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We construct a theory for localized electrons in disordered solids similar in spirit and intent to the Fermi-

liquid theory of Landau. That is, for low temperatures and excitation energies small compared to the Fermi

energy, the electrons may be viewed as forming a gas of localized quasiparticles. The phenomenological theory

is presented and applications are made to both equilibrium and time-dependent properties of the glass. A

microscopic justification of the quasiparticle picture is made by an examination of the single-particle Green's

function of the interacting system. The collective properties of the glass are examined by studing the Bethe-

Salpeter equation satisfied by the four-point vertex for particle-hole scattering. This leads to the identification

of the phenomenological effective interaction between quasiparticles with a certain limit of the four-point

vertex and to a microscopic justification of the phenomenological transport equation used to study time-

dependent phenomena.

I. INTRODUCTION

A great deal of theoretical effort has been di-
rected toward elucidating the features of the elec-
tronic wave functions and energy bands in the
presence of a random potential, leading to a qual-
itative understanding of many of the electronic
properties of noncrystalline solids. ' However,
the effects of electron-electron interactions have
received little attention. In this paper we try to
fill part of this gap by formulating a Fermi-liquid
theory for electrons in disordered solids. It is
a generalization of the Landau theory of tran-
slationally invariant Fermi liquids. '

The existence of such a theory was first con-
jectured by Anderson. ' He suggested that phase-
space restrictions on scattering processes near
the Fermi level are relevant in the disordered
system as they are in the uniform one, with the
consequence that a quasiparticle description of
low-lying excitations is still valid. The differ-
ence is that the noninteracting system to which
one makes reference in defining quasiparticle
excitations is a disordered one, so the quasi-
particle wavefunctions have no Long-range phase
coherence and may even be localized. He called
this description a Fermi-glass theory. We con-
struct such a theory here, with special emphasis
on the case where the quasiparticles near the
Fermi level are localized.

Anderson's quasiparticle picture depends on a
one-to-one correspondence, close enough to the
Fermi level, between the eigenstates of the in-
teracting system and those of a noninteracting
one. We therefore require knowledge of the sin-
gle-particle states of this disordered system. Al-
though we do not know the explicit form of these
states the way we do in the crystalline case (where

they are Bloch states), we do have a reasonable
knowledge of their general properties. ' For ex-
ample, we know that they may be extended or lo-
calizeu, in the sense that the correlation func-
tion ( ( 4~(x)~ ' ~4'E(0) (') has infinite or finite range,
and that localized and extended states cannot co-
exist at a given energy E. Critical energies E,
separate a band into localized and extended parts;
their positions are functions of the degree of dis-
order in the potential. For sufficient disorder,
all states will be localized. On the basis of these
established features, we shall assume here that
we know adequately any statistical properties of
the states near the Fermi energy which are nec-
essary to evaluate physically measurable quan-
tities.

Despite our ignorance of the detailed features
of the one-electron eigenstates of a particular
member of the statistical ensemble of systems,
we will sometimes find it useful to have a labeling
scheme for localized states. Although this scheme
is incomplete and has no rigorous basis, it is con-
sistent with what we know about these states from
previous work and is useful for understanding
physically the expressions we write later for vari-
ous quantities. Consider a particular energy E;
eigenfunctions of this energy have a characteristic
extent in space, the localization length l(E), if
they are localized. Part of specifying a state,
then, is saying where it is localized, which we
do by specifying a position %. No 5, of course,
is defined much more precisely than within a lo-
calization length. There are many states localized
near a given 8, and since they are orthogonal to
each other, they must all have different numbers
of oscillations in amplitude within the localization
region. We express these oscillatory features
(admittedly imprecisely) by a generalized local
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wave vector K. %'6 therefore write the general
eigenstate ~n) as

~ B,K). The number of values
of R at a given 5 depends on the localization length
and thus on E; the limit on the precision of defi-
nition of R can be obtained through the uncertainty
principle 6K=1/E(E) Hence there are v(E) [l(E) /
I.]" values of K per unit energy characterizing
states with energy E localized near a given point
R where v(E) is the density of states, L the size
of the system and d the dimensionality. Note that
R is not really a wave vector, and thinking of it
as one too literally can lead to nonsensical re-
sults. It is just a may of specifying the typcial
number of %'lggles 1Q the %ave fUnctlon.

It 18 Rppl. opl"late here to 1'ev16%' the basic feR-
tures of Landau'8 Fermi-liquid theory for the
uniform system. Its aim is to account for the ef-
fects of interparticle interactions on the prop-
erties of a system of fermions at lom tempera-
tures, Landau assumed that the excitations of
the Fermi liquid, like those of the Fermi gas,
could be labeled by their momenta or wave vector
k. That is, in the adiabatic generation of the Fer-
mi liquid from the Fermi gas, no phase transition
which breaks translational invariance occurs,
Landau argued further that because of Pauli-prin-
ciple restrictions on the scattering in and out of
these eigenstates near the Fermi surface, their
collisional lifetimes should vary like (E -Zz)
thus justifying the quasiparticle picture for low-
lying excitations. This argument assumes that no
broken symmetry which alters or destroys the
Fermi surface, such as magnetic order, Mott
transition, or superconductivity occurs. The con-
dition that no such catastrophe occur serves to
define a noxrng/ Fermi system to which Landau'8
theory applies. In this paper me shall also re-
strict our attention to systems which are normal
ln RD RQRlogoUs sense.

