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Kinetics of Bose condensation of an ideal Bose gas and of the classical Bose gas of hard
spheres is considered. Deviations from the equilibrium state are not assumed to be small.
An analytic solution for the problem of an ideal Bose gas is found and the role of collisions
between the Bose particles themselves is discussed qualitatively. It is shown that Bose con-
densation is a slowing down process which can be completed at ¢ — « while the formation of
the high-energy tail of the distribution function is relatively fast. The transition time is finite
if the nuclei of new phase are present in the beginning of the cooling process.

I. INTRODUCTION

Bose condensation of an ideal Bose gas is one of
the classic phenomena studied in quantum-statis-
tical mechanics.' It is well known that the distri-
bution function of Bose particles is given by the
Bose-Einstein law:

n(E)= (e &)/ T_ 1) (1)

with the chemical potential u=0.

The total number of particles per cm®, N, is
thus given by the expression [the factor (v 272%)™
is omitted hereafter]

m3/2

N0=—F—fn(E)\/E-dE (2)

and from this u can be evaluated. One can see that
1 increases with decrease of temperature 7 and

at a certain T=T _ one finds u(T,)=0. T, is called
the temperature of Bose condensations (critical
temperature). Below T, the equilibrium distribu-
tion function is

N(E) =%¥‘7fg [1 - (%)3/2}9}%4_ (e®/T- 1)

c
1
and it is obvious that [6(E)/VE ]dE « 6(p)d *p, where
p is the momentum of the Bose particle. A finite
number of particles is collected at the energy
level E =0 forming the Bose condensate.

Although the thermodynamical description is not
perfect, because it can be applied only to systems
in thermal equilibrium, the thermodynamics of
Bose condensation is understood quite well.

The time evolution of the system from one equi-
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librium state to another can be studied only within
the framework of kinetics theory. It is interesting
to study the steps of the Bose condensation pro-
cess. Does it take place instantaneously after u
reaches zero or not? Does the system pass
through the critical point by a set of quasiequi-
librium states or is the evolution an entirely non-
equilibrium one? What are the measurable pa-
rameters during the relaxation through the critical
point? Which kinds of interactions are important
at T=T,?

In this work we present anattempt to develop
the kinetic theory of Bose condensation of an ideal
Bose gas and of a gas of hard spheres. The hard-
spheres gas will be considered without taking into
account the transformation of the energy spectrum
of the system below the critical point® and thus our
gas model can be called the classical gas of hard
spheres. We realize that this model can hardly
reflect all the properties of real quantum liquids
below their critical points but we hope that this
model can serve to some extent to increase under-
standing of the kinetics of the A transition in “He.
The time evolution of *He through the critical point
has not been studied thoroughly but some very in-
teresting features of this process can be extracted
from the classical works.?"® In this paper we will
use some of the ideas which have been developed
recently for the kinetics Bose condensation of the
gas of noninteracting photons.5=°

II. KINETIC EQUATION

Let us consider the Bose gas interacting with the
heat bath which is chosen to be a Fermi gas of
infinite heat capacity. One can write the Hamil-
tonian of such a system
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where al,a; and bb; are the creation-annihilation
operators of the Bose gas and heat bath, respec-
tively. The matrix elements (5,1, |V |B|%) and
®,P. | U|B!DL) correspond to Bose-Bose and Bose-
bath collisions, respectively. Assuming, as is
usually done®° that the momentum change per
collision is small, one can replace the above ma-
trix elements by the constants U, and V,, respec-
tively. We should mention that the conservation
of momentum is assumed to be fulfilled in all the
sums in Eq. (3), i.e., B, +D, =D} +D;.

