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Recent experimental results indicate that existing theories of low-energy nuclear stopping power based upon

statistically derived potentials, such as the Thomas-Fermi potential, are in error by over 100%. This paper
shows that these errors can be reduced to less than 10%%uo by using more realistic interatomic potentials. We

have calculated interatomic potentials from first principles in the free-electron approximation for 14 diatomic

interactions representing light particles incident on heavy targets (M, «M, ), self-irradiation (M, = M, ), and

hea~y particles on light targets (M, »M, ). The potentials were approximated by a Moliere-like form and the

parameters tabulated for general covenience. The classical orbit equation was integrated numerically for bare

potentials and the scattering cross section, stopping power, range, and straggling calculated. Simple three-

parameter expressions for the stopping power are given which are directly integrable to obtain the range. The
results are in reasonable agreement with experiment for a representative Kr-C potential and agree within 10%
for an average potential derived from the free-electron calculations.

I. INTRODUCTION

Stopping powers and ranges of low-energy par-
ticles became a field of wide interest in the early
1.960's, when Firsov' and Lindhard, Scharff, and
Schiett' introduced their solutions, and when the
first range measurements were performed. These
first experiments obtained range information by
implanting radioactive atoms, and then determin-
ing their depth distribution by stripping off layers
of material by electrochemical' or physical meth-
ods. 4 Also, some of the early range data were
obtained using a photoparticle recoil atom tech-
nique. ' The depth resolution of these methods
was sufficient to test the theory at reduced en-
ergies, &, above e =0.03. Although satisfactory
agreement was achieved-in the higher-energy
range 0.3( e ~ 5, the experimental range data
tended to be somewhat higher than theoretical pre-
dictions in the lower-energy region, 0.03(E—0.3,
where deviations of more than 30/o were observed.
This trend was confirmed beyond doubt by recent
measurements with improved techniques.
Keinonen et al. ' have already reported similar
30% discrepancies in stopping power and range
values near E =0.3, and Kalbitzer et a/."recent-
ly extended their stopping-power and range mea-
surements down to e =0.0006, resulting in ranges
100% above theoretical procedures.

Such deviations are serious enough to reconsider
the underlying theoretical assumptions and proce-
dures. Lindhard et al. ' acknowledge that their
treatment is inaccurate for a (10 '. "where de-
viations from Thomas- Fermi estimates may be
considerable. " Other simplifications incorporated

in their treatment, such as combining energy and
scattering angle into one variable as prescribed
by the momentum approximation, do not account
for more than about 20% deviation in the stopping
powe r; thi s was shown earlier' "' by comparing
the Lindhard et al. results with a rigorous com-
putation based on a Thomas-Fermi potential.
Another source of the observed discrepancy is
the potential itself. This paper examines this
source by presenting calculations of stopping pow-
ers, ranges, and stragglings for more realistic
interatomic potentials.

In contrast to the Thomas-Fermi potential used
in the existing theories, a realistic diatomic re-
pulsive potential should drop to zero rather sharply
for atomic separation greater than about
A, thus reducing atomic scattering at large
impact parameters drastically. This would have
the desi red effeet of reducing the nuclear stopping
power and increasing particle ranges particularly
at low energies. This can be accomplished by the
introduction of an arbitrary cutoff in the potential-
energy curve, "but then the choice of cutoff be-
comes the critical issue. Alternatively, realistic
diatomic potentials determined from first princi-
ples are now available even for high-Z ele-
ments. "' By using these more accurate poten-
tials, we have developed a more fundamental and
meaningful theoretical approach.

Our theoretical approach is presented in the re-
maining four sections of this paper. In Sec. II we
discuss the interatomic potentials and present our
results for 14 diatomic interactions. In Sec. III
the classical scattering equation is solved and the
stopping powers and average square fluctuations
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in the energy loss are calculated. Analytical ex-
pressions for these quantities are presented in
Sec. IV together with results for the range and

range straggling. Section V contains a discussion
of the results and the agreement with experiment.

