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Electronic band structure of magnesium and calcium oxides
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The electronic band structures of magnesium and calcium oxides are calculated by a combined tight-binding

and pseudopotential method; we show the possibility of having two excitonic transitions in CaO and one in

MgO, which is in agreement with experimental results. We also propose an interpretation of the other
experimental results.

I. INTRODUCTION

Beflectance and thermoreflectance spectra. in
magnesium and calcium oxides have helped to
identify some electronic transitions, from 5 eV
to about 35 eV. ' ' Study of the temperature varia-
tion of the spectra reveals only one excitonic
transition in' ' MgO (at about 7.7 eV), and two in'
CaO (at about 7 and 11.4 eV). This is a result
similar to that obtained with alkali halides where
the conduction d bands play an important role.
For example, the experimental curves show one
excitonic peak in NaC1 whereas there were two in
KC1.' It is widely accepted now that the second
excitonic peak which appears in KCl is associated
with the d-band edge at X.'

We present in this article calculations of the band
structure for MgQ and CaO. Qur results show in
particular that the entire d conduction bands are
situated above the s bands in the case of MgQ,
whereas for CaO, at the point X the 4 states are
below the s states, which creates a situation
analogous, . for example, to that for KC1. The cal-
culated transitions are in good agreement with the

experimental transitions.
MgO and CaO have both insulating properties

such as a wide optical gap (-7 eV in CaO and-8
eV in MgO) and semiconducting properties such
as a wide valence band (- 8.5 eV for the two ox-
ides) and a large dielectric constant (9.8 for MgO
and 11.8 for CaO). For the calculation of the
electronic band structure we have used a mixed
linear combination of atomic orbitals-pseudo-
potential method which has been shown to be both
convenient and efficient in the study of ionic crys-
als 8-~o

The filled bands have been calculated in the tight-
binding scheme. The evolution of those bands in
relation to the number of neighbors and with the
use of several models of exchange potential, have
been studied. In order to obtain a good conver-
gence it is necessary to take into account the
sixth neighbors for negative-negative ion inter-

actions, while the positive-positive ion inter-
actions and negative-positive ones can be omitted
from the second neighbors and on. With a Robin-
son-Bassani-Knox-Schriefer (RBKS) exchange po-
tential" the valence band of MgQ is 8.52 eV wide
while the experimental value is" 8.54 eV; for the
CaO, still using an RBKS exchange potential we
have obtained a width of 8.36 eV and to our knowl-
edge there is no result to compare with.

For the calculation of the conduction states
arising from Q ions we have used the analytic
pseudopotential approach proposed by Bassani and
Giuliano" (hereafter called BG). Apart from
causing a fast convergence of the calculated en-
ergy, this model contains all the essential fea-
tures of the potential, like the nonlocality and
different interactions for the valence and conduc-
tion states. In addition, due to the continuity of
the potential, the method avoids the inevitable
oscillations of the Heine-Abarenkof model. " How-
ever the BG model overestimates the repulsive ef-
fects of the p core states and for this reason the
d conduction states have too high-energy
values' "; this is why we have used a Philipps-
Kleinman" model to calculate the conduction
states arising from the positive ions (Mg and
Ca") whose cores are not distorted by the crys-
tal potential. All these calculations are de-
scribed in Secs. II and III.

In Sec. IV we compare the results of the present
calculation with those obtained by other authors
using other approaches and we propose an inter-
pretation of experimental results.

II. VALANCE BANDS

We shall stress only the approximations used in
giving a brief out1ine of the tight-binding method.
In this method, eigenvalues and eigenfunctions of
the Hamiltonian are obtained by solving the secular
equation
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where H and 8 are, respectively, the Hamiltonian
and overlay matrices constructed with the basis
function P„"».

j, =~ Q e'" ' '» ' » ~(r —r» —R» ).
n

The sum is over the lattice vectors 5„. The wave
function u„(r —7, -R„) represents the atomic orbi-
tal with quantum numbers v centered around an
atom located at r»+R„and ~» specifies the position
of the ath ion in the unit cell. Thus we have to
calculate the matrix elements

(yk
I
0

I
yk, ) g ellk '( Fg q R» T~»)

x (u Ir —~ Io lux(r —r„'-R„')). (3)