We consider the Bose condensation of the ideal
Bose gas or of the classical Bose gas of hard
spheres; thus we will take the energy spectrum
of the Bose system to be

E,=p*/2m
or
E,=p*/2m+ (4nhi%a/m). (4)

The second spectrum takes into account in a model
way the collisions between the particles of the
Bose gas.! Using the well-known procedure'! one
can derive the kinetic equation for the occupation
numbers of Bose particles »n(E,?):

%zlsa"‘"law (5)
with
Ipp= —%2’ D 6(ap) 6(AE)
X [1y 7y Ny, = Nyy) +1, N, (1= N,,)
+nyN,(1-N, )], (6)

2
Ips=== 350(ap) S(AE)n, n, (1+7,)(1+7,,)

= nyy (L+n, )(1+n, )],
(m

where I, and I ;5 are the collision integrals cor-
responding to Bose-bath and Bose-Bose interac-
tions, respectively; N,={exp|E - uz)/7]+1}* are
the occupation numbers of the heat-bath particles.
5(Ap) and 6(AE) take into account the momentum
and energy conservation per collision. It should
be emphasized that the kinetic equations [Egs.
(5)-(7)] were derived in the random-phase ap-
proximation and thus have the limits of validity:

7>1/€, (8)

where 7 is the characteristic time of the distri-
bution function due to the kinetic process and € is
the energy per particle. Moreover it is possible
to show that the very concept of occupation num-
bers n=(a'a) is not correct!* if Eq. (8) is not ful-
filled. We will show further that such a compli-
cation appears only at the final stages of Bose con-
densation when the average energy per particle in
the condensing phase is € 2107%" erg, and there-
fore in this work we shall consider the Bose con-
densation process within the framework of Eqgs.
(5)-(7), leaving open the question of the kinetics
when E - 0.

Let us note the important properties of Egs.

(5)=(7):

(@) Iz5=0 and I ;=0 with n(E) from Eq. (1). It is
obvious that I, =0 only if the temperatures of the
Bose system and of the heat bath are equal.

(b) I55=0 and I;,=0 with the distribution function
Eq. (1').

© 2135(E,)= I5(E,)=0, (9)
51 51
while
ZIBB(EPI)EP1=O and _ZIBT(Eh)Eh;éO. (92)
7, 5

Based on Egs. (9) and (9a) one can write the equa-
tion for the time evolution of the total energy of
the Bose gas:

dE (t)
d—t( =3 18, B, - (10)

Evidently the Bose-Bose collisional term I,4(E,)
cannot affect the total energy of the system. This
fact, which seems obvious at first sight, leads to
important conclusions about the structure of the
solution of Eq. (5).

In order to elucidate the role of I, in Eq. (5)
let us take the initial state of the Bose system to
be

n(E,0)=ad(E — Eo)/VE (11)

with E far from 0.

It is easy to understand that the collisions be-
tween the Bose gas atoms lead to the following
(the interaction with the heat bath we, for the time
being, assume to be very weak): some of the par-
ticles move to the direction of energy higher than
E, while the others are scattered toward the low
energies. The resulting distribution should be the
Bose one with temperature corresponding to the
initial energy of the system. This energy is as-
sumed to be conserved during such a process.
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Let us assume further that in the initial state
the distribution function is very narrow and situ-
ated near E =0:

n(E,0)=adE - €)/VE (11a)

where € is very small.

Because of condition (9) almost no particles can
be scattered to the high-energy direction if € is
small enough. Actually, such a scattering leads
to an increase of the total energy of the system
and to the violation of Eq. (9). Moreover, one can
check that

n=adE)/VE

is the solution of Eq. (5). Based on the above gen-
eral considerations, we conclude that collisions
between the Bose particles cannot distort signifi-
cantly the distribution function if it is narrow
enough and located near E =0.

We know that Bose condensation is the process
in which a finite number of particles is concen-
trated at E =0. Thus, let us assume that at the
final stages of the process [when n(E) is narrow
enough], I, is not able to distort the form of the
distribution function and let us try to solve the
simpler equation:

9
-5—:£=IBT' (12)

After that one will be able to substitute the solu-
tion of Eq. (12) into Eq. (5) and to check the limits
of validity of the simplification Eq. (12). We are
interested in the process of the appearance of the
Bose condensate and let us take the Bose system
to be initially at the critical point:

n(E,0)=(eE/Te- 1)1, (1a)

III. SOLUTION OF THE SIMPLIFIED KINETIC EQUATION
(KINETICS OF IDEAL GAS)

Let us consider the temperature of heat bath T
to be smaller then T but nonzero. We assume
further small-energy exchanges per collision
AE < T and thus:

8N, N(E,)
Ny, =Ny =™ pz(E -E)=—r™ ( (E' E),
AN(E,)
Np(l= Ny %Ny (1= N, ) =N, (1= N,) == T ==,
(13)

Introducing for the convenience of notations
P/=k and B, = P, we can rewrite the energy con-
servation law if the momentum exchange per col-
lision is small:

E,-E!-Bak/m=0, (14)

where Ak ={, - B,. This equation is correct be-
cause we assumed that the chemical potential of
the Fermi system p,> T, and thus: |§|> [k|,
because |K| < (2mT,)'/2.

Now we can substitute Eq. (14) into the argu-
ment of the 6 function and let us rewrite the kine-
tic equation in the following form:

an(E1)=l __:3"(E1) %an(El)
ot BT et |y 8t | ]
(14a)
am (EL)| _
——3-;5—1_ S—Sl+sz,
and
mE)| _. ..
O
where

=_—-—~T &, )faN <E,-E;-%li>d3kd3p,

(15)
U? ON(E k’
szz——.,o 7 fn(E{)—-——a(E 2) 5(E1 —E{—-—“-—-§ >d3kd3p,

(16)
i aNE B K
=-——-E1n(El)f ( <E1—E{—%fl—->
Xd%d%p, )
aN(Ez) < , B ’)
7n(E ) [n@pE; L8 (E, - By - B
xd%kd%. (18)

It is easy to see that 4,,7, and S,, S, correspond to
induced and spontaneous scattering, respectively.
Far from the temperature of the phase transition
the boson occupation numbers are small n(E) <1
and thus ¢, and 7, are small because they are of

the higher order in ». At the same time below T,
the new phase (Bose condensate) appears where
n(E)>1 and ¢, and i, play the dominant role. More-
over, it will be clear that these nonlinear terms
are responsible for Bose condensate formation.

We would like to stress that the induced and spon-
taneous scattering are two independent processes.
Each of the particles of Bose gas takes part in both
of them and the total number of particles should

be conserved in these processes separately, i.e.,
if

= 3/2

%=il+i2, = fﬁ(E)JEdE=NO,
while if

B s, +s, and 2 fn(E)FdE
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At the same time condition (2) should be fulfilled
for the solution of the total Egs. (5)~(7). Let us
substitute dN(E,)/8E into Egs. (15)-(18) and carry
out the integration over the independent variables
p, and p.. To do this we choose the axis z to be

parallel to Ak and
pak=p,|aK|
=p,m*?[E, +E| - 2(E,E,)*/? cos¢]' /2 V2
(19)
and
E,+E!-2(E\E,)!/?cosp=c¢.

After a simple procedure one obtains

V2 nU3Mm*/?

P nE)T

sl=—

(E,,E!)dk
X 1) ’
| Erm e e 09

V2aTUEMm*/?
ﬁ’?

n(E;)f(El,E;)d:;k (16')
[E,+E]{-2(E,E}) P cosp[' /2’

S, =

V2 rU3Mm*/

i, =- 0 n(El)E1

'xf n(E.{)f(EZ’El’.)d3k (171)
[E,+E! - 2(E,E])*/2cosp]' 72’

. V2aUiMm/?
jo- LI )

n(EDEf(E,,E)d°k (18")
[E,+E| - 2(E,E})* 2 cos¢ /2’

x
where
F(E\,E{)=1+exp[(E,-E|)*/eT- u,/T]. (20)

One can note the properties of f(E,,E!) when
up/T>1 [Egs. (21)-(23)]:

fEL,E)=1 if E, and E{ < up; (21)
fELE)=F(E,) or f(E}) fE,<<uporE!<puL;
(22)

- - - uE
fof(El)dEffo f(Ex)dEi=fo TG mp /T = b
(23)

One will be able to check further that 7, —0 if
E,~0. That is why only the large E, are impor-
tant in Eq. (17’) and thus let us put approximately
E,>E|. (Both E, and E{ are <T. It will be clear

from our development that ¢, and i, are responsible
for Bose condensate creation and thus the impor-
tant energy interval in4, and i, is E <T.)