II. INTERATOMIC POTENTIALS

A. Method of calculation

Because of their universal applicability, statis-
tical models of interatomic interaction have been
employed widely in all treatments of nuclear stop-
ping power. Amongst the most notable of these
interactions is the Sommerfeld approximation to
the Thomas-Fermi potential, "the Moliere approx-
imation, '~ and the Bohr potential. " Each of these
potentials is expressed as a Coulombic (1/r) term
multiplied by a "screening" function; interatomic
distances are expressed in units of a screening
length. In this way, the interaction can be univer-
sally applied if the screening function is known.
The advantage of convenience, however, is some-
what lost in the lack of accuracy or at least in the
lack of knowledge about the accuracy of the statis-
tical model. Since other more accurate methods
of interatomic potential determination exist, the
application or need for better accuracy should
provide the motivation for choosing between them.

The interactions between atoms comprising a
solid can be obtained by assuming a parametrized
functional form for the interaction and fitting the
parameters to crystal data such as phonon dis-
perion curves, elastic contants, compressibility,
and lattice constant. These methods have been re-
viewed by Johnson. " Their obvious drawback is
their lack of universal applicability and, more
importantly for our purposes, the fact that they
give accurate information about the potential only
near the crystal-lattice spacing rather than in the
repulsive region of interaction. It is impossible
to extrapolate a potential obtained from such a
parameter -fitting proc ess to small interatomic
separations without other information. Another
disadvantage in this approach is that these poten-
tials give information only for like-atom stopping
powers (e.g. , Nb in Nb). Other fitting procedures
such as complete-neglect-of-diff erential-overlap
exist and are applied where information about
bonding is required. " For our purposes, they
suffer from the same inability to give information
over the entire range of interatomic separations
as potentials obtained from crystal data.

At the other extreme of computational difficulty
are methods such as Hartree-Fock and extensions
thereof (such as multiconfigurational self-con-
sistent-field methods). When correlation is in-
cluded, these methods are clearly the most ac-

curate known over the entire range of interatomic
separations. They allow one to treat excited and
ionized states also. Generally, they are applied
where bonding effects are being studied. They
are overly sophisticated (and consume enormous
amounts of computer time) for studies on the re-
pulsive region of the interatomic potential curve.
The computational time, particularly for many
electron systems, can be prohibitive although
pseudopotential techniques are currently being de-
veloped to reduce the problem of approximating
the core electrons is

We must keep in mind that it is the low-energy
repulsive region of the interatomic potential that
is most important for nuclear stopping calcula-
tions. We employed the free-electron method re-
ferred to earlier" in this region because it has
the advantage of being computationally simple and
fast and gives better agreement with experiments
compared even with methods at the Hartree-Fock
level of accuracy. Briefly, atomic charge den-
sities are calculated using the free-electron ap-
proximation and the interaction of the two atoms
are obtained from classical electrostatics. Quan-
tum-mechanical corrections for the increase in
exchange and kinetic energy are made in the over-
lap region. Because the exchange energy is treated
statistically in the Slater approximation, a form
of correlation is taken into account as well. A
similar method developed by Gordon and Kim" ex-
plicitly includes correlation. They find the depen-
dence of the exchange and correlation energies on
interatomic separation to be similar; that is, an
overestimation of the exchange is somewhat equi-
valent to including correlation in such a model.
For this reason, Wilson and Bisson" find their
free-electron method of calculation to agree better
with molecular-beam scattering experiments than
Hartree-Fock calculations for all rare-gas pairs.

The method developed for rare gases was eval-
uated by comparing calculated helium interactions
with other theoretical and experimental results.
Results for He-Cu' free-electron interactions
were found to agree reasonably with more so-
phisticated techniques. " Activation and binding
for helium complexes in tungsten and lattice lo-
cations of helium in certain of these complexes
are found to be consistent with experiment using
these potentials. However, note that the systems
studied involve rare gases which have closed-
shell electronic configurations. The extension of
this method to open-shell configurations must be
approached with some caution, although for our
purposes it is believed to provide reasonably
realistic results.

