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Calculation of harmonic and cubic Einstein force constants in diamond-like crystals~
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A theoretical discussion of isotropic and anisotropic single-particle potentials is presented. A model is
developed for calculating the constants for diamond-structure carbon„silicon, germanium, and tin. Errors in

the isotropic constants are +1%, —34%, —19%, and +35%. For the anisotropic constants errors are +7%
and +22% for silicon and germanium. The temperature dependence of the potential constants is discussed
through a charge-density theory for stretching force constants in molecules and solids.

I. INTRQDUCTIQN

valence-force-field constants, which are those
familiar to chemists, are the coefficients of a
Taylor series wherein the variables are changes
in bond lengths and angles. They are obtained by
solving the equations of motion according to
%wilson's I'G matrix method. ' The procedure
has been successfully applied to the diamondlike
crystals, carbon, silicon, germanium, and tin. '
The bond-stretching valence-force-field force
constants have for these materials been theo-
retically derived from a charge-density theory. '~
In this theory the force constants are dependent
on the value of the charge density centered on an
atom as evaluated at the nucleus of a neighboring
atom. Thermal expansion will stretch the bond
and consequently weaken the force constant, which
is to be demonstrated in this paper.

Einstein's independent-particle force constants'
are used in analyzing thermal atomic distributions
and play a role in x-ray and neutron-diffraction
studies. These force constants occur in Debye-
Waller factors, ' and they have been determined
to the harmonic (quadratic) and cubic level for
silicon and germanium. ' Although they were
originally believed to be dependent on all first-
neighbor and second-neighbor force constants,
in the valence-force-field sense, ' it is found in
this paper that for certain modes of vibrations
in cubic diamondlike crystals an independent-par-
ticle potential may be accurately derived from
nearest-neighbor considerations. IBecause of the
dependence of the Einstein force constant on the
valence-force-field force constant, the tempera-
ture dependence should be similar. This also is
to be shown in this paper.

A generalization of the Einstein independent-
particle force constant, which was originally,

for the purpose of developing a theory of heat
capacities in solids, considered to be isotropic,
is to include anisotropic higher order terms. This
has been necessary to explain (222) reflections of
neutrons in silicon and germanium. ' These reflec-
tions would not occur were the atomic distributions
isotropic. The neutron structure factor for these
materials has a temperature dependence which
suggests the anisotropic force constant depends
on temperature. Estimates of this constant and
its temperature dependence will be made in this
paper.

II. VALENCE-FQRCE-FIELD AND INDEPENDENT-PARTICLE

FQRCE CQNSTANTS

I,et k~ be the valence-force-field bond-stretch-
ing harmonic force constant, that is, the bund

spring constant. In the diamond lattice a unit cell
contains a neighboring pair of atoms. Consider a
unit cell A. —8 with atom 4 at the coordinate origin
and B at equilibrium, a distance R along the [111]
direction. Onfixingthe four neighboring atoms at
their equilibrium positions {representing their
average locations), and moving 2 in the [ ill]
direction, the AB bond contributed k~ and each
other neighbor contributes -', k~ to the stretching
force constant. The total ~ k„also holds for dis-
placements of B in the [110] and [100] directions.
One might expect the Einstein harmonic force
constant ls —k~q but closer examlnatlon shows
this is not so. If the unit cell AB is displaced in
the [ill] direction as a rigid diatomic species,
then the restoring force constant is —,'k~, half the
previous value. In the [110] and [100] directions
it is, respectively, ~ kz and 2k~. I ow-energy, and
high-displacement acoustic modes contributing
heavily to scattering factors will involve super-
positions of unit-cell vibrations in all the (111)
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W(R) -=,' n(x'—+y'+ z')+ P(xyz) + ~ ~ .
(lb)

(lc)

Only terms containing k„are retained. The con-
tributions of the other valence-force-field con-
stants are small (see Table I) and can be derived
by application of the chain rule. Here 8, is the
equilibrium nearest-neighbor distance and n and

P are the Einstein independent-particle harmonic
and cubic force constants. It will soon be seen
that while this expansion is not a rigorous deriva-
tion of n and P, it gives good estimates of their
measured values.

Experimentally, 0. is determined from the tem-
perature dependence of the intensity of x-ray
Bragg reflections. " In this determination the
vibrational frequency spectrum is weighted
heavily on the acoustic modes and weakly on the
optic modes. ' For the acoustic modes the two-
atom unit cells of the diamond structure move as
units to a first approximation, and Eq. (1) is the

directions. The effective force constant for each
atom is then 3 k„ in each [111]displacement direc-
tion. If, then, AB moves as part of awave in the
[111]direction defined above, the restoring force
constant on B is a sum of three diatomic contribu-
tions. If each of these three diatomic potentials is
expanded in a Taylor series in x, y, and z co-
ordinates and only the terms in the symmetry of
the crystal are retained, the following formula
is obtained:

W(R) = p k„~2+ ~ ' (1a.)

W(R) = -', k„(x'+y'+ z') —[ks/(3)'i' R,] (xyz) +

E(222) = 8ibe x(2x/a)s(P/n~)kkf(kT)2, (2)

where b is nuclear scattering length, M the
Debye-%aller factor, a the lattice parameter,
kkl the product of Miller indices, and kT the pro-
duct of Boltzmann's constant with absolute tem-
perature. ' Equation (2) is derived by taking a
classical ensemMe average of Eq. (1c).'