2 ZM 1/2
i~ \/——Z-W—U;Zq—m—n(El)\/FlNoEa VE, n(E,).

(24)

f(E,,E})=1 because of Eq. (21). On the other hand
it is easy to see that 7,(E,) is dominant at small
E,, so letus put E, <E]and

L2V 2aUiMm/?

i, 77 n(E)F@)=pF@)n(E,), (25)

where
FO~ [ n@n(ED%

Expressions (24) and (25), which correspond to the
induced scattering process, conserve the total
number of particles

fi1<E)de=fi2(E)de. (26)

Applying a similar procedure to the spontaneous
scattering integrals (15’) and (16’) one ends up
with

2T 1 TUE Mm?
S, =- L a " EEnE )= m(E,)  (27)
and
2V 2 nUE Mmt/2 T T
S,=———— " f(E,)N, = =6f(E,) —
2 ﬁ‘l 1 0 ‘/—E—l f 1 \/‘E’

(28)

Expression (27) stems from the integral (15’).
Actually, when 0<E, < T while 0<E} < yi, one ob-
tains Eq. (27) using Egs. (22) and (23) readily. In
the last step of the derivation of Eq. (27) we have
violated the condition AE < T but the more accu-
rate procedure leads to the introduction of the
cutting parameter ~T instead of i, in Eq. (27) and
introduces no new features. Equation (16’) can

be rewritten

V2TrU? Mm”zf n(E))f(EE)) AR
[E,+E{-2(EE, )1/2cosq>]1/2 :

(28)

S =

We shall see that it is S, which is responsible for
the formation of the Bose high-energy tail of the
equilibrium distribution function and thus we are
interested in Eq. (28’) for E, ~ T while E! <T.
These conditions give Eq. (28) without difficulty.
Let us note that

[s.@VEaE-= [s,E)VEae,
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if S, and S, are taken from Eqgs. (27) and (28).
Hence, the particles conservation condition has
not been violated by our approximations. After
the above simplifications we have

iil‘fi_f’_’k (- aVE +BF(®)|n(E, 1) - yn(E,t)JrGf(E)%.
(29)
The solution of Eq. (29) is
n(E,t)=e'°<n(E,0)+%%fte° dx> , (29")
1]

where

¢p=—aVEt- yt+B/{f F(x)dx.
Let us introduce

7=n(E,0)exp <—Otw/-Et+Bj: F(x)dx). (30)
As was stressed above

m3/?
N0=73—f 7(E ,t)VE dE (31)
because 7 is the solution of the equation without
the terms corresponding to spontaneous scatter-
ing:
dn_

=iy tiy=[- aVE + gF(O)]7 (32)

which conserves the fotal number of particles.
Using this condition one obtains

7 =H3Non(E ,0)e"2VEt m3/2<fn(E,0)e'°“/E‘w/EdE> .

(33)
For the big ##>1/T a?
_ a;isNon(E,O) ~avVEt ~ ahsNot -avEi
A o L

(34)

We would like to emphasize that neglecting the
spontaneous scattering processes corresponds to
the case of heat bath of zero temperature. Thus
all the Bose particles form Bose condensate at

t -« because expression (34) is proportional to
S(E)/VE at t—~=. To obtain the solution of the
problem when 7' #0 one can note that

8T [?

oT
L b g, =91 o VEX, B(X)
VE J, e’dx \/_E_fe e dx

=‘£(eﬁ<t)+af§t -1)-G(@®), (35)
where

B(t)=3ft F(X)dx and G(t)=ET- fte“‘ffxde‘“x’,
0

0

Afterwards it is possible to check that G(#)=0(1/¢)
for sufficiently big times ¢#. Inserting Eq. (35) into
Eq. (29'):

T\ T
=p~aVEt-B(t) - DRI 1 ¢ )
n=e [(no E> Ee }

. . T\ T
=g-avEt B(t)(no_-i>+f, (36)
Applying one more condition (2) to (36) and using
the initial distribution [Eq. (1’)] we readily derive
Nt o T\/27 T

n WEG [1— Tc ]+E. (37)
It can be seen that 7T/E coincides with the first
term of the expansion of the Bose distribution
function at E/T <1, the approximation used pre-
viously. Thus it becomes clear that at ¢ - =,