Caution need also be exercised in choosing elec-
tronic configurations for the low-energy stopping
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calculations. That is, questions of the possibility
of electron stripping at the surface, electron
"pickup" during the slowing-down process, and
the charge state of the interacting species are dif-
ficult to resolve. Although, for example, a low-
energy helium atom in aluminum may be consid-
ered neutral with a fair degree of confidence, it
is far from clear whether this helium atom inter-
acts with cores alone (He-Al"') or whether the
valence electrons are equally important (He-AIO).
For this reason, several of our calculations were
performed with varying charge states, to at least
give an estimate of the importance of these ef-
fects. The electronic state of the projectile is
assumed always to be the ground state although it
is recognized that inelastic collisions even at low

energies may modify this somewhat.

B. Results

V(r) =(Z,Z,e'lr)y(r),
where r is the interatomic separation, e is the
electronic charge, and Zg Z2 are the atomic num-
bers of the elements involved. The function P(r)
is a screening function given by,

~(r) = g C,.e-'*"/',

where a is a screening length, '

p 885~ /(gl/2+ gl/2)2/3

(ao is the Bohr radius; Z, and Z, are the atomic
numbers of the elements involved). The coeffi-
cients were restricted such that,

C,.=1

We have chosen the free-electron method of de-
termining interatomic potentials" for the reasons
described above. In order to study a range of
atomic numbers and masses, the He-Be, He-Al,
He-Nb, He-Er, Al-Al, Nb-Nb, Kr-C, and Kr-Si
potentials were calculated. Because the calcu-
lational method is incapable of handling bonding
effects, only the energy region about -1 eV is
considered accurate. As mentioned above, the
calculations were also performed for the ionized
species Al'", Nb", and Er . For ease in report-
ing the results and also for utilitarian purposes,
we have expressed the interatomic potential V(r)

following Moliere. '4 Table I gives the parameters
C,. and b,. determined from a least-squares fit to
the calculated free-electron potentials for each
interaction along with those of the Moliere func-
tion for comparison purposes. Also given in Table
I is a set of C,.'s and b 's determined from least-
squares fitting the combined set of all the neutral
atom interactions. We consider this "averaged"
set of parameters to represent a realistic screen-
ing function for the universal calculation of nu-
clear stopping powers.

In Fig. 1(a) we have plotted our calculated
screening function versus dimensionless distance

TABLE I. Screening functions [Eq. (2)] for free-electron interatomic potentials. In deter-
mining the fits, only the actual calculated energies above 1 eV were included.

C( C3

He-Be
He-Alo
He-Nba
He-Era
Al -Al
Nb'-Nb'
Kr-C
Kr-Si
He-Be"
He-Al '
He-Nb
He-Er"
Al+++ Al+++

Nb"-Nb"
Average '
Moliere"

0.024829
0.050859
0.289 907
0.290 098
0.259466
0.100 143
0 ~ 190 945
0.096 029
0 ~ 116492
0.142 110
0.423 599
0.402 713

-0.040 993
0.002 605
0.006 905
0.35

0.827 418
0.695 714
0.429 335
0.535 391
0.697 444
0.471 977
0.473 674
0.444 825
0.832 155
0.661 703
0.510 683
0.547 287
0.944 189
0.273 088
0.166 929
0.55

0 ~ 147 752
0.253 427
0.280758
0.174 511
0.043 090
0.427 880
0.335 381
0.459 146
0.051 352
0.196 187
0.065 718
0.049 999
0.096 804
0.724 307
0.826 165
0 ~ 10

0 ~ 103 251
0.229 291
0.322 526
0.309 837
0.321 063
0.220 345
0.278 544
0.234 088
0.792 330
0.601 562
0.370 404
0.346 327
0.003 447
0.002 526
0 ~ 131825
0.3

0.749 127
0.620 437
0.770 095
0.871 240
0.931563
0.498 902
0.637 174
0.502060
0.792331
0.601562
1.255 927
1.269 632
0.743 977
0.300 261
0.307856
1.2

2.905 352
2.426 450
2.432 938
3.630 057
9.845 565
1.512 407
1.919249
1.399 874
5.651 933
3.460 996
6.865 022

10.831 888
0.003 454
0.955 362
0.916760
6.0

Least-squares average (-10%accuracy) to first eight interatomic potentials in this table
I.see Fig. 1(b)].

Reference 14.