In (3), 0 is either a unit operator, or the Hamil-
tonian operator; in the first case we have two
center integrals and their calculation does not

present any difficulty; but in the second case, be-
cause the crystal potential is a sum of ionic po-
tentials, it produces three center terms which are
very difficult to evaluate. In the latter case we
can write (3) as

V(r —R„+7„)lu„(r —~„+r„-R„)).
K

Here e„ is the energy of an electron in the p.th
state of the free ion; the summation inside the
second integral includes all the ionic sites except
when n' = n and a" = ~. We decompose the crystal
potential into three terms as

SR. L R
Vcou + Veau + Vex p

S.R. L.R.where Vcou and Vcou are, respectively, the short-
range and the long-range Coulomb potentials and
V« the exchange term. The integrals in (4) in-
volving Vc,, ean be exactly evaluated; for terms
with Vc,u and V.„we make a spherical average.

In order to study the evolution of the filled bands
in relation to the exchange potential, we have
successively assumed it to be zero, to be equal to
the Slater model" and subsequently to the RBKS
model. " When V., is put to zero, we obtain valence
bands whose width is too narrow while they are
too large with the Slater model. With the RBKS
model we obtain a valence band with a width of
8. 52 eV for MgO while Fomichev et al." by inter-
preting soft-x-ray emission spectra have estimat-
ed it to be 8.54 eV. For CaO we obtain 8.36 eV.

In the RBKS model, the Coulomb term of the
Slater model is screened and replaced by (e'/r)
xe "", with k, =0.82k'(r,' '), where kr is the Fermi
momentum and r, is related to the electronic
density by p

' =-,r,'. Robinson et al." have shown
that, when the dielectric constant is& 4, the be-
havior of their model is the same as if the dielec-
tric constant was infinite; the results we obtain
with MgO and CaQ confirm those eonelusions.

The integrals in (4) have been expressed in
terms of two-center integrals'7 sso, sPO, Ppa and

PPn; we have used the ionic wave functions given
by Clementi" for Mg" and Ca'+ ions, and those
calculated by Watson" for the O ion; the most
important interactions are those between negative
ions; the negative-positive ion interactions are

TABLE I. Energy levels (in Ry) of the valence states
of MgO. The notations are those of Ref. 28, with a nega-
tive ion at the origin. The number at the top of columns
2, 3, and 4, indicates the number of negative-negative
ion interactions.

r„
X5
X4
Ie
I (
K~
Kg
Kp

W(

-1.372
-1,510
-1.645
-1.060
-1,8 10
-1,344
—1.516
-1.634
-1.344
-1.598

-1.211
-1,483
-1.755
-1.151
-1.754
-1.286
-1.525
-1.707

1,3 17
—1.660

-1.182
-1.457
-1.741
-1.183
-1.766
-1,244
-1.554
-1.707
-1.342
-1.678

weak and the positive-positive ones negligible.
We have also studied the evolution of the filled

bands as we change the number of neighbors.
The results show that the positive-positive ion
interactions and the negative-positive ones may be
omitted from the second neighbors and on. In

Tables I and II we show the position of the differ-
ent valence band states with different number of

negative-negative ion interactions; we can see
that to have a good convergence it is necessary to
take into account the 6th negative-negative ion
interactions. For the next band the convergence
is good from the 3rd negative-negative ion inter-
actions.

The energy bands obtained with an RBKS ex-
change potential are plotted in Figs. 1 and 2.

For the two oxides the maximum of the valence
band occurs at the I'» level and the minimum at the
I., level in the ease of CaO but along the direction
Z for MgO. The next band coming from the 2s
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TA13LE II. Energy levels (in Ry) of the valence states
of CaO. The notations are those of Ref, 28, with a nega-
tive ion at the origin. The number at the top of columns

2, 3, and 4, indicates the number of negative-negative
ion interactions.