Nofi® 6(E) T \3/2

"= VE [“(rc) |+ (38)
where ¢=(e®/T-1)" is the Bose-Einstein (Plank)
function with the final temperature. Obtaining Eq.
(37) we took into account that for big enough ¢

— ,~aVEt-8(t) __7: o -aﬁt-ﬁ(t)(ﬂ’_l‘
n=e <n0 E> e 7 F

and thus
e = (N, = N,at/(Ty-T),

where
N,= f PE)VEdE.

The distribution function (38) coincides with the
function (1’) which is well known from thermody-
namic considerations.

Considering the classical Bose gas with colli-
sions we should use the above procedure but also
use the second half of the spectra [Eq. (4)]. It can
be shown that

n(E)=At%e2VEt + ¢ (39)

and formula (38) is valid in this case also at ¢ — =,
We would like to mention that in accordance

with results obtained above Bose condensation is
the slowing down process which can be completed
only at ¢ - where the initial temperature of the
Bose system is T=T,. Let us now investigate the
same process for the case when at the initial mo-
ment =0 the temperature is 7,<7T_ and there is
already prepared condensate. Thus we take

n(E,0)=ASE)/VE + ¢ (40)

and the temperature of the heat bath is chosen to
be T =0 for the simplicity. Substituting Eq. (40)
into formula (33) we can obtain
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_T3No Aaté(E)/w/—E_+atTce‘“‘/Et> (41)
" m3/2< Aat+T, E@Aat+T,)/’

Expressions (34) and (41) differ drastically one
from another. If the initial temperature is T, =T,
[solution (34)], the Bose condensate can be formed
at £ - only. That means that there is an infinite
time gap between the beginning of the cooling pro-
cess and the new phase formation.

At the same time if at the initial moment even if
a negligibly small part of the particles already
formed Bose condensate [solution (41)], this new
phase grows up continuously till at # - all the
particles will be in this phase. Thus there is no
time gap in this case. In other words we derived
that the Bose condensation of ideal gas can pro-
ceed much easier if the nuclei of the condensate
are formed at the initial stages.

In order to satisfy the assumptions used in de-
riving Egs. (35) and (39) one can substitute Egs.
(35) and (39) into Egs. (15’)-(18’) and evaluate the
integrals. After that one finds that the assumptions
which led to Egs. (24)-(28) are justified.

Let us note finally that induced scattering cor-
responds to the process which can act in one di-
rection only. It leads to the energy flux from the
Bose system to heat bath, i.e.,’

de_ (dn

—E d3p<0.
dt dt ap

J

Thus, we can conclude a priori that the final dis-
tribution function obtained without taking into ac-
count the spontaneous scattering processes is
proportional to § function. From our analytic solu-
tion one can see that the approach to the final state
proceeds through a set of essentially nonequilib-
rium states and is a nonlinear process. We can
add that this process is not a relaxational one.

IV. ROLE OF BOSE-BOSE COLLISIONS

Let us consider now the role of the collisions
between the Bose particles themselves.

In the small energy region the occupation num-
bers n(E) > 1 and the main term corresponding to
Bose-Bose interaction is proportional to »® while
the Bose—heatbath interaction is proportional to
»n® only.

It is clear that at large times the distribution
function consists of two parts. One of them is
very sharp and another is close to the Bose dis-
tribution with the temperature that of heat bath.
Let us denote these two parts by « and ¢, re-
spectively. It is easy to see that keeping the terms
proportional only up to the second degree of o the
collision term can be rewritten in the following
form:

IBBglaa+Iozo+Io>a+lo (42)
with

I,,=-A? f{j(Aﬁ) S(AEN[a 0, (e +a,) - ao,(a, +a,)] + (a0, - a,0,)td®p, d*p,d%p, ,

l,x@ =—A2 fé(Aﬁ) 5(AE)[O¢1(13(¢2 - ¢4) +a1a4(¢2_ ¢3)_Id 3P3d31>2d3174,

10a=—A2 fﬁ(Aﬁ) 5(AE)[a2a3(¢1' 4’4) +a2a4(¢1" d)s)]d 3p3d3p2d3p4,

°=- A% f5(A§) O(AE)[O&QZ(@;"‘ ¢4) - a3a4(¢1 + ¢)2)]d 3p3d3 2d31’4’

and p, stands for p; while p, and p, for p, and p;,
respectively.