CALCULATIONS OF NUCLEAR STOPPING, RANGES, AND. . . 2461

Cs

LJ

sLs

Vl

Cs

LL,

cia
Cl
s e4

s

an

Moliere

Thomas+ermi (Sommerfeld)

= Thomas-Fermi (Exact)

Kr&
Bohr

Reduced Interatomic Separation, x

& He-Be'
c) He-AE'

c3 He-Nb

+ HeEr
+ AE'-AL'

x Nb'-Nb'

Kr&
9 Kr-Si

, Moliere~- ~j- Thomas+ermi tSommerfeldj
'+ i~ .-Thomas-Fermi (Exact)

I j +
X

. --t
' Avef8g6

. .
'. . . ,Fofjj,

X

+~~

0 I 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16

Reduced 1 nteratomic Separation, x

2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16

FlG. 1. (a) Comparison
of the screening function
for the free-electron
Kr-C potential with those
for the Thomas- Fermi,
Moliere, and Bohr poten-
tials. Symbols for the
Kr-C screening function
represent the calculated
points for potential ener-
gies &1 eV, and the line
through these points rep-
resent the least-squares
fit to a Moliere-like
screening function (see
text and Table E).
Thomas- Fermi (Sommer-
feld) screening function
is based on the values
given by March (Ref. 25)
and the Thomas- Fermi
(exact) is based on the
numerical evaluation of
Kobayashi et al. (Ref. 26).
(b) Comparisons of the
screening functions for
eight free-electron po-
tentials with same gen-
eral potentials as above.
Each set of symbols rep-
resent the calculated
points for a different
neutral atom interaction
for potential energies &1

eV. Solid line identified
as average is the least-
squares fit of all the
points to a Moliere-like
sc reening function.
Thomas- Fermi (Sommer-
feld) screening function
is based on the values
given by March (Ref. 25)
and the Thomas- Fermi
(exact) is based on the nu-
merical evaluation of
Kobayashi et al. (Ref. 26).

x(=r/a) for a representative case, Kr-C. The
bare calculated points are shown along with the
fit (see Table I); it is clear that the fit is quite
reasonable. Also shown for comparison are the
Thomas-Fermi, Moliere, and Bohr potentials.
The Bohr potential is seen to be too heavily
screened, the Thomas-Fermi too weakly screened
and, interestingly, the Moliere potential lies
closest to our calculated function. In the plot, and
also in the parameters given in Table I, we chose
to include only calculated values above 1 eV and
to extrapolate the potential when required below
this value. Including points between 1 and 0.1 eV
had little effect on the results. We believe that

this procedure is more meaningful than including
calculated points in a region of the interatomic po-
tential where binding and correlation effects dom-
inate.

In Fig. 1(b) we show our calculated points
(~ 1 eV) for all the neutral atoms (first eight rows
of Table I) and the least-squares fit to these values
using the form given in Eq. (2). Note that the fitted
curve gives a reasonable average of all the cal-
culated results, but that deviations exist. For ex-
ample, the curve lies somewhat above the calcu-
lated points for very small distances, x ~ 1, which
will cause an -10% deviation in the higher-energy
stopping powers.
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III. CALCULATIONS OF THE NUCLEAR STOPPING

POWERS

The exact classical solution to the equation of
motion of a particle moving in a central-force po-
tential, V(r), gives a scattering angle, 8, in the
center-of-mass system given by

pdr
r'[1 V(r)/E p'/-r']' ~' '

where p is the impact parameter, r, is the turning
point (distance of closest approach) given by the
root of the expression in the square root in Eq.
(4), and E, is the energy of the particle in the
center-of-mass system. E, is related to the ini-
tial kinetic energy, E, by

E, =M;E/(M, +M,),

gE ~m

dR
T o(T)dT,

where T is the energy transferred to the target
atom, 7 =yEsin'28 and y=4MPI, /(M, +M, )', e(T)
is the energy transfer cross section, T is the
maximum energy transferred (T =yE), and N is
the atomic density of the target. The energy-
transfer cross section is related to the scattering
cross section by

o(T) = (4v/yE)o(8) . (6)

for which

The above nuclear stopping power can be ex-
pressed in terms of the reduced energy & by using
the following definitions:

C dE
va'yN dR '

where M, and M, are the incident- and target-atom
masses, respectively. The differential scattering
cross section, a (8) follows by differentiation and

e =aM, E/Z, Z, e'(M, +M, ) (10)

(8)
PdP—

sin6} d6
' (5)

Note that 8 and, therefore, o(8) are functions of
the impact parameter and the particle energy.