E(Ry)
&I

1.2-

1,0-

15

15

0.8-

r„
XB
X4
L3
L(
Kg
K)
K3
w(
w(

-0.920
-1,071
-1,416
-0.928
-1.531
-1.026
-1.224
-1.332
-1.084
-1.356

-0.903
-1,067
-1.434
-0.941
-1.522
-1.016
-1.225
-1.344
-1,081
-1.267

-0.902
-1.062
-1,430
-0.946
-1.519
-1.011
-1.229
-1.344
-1.088
-1.268

0.6-

0.2-

0.0-

0.2-

25

electrons of the 0 ion has a width of about 1.8
eV for Mg0 and 0.7 eV for (:aQ. After this band
the next one is that formed by the 2P electrons of
Mg" or Sp electrons of Ca; those bands are
practically flat. We have to note that if we neglect
the exchange potential, the Ca SP electrons band
is above that of the 0 2s electrons.
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FIG. 2. Energy bands of CaO. Symmetry notations
are those of Ref. 28 with the origin at an oxygen site.
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FIG. 1, Energy bands of MgO. Symmetry notations
are those of Ref. 28 with the origin at an oxygen site.

III. CONDUCTION BANDS

A. Preliminary considerations

We have calculated the conduction states as those
of an extra electron added to the lattice which sees
the potential of the filled ionic shells. " A pseudo-
potential should be such that it gives the same dis-
persion relations E(k) as the true one." In fact
there are two classes of pseudopotential.

In the first type, the pseudowave equation is ob-
tained from the true Schrodinger equation by a
mathematical transformation which conserves the
eigenvalues but alters the eigenfunctions. The
core states are explicitly included in such a poten-
tial: for instance the Philipps-Kleinman" potential
is connected to the atomic potential V, by

~,.ly& =I.ie)+g S-~.)&S.laic. &, (6)
C

where
l Q) is the smooth part of the wave function,

E, the energies of the core states, and the sum-
mation is extended for all the core states.

In the second type, the pseudopotential is an
operator that simulates the diffusion produced by
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the true potential in a particular energy region.
That method presents some advantages of calcu-
lation and dispenses with the knowledge of the core
states and the exact potential. Numerous models
have been proposed and the most famous is that of
Heine-Abarenkov'4

90 90 2.4 1.25 0.3

Ag

TABLE III. Values of the 0 pseudopotential param-
eters.

Ve = Vr' (8)

with

where P, is the angular momentum projection
operator and A, and A, are adjustable parameters.
Giuliano and Rugger i" have proposed the following

model:

detl&g, (k-) IH-Ely'„, (k")& I=o. (10)

I
P'„, (k")) is a plane-wave symmetrized combination,

generated by the plane wave lk") = lk" +K") (where
K" is a vector of the reciprocal lattice), that be-
longs to the ith column of the irreducible repre-
sentation I' of the little group Qg.

The matrix elements of the operator II-E can
be written

&0*,.(k ) IH -E
I
0'„(k")&

Z, e'
r + A, (E)/r ' (9)

Z, and ~V, are, respectively, the valence and the
nuclear charge, n, and A. , are parameters which

depend on the angular momentum. We can see that
this form reproduces the correct comportment of
the real potential near the nucleus and at infinity
and avoids the oscillations of the Heine-Abarenkov
model; moreover if there are no occupied states
for a given energy it is sufficient to match the re-
lation (9) with the ionic potential. The parameters
A. , and a, are obtained from experimental data.

with

&k IH-Elk"&

=I- (@'/2~)lk I'-EI~..+&k
I
talk" & (12)

(k li'elk )=S (k —k)&k I&lk"&

+S-(k - k")&k
I

V- lk" &.

S'(k —k") are the structure factors for the two
sorts of ions.

B. Crystal potential C. Results

In Figs. 1 and 2 we can see that the Mg" and

Ca bands are almost flat so that the states of the
positive ions are very little distorted by the crys-
tal potential; thus the pseudopotential has been
obtained by a direct orthogonalization to the ionic
orbitals following in that sense the Phillipps-
Kleinman model. " For the oxygen we have used
the Giuliano and Ruggeri model already used by
BG" for the alkali chlorides and by Jouanin et al.
for alkali fluorides and magnesium fluorides. "
If /&2, there are no core states with such a value
and n, and A, are obtained by matching the pseudo-
potential with the ionic potential; for the occupied
states we took a large value of e, because that
causes a very powerful repulsive effect near the
nucleus. The values of A. , and A~ are then calculat-
ed in such a way that we obtain the optical gap of

MgO; the same values are adopted for CaO and as
we will see in the following, the gap is in good
agreement with the experimental value. In Table
III we give the value of the parameters A, and n, .