Let us show that there is a significant physical
difference between I, and I, on the one hand and
I° on the other. Actually, we can consider a mix-
ture of two gases assuming further that one gas is
described by the distribution function & and the
other one by ¢. It is possible to write the kinetic
equation for such a mixture of interacting gases
in a symbolic form

_de do d(@¢)

mx gt dt at ’ (43)

(42a)
-
where
e last Lo (44)
Lt (45)
awe) uo)

Equations (43) and (44) form the set of equations
describing the changes in the mixture of two dif-
ferent gases @ and ¢. Equation (45) introduces



the deviations from this picture and the smaller
I° is the more separate are the phases « and ¢
which are described by the set (43)-(45). The
above statement can be illustrated by the proper-
ties of (43)-(45):

azp1 fd¢d3 = (a7)
fEl%% fEl dtd %, =0, (48)
fd“"”ds - [ p,22) L2 a%p, =o. (49)

There are two kinds of energy exchange between
phases @ and ¢. The first one which is described
by do/dt and d¢/dt conserves the number of par-
ticles within each phase as if they were two gases
of different sorts. The second type of energy ex-
change proceeds through the particle exchange be-
tween these two phases. Thus a and ¢ behave like
two different phases. If @ has a sharp and narrow
distribution near E =0, only a small part of the
particles can be transferred to the second phase
¢. This follows from the energetic agreements
given in Sec. II.

We are interested mostly in the elucidation of
the behavior of the phase @ during the cooling pro-
cess. We would like to stress the difference be-
tween the cooling of the Bose system above and
below the critical point. If the initial state of Bose
gas corresponds to u#0, the collisions between
Bose particles are able to keep the system in
quasiequilibrium with the time dependent u and
T. The role of collisions is thus to choose the
quasiequilibrium approach to the critical point at
which p=0. After that there are no more equi-
librium states except the final one [Eq. (1’)] and
the system relaxes through the set of essentially
nonequilibrium states. The collisions cannot
change this.

Let us begin with investigating the second term
of Eq. (42) which is proportional to @®. This term
corresponds to collisions between the phases o
and ¢. If distribution of o is narrow enough, it
follows from the solution (34) that phase ¢ is in
termal equilibrium with its environment and thus
we can consider this phase as an additional heat
bath. So this term can lead to variation of the co-
efficients in the equations that cannot change the
physical picture obtained above.

Let us discuss now the term proportional to a?3.
It is clear that this term describes the collisions
within the phase a. If the distribution function of
o is narrow with the average energy per particle
€, only a very small number of particles propor-
tional to (¢/7,)*/2<<1 can be scattered to the high-
energy direction. To prove it we must remember
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that the @® process corresponds to scattering in
the system which is being cooled to the final tem-
perature T=0. (In this case there is no phase ¢.)
If the heat bath is switched off, the final distribu-
tion must correspond to the temperature T = ¢
(average energy of the system per particle) and
thus the above statement becomes obvious. So «®
scattering processes cannot make Bose condensa-
tion considerably longer. Of course we did not
prove that this term cannot lead to the strong
shortening of condensation time.

V. MEASUREMENTS NEAR THE SINGULARITIES OF
THERMODYNAMIC FUNCTIONS

First of all let us estimate the time parameters
of the Bose condensation process in ideal Bose
gas. The energy of condensing phase per particle
is

€= (R®/ULM*m N2)(1/t2). (50)

Such a slow nonexponential decrease of € with time
is a result of essentially nonrelaxational approach
to the stationary (final) Bose condensate state. We
estimated the characteristic time 7, of the energy

washing out from the system to the heat bath using
the model parameters U,=10"% erg cm?®, N,=10%

em®, M=~m =102 g

7,210%-107 sec

if € ~107% erg. So this time is small when the
energy of condensing phase is big enough. At the
same time one can see that 7, increases strongly
with decrease of the total energy of this phase; for
example, if € ~10"2°~10"%* erg:

7,~10"-10" sec.

