the To-
monaga solution is an expansion of the true solu-
tion to lowest order, that is, Born approximation.
This is best seen by examining the diagrammatic
linked-cluster expansion for the free energy (Fig.
1). The Tomonaga approximation evidently exactly
reproduces the first- and second-order diagrams,
but entirely omits all higher terms. It is thus a
small coupling-constant approximation, and will
be valid provided perturbation theory is not di-
vergent.

As it faithfully reproduces the second-order dia-
grams, the Tomonaga approximation reproduces
the "orthogonality" or infrared catastrophe" as-
sociated with these (a.nd higher order) terms. The
Anderson "orthogonality theorem" asserts that
there is no overlap between the ground state of an
infinite system of fermions with a free Fermi sur-
face, and the new ground state in the presence of
any finite scattering potential. This is because,
however weak the potential is, it will, if we wait
long enough, excite an infinite number of essential-
ly zero-energy particle-hole pairs. In the Tomo-
naga representation, this appears as a divergence
in the occuPation of the lowest-energy boson
modes, in such a way that the total energy as-
sociated with these modes remains finite arri
vanishes as the strength of the scattering po tential
is reduced to zero.

The ground state of (5.13} is related to that of
H' by

in i'
I».= ~(2Z '* ~ —E—'0';

i i i

(5.16)

+ i 1 + ~ ] + i '+ ~ ~ ".
H =E + dE EQ (E)Q(E),

0

H=H + vi n; „()

+ dE[n (E)y (E) + H. C.].
0

(5.12}

In less cumbersome notation, changing from a
FIG. 1. Linked cluster expansion for (a) the scattering

problem (5.1); (b) its Tomonaga representation.
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The overlap is given by H = g e, n, , + Ep n „+Un, in„+p (u, p ', p,.

= exp —— dE (5.17)

+gQn„Q(a, Q, +H.c.)+Q (V,. c'„«,+H.c.),
Iy $ f

(6.1)

Because Io.(E) I' is linear as E-O, (5.10), the in-
tegral has a logarithmic infrared divergence; if
the spectrum is discrete on a scale (bandwidth)/N,
the overlap vanishes as N ', where

I
o&(E) I'-2&E

a.s E-0. The vacuum amplitude (OIe'" ' e '"'IO)«&,
which is the amplitude for the system still to be in
the ground state of H' time t after the scattering
potential has been switched on, also shows this be-
havior

(0 Ie&+' e '"'IO)~=exp —i P l n,. i' t

a +s

where

E=E +g Q(co co )eo

and we define the odd function

f(~) = g Z I
&x'

I
[6(&u —~,)+ 5(&u+ &u, )]

IV(&I 5(~r& —~rg+~)

&& (&nr. ;.&« —&nr. ;.&«».

(6.2)

(6.3)

~ I o&, I

' sin'(u), f/2)x exp 2(d;

(5.18)

For ur & (d bandwidth), f((u) is zero, and as &u —0,
2

f((u)-2e(u= &a Q gQ vr5(e~-er, )

This is suppressed as t ' at large times, as the
system relaxes around the scatterer. (This ampli-
tude is related to the x-ray problem, as discussed
by Schotte and Schotte, "and is the sum of closed-
loop diagrams in that problem. )

Finally, a word of caution on the Tomonaga ap-
proximation as described here. If the scatterer
has an internal degree of freedom that may be
changed by scattering, and a degenerate ground
state, higher-order terms diverge, perturbation
theory does not work, and the Tomonaga approxi-
mation is not valid. The above procedure, with
small modifications, can be applied to the Kondo
model, for example, but the resulting model, a
spin coupled to a vector boson field, no longer
shows the Kondo effect. Other Tomonaga ap-
proaches to the Kondo problem, based on splitting
the scattering potential into "direct" and "spin-
flip" terms, including the "direct" term in 0' and
expressing single fermions (as well as pairs) in
terms of bosons, are apparently more successful,
but somewhat problematica. l. '

VI. TOMONAGA REPRESENTATION OF OUR MODEL

Applying these results to H~ (4.7), we define a
boson field for each channel and take the linea. r
combination of these modes describing fluctuations
of total charge in all the screening channels. 'The
Tomonaga approximation is valid as scattering in
these channels cannot change n, . Our model be-
comes just the standard Anderson model with a
linear coupling to a boson field.