A second consequence of the Fermi-surface
restrictions on scattering processes is the fact
that quasiparticle-quasiparticle interactions can
be described by a self-consistent field picture.
The interaction is characterized by the phenom-
enological scattering function f" & (k ~ k') in terms
of which the enex'gy Q~ of R qURslpRrtlcle ln R

state
~
k) is given by

;,"'=,,"'+g gf.»'(k k )~n'~(k ).
y6 u~

The Gx'eek indices Rl 6 spin lndlces which RSSUIQe
the values n = I, 2. In the absence of an external
magnetic field e," = (k'/2m *)6„8 (m* is the quasi-
particle mass) is the energy of a single excited
quasiparticle. The second term in (1.1) describes
the modifications of the quasiparticle energy re-
sulting from interactions of a quasiparticle in a

state
~ k) with the other excited quasiparticles in

states
~
k'). The degree of excitation of the sys-

tem is described by 5 n" s(k) =n" (k) n-'(e„)5„8,
the deviation of the quasiparticle distribution func-
tions n 8(k) from its equilibrium value n'(e, ) (a
Fermi function). A knowledge of f "s&'s(k k') to-
gether with m ~ [or equivalently the quasiparticle
density of states at the Fermi energy v(ev) =m "k~/
w'] provides a complete description of all of the
low-temperature properties of an interacting Fer-
mi system.

The Landau scattering function may be written

f "s&s(k ~ k') ~A(k 0')5„soys +B(k k') o„s~ o'ys,

(1.2)

where'(k k') describes the spin-independent part
of the quasiparticle interaction while B(k ~ k') de-
scribes the exchange interaction between quasi-
particles. The functions A (5 ~ 5') and B(k ~ k') .de-
pend only on the angle between% and & since for
quasiparticles on the Fermi surface ( k I

=
~

k'~ =kv.
The expansion of these functions in a series of
Legendre polynomials defines a set of dimension-
less parameters A. , and 8, . The effects of inter-
actions on the lom-temperature properties of the
system ax'e then expressed in terms of these pa.-
rameters.

The Landau theory is applicable to both equili-
brium and nonequilibrium phenomena provided
that (q, ~) «(k~, e~), where q and &u are the wave
number and frequency of an external disturbance.
To study nonequilibrium phenomena Landau de-
rived a Boltzmann-like transport equation for the
semiclassical phase-space distribution function
n" ( rk, f) by using the quasiparticle energy in
(1.1) as a classical Hamiltonian in the classical
Liouville equation.

In the phenomenological FerIQi-glass theory me
describe below, we shall proceed in as close anal-
ogy as possible with Landau's theory. The quasi-
particle state label k mill have to be replaced by
the formal label n of the exact eigenstates [or
soIQ6tlIQ68 fox' illustrative pUx'poses

q by oui 1Q-

formal labels ( 8, K)], and we shall have to use
a full density matrix in place of the semiclassical
distribution function n" (k, r, f), but the basic
structure mill be the same.

Our paper is organized in the following manner.
In Sec. II me introduce the basic assumptions
underlying the theory and proceed to develop the
phenomenological theory. %6 obtain a phenomeno-
logical Hamiltonian for quasiparticles in terms
of an effective interaction (analogous to the Landau
scattering function). This effective Hamiltonian
is used to obtain a quantum-mechanical transport
equation (analogous to the Landau-Boltzmann .
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equation) which may be used to study the effects
of interactions on nonequilibrium properties of
the Fermi glass. Section III is devoted to some
applications of the phenomenological theory. In
the first part of this section we consider some
static properties of the glass (i.e. , specific heat
and magnetic susceptibility). The second part of
this section considers time-dependent properties
of the glass. In particular we calculate the tran-
sverse dynamical susceptibility y+(&u) (which is
measured in an electron-spin resonance experi-
ment) in the presence of a static uniform mag-
netic field. We also calculate the ac conductivity
o(&u) of the glass. Section IV considers the mi-
croscopic description of the Fermi glass at T =0
and is intended in part to justify the phenomeno-
logical theory. The first part of this section is
devoted to a study of the single-particle properties
of the Fermi glass. We study the single-particle
Green's function and show that for energies near
the Fermi energy the notion of well-defined quasi-
yarticle excitations is valid in the glass. In the
second part of this section we study the collective
properties of the Fermi glass. We study the
Bethe-Salpeter equation satisfied by the four-point
vertex for particle-hole scattering. From a con-
sideration of the poles in this function for small
energy transfer ~ we establish the validity of our
phenomenological transport equation and identify
our effective interaction with a certain limit of
the four-point vertex.