III. TEMPERATURE DEPENDENCE OF o,, P, AND THE F(222)
STRUCTURE FACTOR

The Poisson equation for stretching force con-
stants relates them to electronic charge densities
of the atoms p„'~

ks = 4wZ» p, (R~),

where Z„ is the charge of nucleus b. Generally,
p, is approximately proportional to e ~~:

(3)

approximate potential. It should be noted that
this potential cannot properly account for lattice
dynamics which require third-neighbor interac-
tions, ' as well as some optical properties. Actual
tests of Eq. (1) for a are in Table I. Including the
effects of the other bending and stretching harmon-
ic force constants leads to somewhat improved
estimates, as is shown in the table. The agree-
ment with experiments supports the moving unit-
cell model with only nearest neighbor interactions.
Significantly, Eq. (1) gives just as good predic-
tions of the cubic independent-particle force con-
stant P, as determined from the temperature de-
pendence of the anharmonic structure factor for
neutrons,

TABLE I. Predictions of Einstein force constants n and P in Eq. (2) from the valence
force field. Theoretical values of k& are from Ref. 4 and experimental values from Ref. 2.

C
Si
Ge
Sn

C
Si
Ge
Sn

Theoretical kz

1.24
0.53
0.48
0.41

1.39
0.39
0.34
0.25

Exper imental kz

n (10 "erg/A')

1.28
0.49
0.43
0.32

—P (10"'~ erg/A )

1.43
0.36
0.31
0.20

Experimental kz
plus others

1.65
0.52
0.47
0.34

0.49
0.29
0.24
0.17

Experiment

1.635"
0.785
0.579
0.251 "

0 275
0.20

This includes contributions from the other stretching and bending valence-force-field con-
stants as taken from Ref. 2. These include kz&. , k&e, keei, and k&z, where 8 is the C-C-C
angle, and so on for silicon, germanium, and tin.

bS. Gottlicher and W. Woifel, Z. Elektrochem. 63, 891 (1959).
'Reference 7 of the text.
"D. H. Bilderback and R. Colella, Phys. Rev. B 11, 793 (1975).



ALFRED B. ANDERSON AND JEROME B. HASTINCS 15

2.0—
& Experimental

TABLE II. Calculated and experimental values of the
(222) neutron structure factors for silicon and germani-
uDl .

le 5

I

O

I.O
tL.

0, 5

0
0 0.5 I.O l ~ 5

T (l0 K )

2.0

Si 688
898

1146
1330
1807
1649
728
916

1032
1119
1177

0.204
0.351
0.578
0.785
1.016
1.225
0.668
1.09
1.42
1.69
1.89

0.204
0.354
0.562
0.796
i.040
1.296
0.668
1.14
1.49
1.79
2.05

Fje {10 ' cm)
Calc. Expt.

FIG. i. Experimental and theoretical deviation from
the T~ law for F(222) neutron-diffraction results for Si
and Ge. The theoretical points come from Eq. (2) of the
text using temperature-dependent formulas Eqs. (6) and
(7) and the low-temperature experimental values for G.

and P. The value for g is determined using Eq. (5) and
parameters from SpectxoscoPic Data Relatiue to Di-
atomic Molecules edited by B. Bosen (Pergamon, Ox-
ford, 1970) for Si and from Ref. 4 of the text for Ge.
For Si, g = 3.145 A"' and for Ge, g = 5.164 A '.

where

(4)

(6)

Here k„ l„and 8,' are diatomic equilibrium
harmonic and cubic force constants and the bond
length. Accurate vat. ues for k~ can also be cal-
culated from a related molecular-orbital theory. ~

The temperature dependence of n may be esti-
mated from Eq. (4) for linear thermal expansion
according to the formula

n(T ) =n(T )e ~~+e(r2&-B (T&)3

and for P

p(T2) —p(T&)e e 2 e y [R (T&e)/R (T )ej2

(6)

The neutron scattering results for F(222) in Si and
Ge show a deviation from the T' dependence given
in Eq. (2). When n and P are functions of T in the
"quasiharmonic"' theory, good fits to experimen-
tal data are obtained. ' On using Eqs. (6) and (7)
and expanding P(a, n) ', using the fact4 that rR, & 6,
it is seen that e"E(222)/T' increases linearly
with T. This appears to account in part for the
positive curvature in plots of eeE(222) vs T' for
Si and Ge.7 Figure 1 shows the experimental data,

Reference 7 of the text.

the T' line, and the points calculated using Eqs.
(6) and (7) and experimental values of n(T, ) and

P(T, ) with T, =688 'K for Si and T, =728 'K for
Ge. The calculated and experimental values are
listed in Table II. The fit is improved and the
remaining gap between experimental and theoreti-
cal points suggests core and bond electronic charge
densities may not be constant with temperature.
Analysis of x-ray measurements on the (222) re-
flections in Si and Ge suggests the bond charge
density decreases as temperature increases. 7

This is a reasonable state of affairs as the solid
expands, but the effects on the neutron structure
factor may be somewhat too complicated for the
above charge density model which omits contribu-
tions, due to charge density relaxations, to n and

p.

IV. SUMMARY

A means of calculating harmonic and cubic in-
dependent-atom potentials in solids has been pre-
sented for diamond structure C, Si, Ge, and Sn.
To do this, the harmonic valence-force-field po-
tential is expanded in the symmetry of the crystal.
The determination of the harmonic constant in
this manner is understandable in terms of the
thermal motions of unit cells in the solids. The
effects of thermal expansion on the Poisson equa-
tion for valence stretching force constants from
atomic electronic charge densities allows for an
understanding of part of the deviation of the neu-
tron structure factor E(222) from T' dependence.
The remaining component of the deviation probably
comes from the temperature dependence of elec-
tronic density in the solids and the resulting in-
fluence on a and P.
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