(T = 0). (6.4)

The charge neutrality condition (4.8) implies

g Q v&~&5(f p e& &)
= 1~

lpga
(6.5)

and as gv;, ~ 0, we have the inequality 1/4p &e & —', .
Each of the 2d, impurity-site Wannier functions is
associated with a different scattering channel. If
the crystal-field splitting is weak, each of these
channels has the same phase shift, and e - 1/4d, .
The derivation assumed that scattering was weak in
all channels; in that case e must be small: This is
satisfied for la. rge d, .

The model is completely specified by the quanti-
ties E, U, f(&u&, and 4(&u), where

a((o) = v Q I v, I

' 5((o —~,.). (6.6)

Two parameters are needed to describe f(u): the
cutoff or bandwidth, and the linear slope for small

b (&u) can be characterized by one parameter,
its value at ez. No cutoff in h(u) is required for
the model to be well-behaved (apart from a di-
vergent ground state energy shift, independent of
U, g, which can be subtracted).

A simple "canonical" choice for the model might
be

f(~) =2e~8(D —I~ I),

A(ur) = U, /7&.

(6.7)

(6.8)

This last is standard for the Anderson model;
U, /v is the resonance width of the impurity orbital,
and no magnetism appears in mean-field theory for
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U&U, . D is the effective d bandwidth, and e = I/
(4d, ), where do is the multiplicity of the band (e
=0.05 for a d band).

Finally, we note that f(u) is in principle temper-
ature dependent [see (5.10), for example]; when

using the Tomonaga model to derive the tempera-
ture dependence of the properties of the original
model, (4.5), this should be taken into account.
However, the Fermi-liquid theory implicit in (4.5)
is itself temperature dependent, so we may as well
neglect the temperature dependence of f(&u), and
regard (6.1) as our fundamental model.

E Up=0
C ~

n =20
{a)

0 C
E C&Q&2CC-~

E U, =C
fl~ 0

0
{b)

U 0 C
C« Uc0

0
{c)
0 C U~

-U
C

{d)

U 0 Uc

FIG. 2. EIean-field theory phase diagrams in the
(E, U) plane for the Anderson model coupled to a boson
field, (6.1). Note "magnetic" region {'shaded), first-
order phase transitions (full lines), and second-order
transitions (broken lines). C is the effective attraction
between electrons mediated by the bosons; U, is a mea-
sure of the resonance width of the impurity orbital.

VII. RESULTS OF A MEAN-FIELD THEORY TREATMENT

OF THE MODEL

The properties of (6.1) in mean-field approxima. -
tion have been systematically explored in Ref. 6.
The only role played by the boson field in this ap-
proximation involves its static relaxation in re-
sponse to the mean charge in the impurity orbital.
This gives rise to an effective attractive interac-
tion C between particles in the extra orbital:

, ~ ln I'
C =2g2 ~ ' —4&D

(di

Mean-field properties can be characterized by four
parameters: E (measured from the Fermi level),
U, C, and U, (T), where U, (0) =U, [Eq. (6.8)], and

U, (T) is an increasing function of temperature;
for T» U, (0), U, (T) = 4T As these. parameters
are varied, various "phase transitions" occur, and
in Fig. (2) we present phase diagrams of the mean-
field states of the model. Though artifacts of the
approximation, these phase transitions mark re-
gions of transition between qualitatively different
regimes of the model.

The main features of Fig. 2 are (i) a "magnetic"
region (shaded) where the mean-field solution has

broken spin-rotation symmetry, characterized by
a vector "order parameter" (S,) c 0, where (S,) is
the mean-spin polarization of the impurity orbital;
(ii) first-order phase transitions (full lines),
across which the mean impurity charge (n, ) is dis-
continuous. These may either be between two non-
magnetic states, or between "magnetic" and non-
magnetic states, in which case (S,) is also dis-
continuous; (iii) the transition to magnetism, as it
involves breaking symmetry, may also be second
order (broken lines). For U, «C [Fig. 2(a)], all
transitions are first order; for U, »C [Fig. 2(d)],
which is the Anderson model limit, all transitions
are second order. Figures 2(b) and 2(c) show how
these two limiting cases pass into one another. As
the effective U, increases with temperature, Figs.
2(a)-2(d) also indicate how the mean-field solu-
tions change as temperature is raised.