For calculating the nuclear elastic scattering
cross sections, which are necessary for deter-
mining the nuclear stopping power, we have em-
ployed the bare calculated values of the free-elec-
tron potentials (Sec. II) rather than the approxi-
mate analytical functions presented in Table I.
Specifically, the numerical procedure consisted
of calculating the diatomic interaction at -30
points and then generating a finer mesh of values
(500 paints) by a cubic spline interpolation of the
function ln [r V(r)]. Because of the early work of
Everhart et al.' we then performed a piece-wise
fit of the potentials on the 500-point mesh to the
screened-Coulomb form

V,.(r) = (A, /r)e "~ei,

where A,. a,nd B, are the fitted parameters between
points i and i+1. We then solve Eq. (4) directly,
using the method employed by Everhart et al.'
As a check on our numerical procedures, we
created accurate tabulations of the Thomas-Fermi
(Sommerfeld), Moliere, Bohr, and Born-Mayer
potentials and calculated the scattering angles and
cross sections for these potentials at several en-
ergies. A similar 500-point mesh was used, and
our results compare very well (& 1%) with Robin-
sin's" calculations of the turning points, scatter-
ing angles, and cross sections for these potentials

The nuclear stopping power dE/dR was ob-
tained from

C =e./E,
where a is the screening length [Eq. (3)] and Z,e
and Z,e are the nuclear charges of the incident and
target atoms, respectively. When converting the
energy E into the reduced energy E on both sides
of Eq. (7), then the remaining parameters can be
associated with the range R to define the reduced
range p:

p =ma yNR . (12)

By numerical integration of Eq. (7), the reduced
nuclear stopping power, S„(e), has been determined
for the Thomas-Fermi (Sommerfeld), Moliere,
Bohr, and 14 free-electron potentials presented in
Sec. II. Our results for the Thomas-Fermi (Som-
merfeld) potential are in excellent agreement
(~0.1%) with the more exact calculations of Bier-
sack." Figure 2 shows S„(e) vs e for the Thomas-
Fermi (Sommerfeld), Moliere, and Bohr poten-
tials. Also included in this figure are the results
for the free-electron Kr-C, Kr-Si, and average
potentials, and the approximate results from the
Lindhard et al. ' theory. The results for the other
potentials are displayed in Figs. 3-5. Note that
the Thomas-Fermi potential predicts a high stop-
ping power curve, consistent with its mild screen-
ing as seen in Fig. 1. Also note that the heavily
screened (Fig. 1) Bohr potential gives a low esti-
mate for the stopping power. The results for the
Moliere potential lie between these two extremes
and closest to and somewhat above the realistic
potential results for Kr-C and Kr-Si. These
latter potentials give quite similar stopping powers.
The Lindhard et al. results do not apply at very
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FIG. 2. Comparisons
of the reduced nuclear
stopping powers resulting
from the Thomas-Fermi,
Moliere, and Bohr poten-
tials with those resulting
from the free-electron
Kr-C, Kr-Si, and aver-
age potentials. Results
from Lindhard, Scharff,
and Schi/tt (LSS) theory
are presented also for c
20.002.
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low energies, but are given for comparison pur-
poses for E ~ 0.002. The stopping power calculated
from the average potential defined in Sec. II (Table
I) is also shown to agree closely with the Kr-C
and Kr-Si results. For all the diatomic cases con-
sidered, the Bohr potential gave a lower bound
and the Moliere gave an upper bound for the stop-
ping power and, hence, these stopping powers are
included in the figures.

The effect of the charge state on the low-energy
stopping power is highly dependent upon atomic
number as indicated in Figs. 3-5. For high-Z
target elements (Nb and Er), the removal of two
electrons has little effect on the stopping power.

C2
W(e) =

ma'y'
T'o(T) dT .