The conduction bands are obtained by resolution
of the secular equation

Equation (10) has been solved with a basis of
about 200 plane waves; the results we obtain are
sketched in Figs. 1 and 2.

The behavior of the conduction bands are similar
for the two oxides and can be interpreted from the
free electron scheme. " On the two curves the
minimum of the conduction states is the I', one. The
chief difference between the two oxides is the be-
havior of the d bands; for MgO the minimum of
the d states is situated at L,,' and that state is
above the maximum of the s band; in CaO the
minimum of the d states is at X, which is situated
belowsomes statesbut above I"„so, for CaO, it
is possible to have excitonic transitions both at
I' and at X.

IV. DISCUSSION OF RESULTS

A. Magnesium oxide

The behavior of e„ the imaginary part of the
dielectric constant obtained from measurements
of ref lectivity, is similar to that of alkali ha-
lides' '; it presents a sharp peak at V.V eV, two

big peaks at 10.8 and 13.2 eV, two small peaks at
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TABLE IV. Comparison between the many results which are available for Mgo. No one-to-one correspondence with
experimental results can be established with the results of Ref. 24. The authors of Ref. 25 and 26 do not indicate the
origin of the maximums at 17.4 and 19.2 eV.

Experimental
results Ref. 22

EPM
Ref. 23

Hrs
Ref. 24

HFSC
Refs. 25 and 26

Present work

7.7 (Ref. 1) exciton
7.77 (Ref. 2)
7.83 (Ref. 3)

10.8 (Ref. 1)

13.3 {Ref. 1)

16.8 (Ref. 1)

8.15

13.2
13,6

10.885
10,893
13.04
13,3
16.2

16.39
16.63

I 3
—L2

A3

Z4 Z(
A.3

—- A3

Z4 Z2

11,5

8.9

10.7

13.2

Z, A, Z, U

Z4 Z3'&4 K3
W2 W~,-Z (—Z3

9,38

13,2

16.2

I'(5—I'(

L3-L~

K4 K(

X5—Xi
K4 K(

17.3 (Ref. 1)
16.93
17.0 1
19.92

X4—X3

I ( L3
19 19.2

17.3
20.1

L,-L,'
X4 X(

20.5 (Ref. 1)

24 (Ref, 4), 25 (Ref. 1)

31-40 (Ref. 4)

52-60 (Ref. 4)

20 105 K) Kg
21.2 W3 —W3

21.704 K4 —Kg
24.755 X4 Xg

20.4

21.5

26.1
27
31.5
37
58.7
62

K4 K(

~15 ~25

X5—X(
K4 K(
Lg
X,-X'

4

X X(5

16.8 and 17.3 eV, a rounded maximum at 20.5 eV,

and then a broad and small structure between 23
and 24 eV; only the peak at 7.7 eV shows excitonic
behavior; when the temperature drops it becomes
increasingly sharp and moves towards the high

energies.
The electronic structure of MgO has already

been calculated by a few authors. Cohen et al."
and Fong et al."have used an empirical pseudo-
potential approach (EPM); Walch and Ellis" a
Hartree-Fock-Slater method (HFS) and recently,
Panteljdes etal. ' have obtained self-eonsistent-
solutions of Hartree-Fock equations (SCHF).

For the filled bands, the different approaches
give qualitatively similar results; the chief dif-
ference is the width of the valence band; it is
about 3 eV wide in the HFS model, 5.5 eV with the
EPM one and about 7 eV with the SCHS approach;
as we have already mentioned, we obtain a width
of 8.52 eV, when the experimental value is 8.54

12

For the conduction bands, the disagreements are
more important. Qualitatively our curves are
similar to those obtained with the HFS calculation,
but the numerical results are very different. The
HFS and the EPM approaches and our results

place the minimum of the conduction states at I"y

and anticipate a direct gap; in the SCHF approach
the minimum is at X, and an indirect gap is anti-
cipated; this last approach also anticipates another
minimum at 4 point and so an other indirect
transition is possible; these indirect gaps have
not been confirmed by experimental results. Only
our curves and the EPM ones account for the ex-
citonic peak at 7.7 eV, when, as is noted by their
authors, this is not possible with the HFS and
SCHF results.