Apart from the singular case U, = 0, T =0 (where
mean-field theory is exact), all these phase tran-
sitions are spurious. Fluctuating regimes inter-
vene between different "phases, " restoring con-
tinuity. The system remains nonmagnetic, and
full spin rotation symmetry is maintained in the
"magnetic" regime by the slow precession of the
mean-spin-vector (S,); we identify this as the
Kondo effect. Slow charge fluctuations restore
continuity in the neighborhood of "first-order tran-
sitions"; this we identify with the mixed-valence
effect.

This fluctuating behavior is not reproducible by
simple perturbation theory in U„which, since the
frequency has smooth but nonanalytic dependence
on U„ is divergent in the limit V,. -0, T -0 (that
is, U, -O). In this limit, in the neighborhood of
the phase transitions, the behavior as U, —0 de-
pends qualitatively on whether C is finite or equal
to zero (Anderson model), since in the former
limiting case C» U„while in the latter U, » C.

Away from the magnetic region and the phase
boundaries, the mean-field solutions are essential-
ly correct; to obtain the true low-temperature be-
havior in the anomalous regions, sophisticated re-
normalization treatments are needed to expose the
non-analytic dependence on U, as it goes to zero.

VIII. DISCUSSION

Physically, as the f orbitals are highly localized,
their correlation term will be large, and their hy-
bridization with the d band small, so we expect U,
«C «U. In this regime mean-field theory predicts
magnetism for 0&E ——,'C & —(U —C), with first
order transitions separating magnetism and non-
magnetic states as E is varied. A discontinuity in
impurity charge is associated with these transi-
tions, and in Ref. 6, we showed that in a compo-
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site system regarded as an ensemble of isolated
impurities —the "dilute" limit of a rare-earth
solid —the Fermi level may be pinned so as to

place the equivalent impurity system exactly on a
first-order phase boundary.

The long-time low-energy behavior associated
with the resulting mixed-valence state involves a
complex interplay of charge and spin fluctuations;
both the fermion and boson systems have potential-
ly singular low-energy properties (for example,
the factor I ' characterizes the long-timescale bo-
son response to charge fluctuations in the impurity
orbital). The evaluation of the quantities equiva-
lent to the Kondo timescale' T„awaits a suitable
renormalization-group treatment of the model:
work on this is in progress.

The actual problem of the rare-earth solid with
an "impurity orbital" at each lattice site is much
more complex. We may expect slow valence fluc-
tuations between difierent charge states similar to
those we find in the single-impurity case; how-
ever coherence between fluctuations on different
sites may be expected to develop at low tempera-
tu res.

It is often conjectured that phonons play a vital
role in the mixed-valence phenomenon. Neverthe-
less, the fact that the model considered here ap-
parently mimics the effect when the screening by
other electron scattering channels is treated sug-
gests that the phenomenon may be essentially an
electronic effect, though no doubt greatly modified
by the strong phonon coupling to valence fluctua-
tions.

To summarize our results: we generalized the

Anderson model of a magnetic impurity to include
a term allowing screening of the charge in the im-
purity orbital so as to satisfy the Friedel sum
rule. The model then described coupling between
the l = 3 (resonant impurity scattering) channels
and the l =2 (screening) channels. Using the To-
monaga approximation, we showed that the screen-
ing terms was equivalent to a linear coupling to a
certain boson field. We have previously treated the
resulting model (Anderson model coupled to bo-
sons) in mean-field approximation, and we dis-
cussed these results, indicating how they implied
mixed-valence behavior (not present in the Ander-
son model without screening) for certain values of
the model parameters. These long-timescale va-
lence fluctuations were associated with an infrared
divergence of perturbation theory, and further
elucidation of their properties was postponed until
a suitable renormalization-group treatment had
been carried out. Work on this is now in progress.
These results suggest that the mixed valence ef-
fect in certain rare-earth compounds may be es-
sentially purely electronic in origin.
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