This is in contrast to the dramatic decrease in
stopping power when low-2 elements (Be and Al)
are considered to be in ionized states; that is,
when cores alone are included in the interatomic
potential calculation. We consider the neutral
state to be more realistic at the low-energy ex-
tremes in which we are interested, in both cases,
for the incident particle and for the target atoms.

We have also calculated the reduced average
square fluctuation in the reduced energy loss,
W(e):
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FIG. 3. Reduced nuclear
stopping powers resulting
from the free-electron
He-Beo, He-Be", He-Er,
and He-Er" potentials.
Results for the Moliere
and Bohr potentials are
repeated from Fig. 2 for
reference purposes.
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FIG. 4. Reduced nuclear
stopping powers resulting
from the free-electron
He-Al, He-Al'", He-Nb,
and He-Nb" potentials.
Results for the Moliere
and Bohr potentials are
repeated from Fig. 2 for
reference purposes.
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All quantities having their earlier meaning. These
calculations were performed for all the potentials
discussed above and again, we obtain excellent
agreement with the calculations of Biersack" for
the Thomas-Fermi (Sommerfeld) potential. Rep-
resentative results are given in Fig. 6 where it is
seen that the Thomas-Fermi potential and the
Bohr potential again give the extremes; the stop-
ping power based on the Moliere potential lies
somewhat higher than, but closest to the average
realistic potential and the Kr-C results.

IV. ANALYTIC EXPRESSIONS FOR S (c), fVtc), p(e),
AND yt~'~' i

In order to make available the vast amount of
information obtained through the methods described

above, the results are presented in the form of
analytic expressions rather than in elaborate tables
or high precision graphs. This procedure also
simplifies their further utilization in computer
programs or other applications. Because of wide
variation in results from the different interatomic
potentials, the main emphasis in choosing analytic
expressions is that they describe general trends
properly rather than exactly reproducing the corn-
putational results. Such general features are

(a) Any stopping power formula for e» 1 must
asymptotically merge into the form S„=(inc)/2e as
required for Coulomb scattering.

(b) Any formula describing the increase of energy
straggling per path length, must finally approach
the value W= & which results from Rutherford

Nioliere

th

CL

CL
CLB
ill

I
EO O

FIG. 5. Reduced nuclear
stopping powers resulting
from the free-electron
Al -Al, Al"'-Al ",
Nbo-Nb, Nb"-Nb" poten-
tials. Results for the Mol-
iere and Bohr potentials
are repeated from Fig. 2

for reference purposes.
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where

E,(x) = dy;
x

for BE ~ 1 the electronic stopping process can no

longer be neglected, cf. Eq. (19). Similarly, dif-
ferentiation of the product &S„(e) yields

relative range straggling, ((bp')/p')'i', and the
frequently employed f(f'i') function of the Lindhard
theory. For example, from Eq. (14) one can obtain
the range simply by integration of 1/S„:

E,[(C —1) ln(B &)] —E,[-2 ln(Bc)]
P= AB

for BE (1,

—1 —(1+C) lnX
X2+c 2X +X-c (16)

1 1 LJJJJJI I I I IIIIII I I I t lllll I I I I IIIII i I I I IIII

(0~ io-' iO
' io~ I Io

Reduced Energy, e

FIG. 6. Comparisons of reduced average square flu-
ctuatio in the reduced energy loss resulting from the
free-electron Kr-C and average potentials with those
resulting from Thomas-Fermi, Moliere, and Bohr po-
tentials. Results from the LSS theory are presented
also for e ~ 0.002.

scattering at high energies.
(c) For very low energies, e «1, the Thomas-

Fermi potential acts as an r 4 potential, and con-
sequently yields S„-E' ' and R™E''.

(d) For e «1, all other potentials under consid-
eration behave exponentially, or in terms of
power-law fits, behave like r with infinitely in-
creasing values of n as E approaches zero. This
results in S„-E' ' " and W-E' ' " with increasing
n for E-O.

With these general features in mind, the follow-
ing simple expressions are used:

S„=[A in(Be)]/[Be —(Be) c],
S„=[0.5 ln(1+ &)]/(e +Ass),

W =1/(4+As +Ca ) .