In Table. 1V we give the possible interpretations
of the other singularities of the experimental
curves. As we can see the interpretations are dif-
ferent. The authors of the EPM and SCHF calcula-
tions have also calculated e, from their band
structures, and though their curves are similar,
the interpretations are different; as it is noted by
the authors of Refs. 25 and 26 it is possible to
build a band structure from an optical spectra,
but the construction is not unique.

8. Calcium oxide

Whited and Walker' have obtained peaks in their
ref lectivity curves at 6.8, 10, 11.4, 13, 17, 27,
and 35 eV. Only the peaks at 6.8 and 11.4 eV are
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TABLE V. Comparison between the results which are
available for CaO.

Experiment
results

6.8 (Ref. 5) exciton

7.03 (Ref. 2)
gap

7.08 (Ref. 3)

APW
Ref. 27

9.62 F(5 X3

9.71 r»- F,
9.74 X5 Xe

Present work

7.1 F&5
—

F&

10 (Ref. 5)
11.42 (Ref. 5) exciton

12.1 (Ref. 5)

16.9 (Ref. 5)

-27 (Ref. 5)

-35 (Ref. 5)

16.6 2P -d
'p' "

25 2s p

41

9.79
11.75
12,88
17.46
17.54
23.4
24.98
27.9
31.1
33.7
39

L2
X5 X3
K4 Xg
X4 X)

L2
X5—Xg
E'3 K3
Lg L3
F15—F
X5 X3

i5 25

temperature dependent; through lack of band-
structure calculation, the authors have assigned
those peaks to the X,'-X, and X4-X, excitonic
transitions; the others singularities have been in-
terpreted by comparison with MgO.
' Subsequently, Mattheiss" has calculated the band

structure of GaO by an augmented-plane-wave
(APW) approach; those results are very different
in many respects to ours, both for the valence
states and the conduction ones.

The width of the valence band of the APW calcu-
lation is about 1.5 eV whereas we obtain a value
of 8.36 eV. Although this parameter has not yet
been measured, it can be said that it is not very
different from that of MgO. The sequence of the
two next bands is inverted in the two approaches.
The use of two different approaches does not ex-
plain such large disagreements; atomic wave
functions and a Skater exchange potential is used
in the Mattheiss's calculations, whereas we use
ionic wave functions and a screened Slater ex-
change potential; perhaps these differences are
sufficient to explain the disagreements between

the two calculations; let us remark however that
with a Slater exchange potential without screening,
we obtain a valence bandwidth of about 10 eV and
that the sequence of the next band is the same as
that in the Mattheiss calculations if we use an
exchange potential equal to zero.

Mattheiss remarks in addition that the inter-
action between the 3P states of the Ca atoms and
the 2s states of 0 atoms is large, whereas we
have already indicated that this interaction be-
tween Ca ions and 0 ions is insignificant. We
have calculated a second time the filled bands
without Ca" wave functions and the results are
almost the same.

The disagreement is also very considerable for
the conduction bands; the APW results anticipate
an indirect gap I » -X, at 9.6 eV and direct gaps
at I' and X for, respectively, 9.71 and 9.74 eV;
we obtain a direct gap I'»- I', at 7.1 eV. In the
two calculations the minimum of the d states is at
X3 but that state is the abso lute m ini mum in the
APW approach whereas in our calculation it is
the I', state. Let us note a last difference: the
I",, state is about 3 eV above the I', state in the
APW results and in ours it is 7.75 eV above.

Clearly our curves show the possibility of having
two excitonic transitions at 7.1 eV (1'»- I', ) and
11.75 eV (X,'-X,) and that is consistent with the
experimental results. Whited and Walker estimate
the gap at 7.03 eV.

In Table V we propose an interpretation of the
other experimental singularities.

V. CONCLUSION

In this paper the energy bands of MgO and CaO
have been calculated and the results we obtain are
in good agreement with experimental results. The
mixed method of calculation already used in the
case of ionic crystals is also adapted for those
oxides which present a few semiconducting prop-
erties such as a wide valence band and a large
dielectric constant; in particular the tight-binding
scheme gives good results with an RBKS exchange
potential.
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