In order to understand this slowing down of the
cooling process 7; is to be compared with the char-
acteristic time of the second phase formation:

1/7,~TU Mm® /B ~10% sec™. (51)
Thus
T,/T, =10°-10° (51)

and one can note that the Bose condensate forma-
tion is a much slower process than the ordinary
cooling of the Bose gas with characteristic time
given by Eq. (51). s

If 7, is the time beyond which the kinetic equa-
tion is not applicable® then 7,/7,210°~10° and the
violation of the approximations we have used ap-
pears at very large, macroscopic times.

We do not know to what extent our model de-
scribes the situation in real helium. We realize
that the ideal-gas approximation is a very poor
one for helium below its critical temperature.
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Our model of the heat bath can hardly represent
the properties of the cooling systems usually used
in experiments. The observed 7, is always much
larger than the 7 = 107° sec we have estimated.
But our picture concludes that in an ideally per-
formed experiment (we do not consider the techni-
cal difficulties such as geometry, stirring, heat
resistance and so on) 7,>> 7.
This can be very important for measurements
near the critical point. Because of the finite (non-
- zero) energy of condensing phase the temperature
measurements can be carried out with an error
AT:
AT = €(t). (52)
This error must be smaller than |7 - T,| and the
condition for precise measurements near the
singularities of thermodynamic functions is

et)<|r-T1,, (53)
or using Eq. (51):
t°>const/|T~ T, I*/2, ] (54)

Thus #° is the time the experimentalist must wait
till the energy of the condensing phase becomes
small enough and the measured T represents the
temperature of the equilibrium Bose system at
t—. Remembering that 7 in real experiments

is not too small and using Eq. (51) one concludes
that #° can be very large when |[T- T,|<107 K
even if the experimental (technical) difficulties are
avoided. 1077 K is the accuracy of the temperature
measurements usually used in experiments.3"®

VI. SUMMARY AND CONCLUSIONS

In this work we considered the kinetics of Bose
condensation of an ideal Bose gas. The main re-
sults can be summarized.

(a) An ideal Bose gas demonstrates the forma-
tion of two phases in the momentum space. The
distribution function of the first phase narrows and
grows with time forming Bose condensate at { -,
while the second phase is described by Bose dis-
tribution with p=0.

(b) The time of Bose condensation, or in other

words, the time of the creation of pure quantum
state at p =0, was found to be infinite.

(c) The equilibrium high-energy tail of the dis-
tribution function is the Bose one andis formed
during a relatively short time.

(d) The collisions between Bose particles cannot
make the condensation process to be longer. We
do not know at the present stage if they cannot
shorten the Bose condensation.

(e) It was shown that in order to perform precise
measurements near the points of singularities of
thermodynamic functions of Bose gas one should
wait for quite a long time in order to measure a
temperature which can represent the equilibrium
property of the system at { -, This time #° in-
creases with approach to the critical point (7, - 0)
in ideal Bose gas:

£°> const/|T - T,|1/2,

Several very interesting questions remained un-
answered.

(i) First of all one must explain the finite
time of Bose condensation process observed
experimentally (if we accept that the A-tran-
sition in helium is connected with Bose con-
densation).

(ii) We recognize that the energy spectra we have
used hardly describe the properties of nonideal
Bose gas below the critical point. Thus it is of
interest to consider the time evolution of the en-
ergy spectrum of the system passing through the
critical point. Solving this problem one can follow
the appearance of the superfluidity of the phase «
(our terminology).

(iii) Although we have shown that Bose-Bose
collisions cannot drastically distort the distribu-
tion we have obtained, it is interesting to evaluate
the accurate shape of the distribution a(E,¢) and
to derive a more detailed picture of the time
evolution. This problem can be treated numerical-
ly.

The questions raised here are very intriguing
and they will be the subject of future communica-
tions.
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