(14)

(»)
(16)

Expressions (14) and (16) have been used by one
of the authors earlier" for the description of
Thomas-Fermi (TF) results. Formula (15) is
added, as it leads immediately to simple estimates
for both stopping power, S„= (1/2A)e' s, and

range, p„= 2Am /B, for very low energies, e «1.
Further advantages of using analytic expressions
rather than tables of numerical data are that they
can be used more easily to determine range p(e),

with X=-Bt' ' -=BE sin~0. This result determines
the differential cross section in the Lindhard-
Scharff-Schi6tt (LSS) approximation' since do
=0.5wa'f 'i'f(t'i')dt. However, it should be kept
in mind that combining E and sin~0 into one single
variable t' ' is an approximation which can result
in considerable deviations from exact values, al-
though it yields the correct stopping power, i.e.,
Eq. (14).

The constants to be used with Eqs. (14)-(18)
have been calculated in a least-square sense from
our numerical S„(&) and W(c) results, and are
listed in Table II for the Thomas-Fermi, Moliere,
Bohr, and Kr-C potentials. Also included is our
average potential derived by a least-squares fit to
all the neutral atom diatomic potentials combined
(Table I). For the most part, the analytic expres-
sions represent the actual results to within -10%
error. This deviation is not considered serious
particularly when one considers the advantages of
these expressions. It should be borne in mind that
this -10% deviation is the largest deviation found
over five orders of magnitude in energy and that,
furthermore, the expressions asymptotically ap-
proach the proper results beyond E =10.

Turning our attention now to the range and rela-
tive range straggling, we define the reduced range

() , S„(e')+S,(e') ' (19)

S,(E) =kv~, (20)

where S„(E) is the nuclear stopping power, given by
Eq. (15) and S,(e) is the electronic stopping power.
The inclusion of the electronic term allows a
smooth transition to the region E )0.1, where S,
begins to become important. We used the approxi-
mation'
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with the representative value, k =0.15. In Fig. 7

we present the results of our calculations of the
reduced range for various interatomic potentials
by direct numerical integration of Eq. (19). In

this figure we have also included p, (e) (reduced
range based on the electronic stopping power
only) for comparison purposes. Note that here we

are calculating range along the particle path rather
than projected range, and hence comparison with

experiment should be restricted to heavy particles
incident upon light targets. Calculation of the pro-
jected range requires a solution of the transport
equation.

The relative range straggling was obtained from

and is tabulated for 0.0001 —E —10.0 in Table III
for several potentials.

V. DISCUSSION AND RESULTS

The main results of this work are the stopping
power and energy straggling curves, S„(c)and

IV(e) for various diatomic potentials calculated
from first principles and for some important
"general" potentials for comparison. These re-
sults are presented in Figs. 2-6. The curves
representing collisions between ions of higher

TABLE II. Fitted constants for Eqs. (14)—(16).

Potential Constants
Largest deviation from

actual calculation

Thomas- Fermi

Moliere

Bohr

Average

0.494 71

0.691 43

0.516 61

0.598 18

0.562 58

1.3572

3.6013

1.4821

2.1829

1.1776

A ln(Be)
Be—(Be)

0.504 10

0.713 52

0.832 73

0.689 37

0.626 80

0.5 ln(1+ e)
e+A e~

-2.7
+2.9

—12.9
+ 11.2
-3.6
+ 4.8
—7.3
+ 9.2
—6.6
+ 8.0

Ate

1
0.0001
1
0.0001
0.002
0.0001
1
0.0001
0.002
0.0001

Thomas- Fermi

Moliere

Average

0.103 96 0.507 93

0.258 20

0.107 18

0.141 20

0.297 61

0.375 44

0.420 59

W=
1

4+Ac ~+1"e

0.051 953 0.320 11

—2.9
+ 2.3
-1.7
+ 3.9
-4.2
+ 6.0
—2.7
+ 4.1

—12.5
+ 5.7

0.1
0.002
0.001
0.5
0.0001
0.002
0.05
0.0001
1
0.02

Thomas- Fermi

Moliere

Bohr

Average

1.0329

0.186 96

0.712 59

0.416 40

0.374 92

1.4058

1.6828

1.7311

1.6192

1.6119

6.6276

6.9825

7.2765

6.4066

4.9822

0.826 46

0.943 42

1.0555

0.968 34

1.0965

—0.7
+ 0.8
-0.5
+ 0.5
-1.3
+ 1.5
-2.1
+ 1.9
-2.4
+ 2.7

0.0005
0.0001
0.5
1
0.0005
0.0001
0.2
1
0.1
1
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FIG. 7. Theoretical reduced range-energy curves
compared to experimental data. Stopping power used
is the sum of the individual nuclear and electronic
stopping powers $, = 0.15&&. Large dashed line labeled
p, is the reduced range based on electronic stopping
only. Included is a set of recent data by Kalbitzer et al.
(Refs. 7 and 8) representing low-enery range measure-
ments of heavy ions incident on silicon, aluminum, and
germanium. At higher energies these data merge
smoothly into the multitude of other available data; e.g. ,
Refs. 3 and 24, in complete agreement with theory.

charge state such as Al"' —Al"' and Nb" —Nb"
are included in order to evaluate the influence of the
outer electrons, but are not considered to repre-
sent realistic cases. All stopping power curves
are seen to fall within the bounds given by the
Moliere (upper bound) and the Bohr potential (lower
bound) but come somewhat closer to the Moliere
curve. The W(e) curves depicted in Fig. 6 exhibit
similar features as the S„(e) curves and need not
be discussed separately.

From the stopping power and energy straggling
results, we next calculate the range p(e), and the
relative range straggling y '(Dp')/p' for three gen-
eral potentials (Moliere, Bohr, and Thomas-Fer-
mi), for one representative individual potential,
and for the "average" realistic potential. The
range and range straggling calculation which in-
clude electronic energy loss are depicted in Fig. 7
and Table III, respectively. For comparison, the
experimental data of Kalbitzer et al."is also
presented in Fig. 7. These data are more indica-
tive than exhaustive; for more detailed experimen-
tal information the reader is referred to the com-
prehensive monograph of Mayer et al." The ex-
perimental range data depicted in Fig. 7 are pro-
jected ranges and should, therefore, be located
slightly below the theoretical curve for range-
along-path. Therefore, we consider that the
agreement is excellent between the experimental
data and our results for both the Kr-C and average
potential.

We have demonstrated that interatomic potentials
calculated from first principles in the free-elec-
tron approximation are sufficiently accurate to

TABLE III. Relative range straggling (multiplied by appropriate constants to make them
dimensionless) calculated for several interatomic potentials, taking into account electronic
losses by Se=0.15& &. (6p )/yp or equally [(M&+M2) /4M&M2j ((4R )/R ).

Thomas- Fermi Moliere Bohr
Free- electron

Kr- C Average

0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0

10.0

0.129
0.3.25
0.121
0.120
0.120
0.123
0.126
0.130
0.133
0.133
0.129
0.116
0.101
0.0804
0.0491
0.0288

0.0855
0.0864
0.0877
0.0889
O.Q904
0 ~ 0929
0.0955
O.Q988
0.104
0.107
0.109
0.106
0.0970
0.0807
0.0509
0.0300

0.0649
0.0683
0.0724
0.0751
0.0774
0.0796
0.0805
0.0808
0.0806
0.0805
0.0810
0.0826
0.0815
0.0736
0.0501
0.0305

0.0960
0.0963
0.0968
0.0972
0.0977
0.0986
0.0996
0.101
0.104
0.106
0.108
0.106
0.0983
0.0825
0.0522
0.0308

0.101
0 ~ 102
0.103
0.104
0.104
0.103
0.103
0.104
0.106
0.110
0 115
0.119
0.113
0.0956
0.0593
0.0342
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predict the ranges of low-energy atoms in solids.
We have, furthermore, demonstrated that these
ranges are quite sensitive to the chosen potential
and that the Moliere approximation lies closest to
our theoretical curves. The agreement with ex-
periment is excellent although most of the data are
for incident and target species differing somewhat
from those chosen as representative cases here.
We suggest that the appropriate calculated curves
be used in comparing to experiment rather than

our "average" potential because of their clearer
meaning. The average potential, however, seems

to give more realistic range and functional energy
dependence than any other form (even Moliere)
where a universal potential is sought.
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