II. THEORY: BASIC ASSUMPTIONS

AND PHENOMENOLOGY

The basic assumptions of our theory are similar
to those of the Landau theory of Fermi liquids and
we briefly state them here:

(i) In the adiabatic transition from the noninter-
acting disordered system to the Fermi glass there
remains a one-to-one correspondence between the
low-lying excitations of the noninteracting system
and those of the interacting system. An excited
state of the Fermi glass corresponds to the oc-
cupation of quasiparticle states j n) with energies
e„&a~ and the occupation of an equal number of
quasihole states

~
m) with energies e &e~. These

yarticle-hole excitations differ from those in the
noninteracting system because of their interac-
tions. The interactions lead to a damping of these
excitations and, as we shall see, the notion of a
quasiparticle is only valid for energies e„near
the Fermi energy e~.

(ii) Our second assumption is that the state of
the Fermi glass is completely determined by a
knowledge of the quasipartiele density matrix

It is a 2x2 matrix in spin space (in the fol-

lowing analysis we shall not write the spin indices
explicitly as we did in Sec. I).

It follows from the above assumptions that the
total energy of the glass is some functional of the
quasiparticle density matrix which for small de-
partures 5n„ from equilibrium may be expanded
in a Taylor series

E[n„]=Eo+g e „5n„

+ 2 Z ~'mnrs«nm«sr ~

mnrs

(2 1)

where in both of the above summations a trace
over all spin indices must be understood. We
have defined the niatrices

e „=(~E/tn „)„„. (2.2)

e.„„,= (V'E/fn. „fn„,)„„o (2.3)

(here n is the equilibrium density matrix, a Fer-
mi function). We note from (2.3) (by interchanging
the order of differentiation) that

@mnrs =@rsmn (2.3')

The first term in (2.1) is the ground-state energy
of the glass. If we define 5J= =E-E, then we can
write

5E =tr(h + —,'5h)6n, (2.4)

where we have used (2.1)-(2.4) to define a single-
particle Hamiltonian for quasiparticles fz =5 + 5h
which has matrix elements in the quasiparticle
state basis

~
m) given by

h „=e „+QC „„,5n,„. (2.5)
rs

In the quasiparticle Hamiltonian h. , the first term
h is the Hamiltonian for a single quasiparticle
while the second term 5h describes the interac-
tions between a quasiparticle and the other ex-
cited quasiparticles of the glass. If we consider
a single quasipartiele, the quasiparticle Hamil-
tonian Pg will be diagonal in the quasipartiele state
basis and we have A „=c „=q 5 „, where c„ is
the energy of a single quasiyarticle in the state
~
n). In the absence of an external magnetic field

or of magnetic order there is not yreferred di-
rections of spin and therefore e„will be indepen-
dent of spin (i.e. , proportional to the unit matrix
in spin space). The effects of interactions are
described by the matrix C „„,which is analogous
to f (k ~ k') in Landau's theory of Fermi liquids.

The quasipartiole density of states v(e) (for both
directions of spin) is defined at finite temperatures
by
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(2.6)

where

(2.6')

At low temperatures I' «'I'~ the quasiparticle den-
sity of states at the Fermi energy may be written

A +g@mnrs mnrs mnrs (2.8)

If we neglect interactions (i.e. , 4 „„,=0) our the-
ory describes a. system of independent quasipar-
ticles and the only modifications of the low-tem-
perature properties of the glass is the replacement
of the free-electron density of states by the guasi-
particle density of states. The interesting modifi-
cations of the noninteracting system arise from the
interaction part 5h, of the quasiparticle Hamilto-
nian. As we shall see, the quasiparticle density
of states together with certain averages of the
matrix C „„,(these averages define dimensionless
parameters similar to the Landau parameters) over
states at the Fermi energy give a complete de-
scription of the low-temperature properties of the
Fermi glass.

In the absence of spin-orbit coupling the most
general rotationally invariant form for 4 „„,is
given by

In Sec. III we shall use the self-consistent single-
particle Hamiltonian (2.12) to calculate various
static and dynamic properties of the Fermi glass.

In general one is interested in calculating the
linear response of the Fermi glass to a weak time-
dependent, nonuniform external field of frequency
a«er (k = 1 in our units) and wave vector q. The
Hamiltonian for a quasiparticle in the presence of
the external field is obtained from (2.12) by making
the replacements -It + V(r, t), where the interac-
tion energy of a quasiparticle with the field may be
written

(2.13)

The average value of a dynamical variable A (i.e. ,
current, magnetization, etc.} is given by

(2.14)

where A', Pt is the Fourier transform at wave vector
q' of the single-particle operator A'~(r) corre-
sponding to A. , and the trace in (2.14) denotes both
a trace over spins and tiuasiparticle states

~ n).
%'hile for a crystal q =q' modulo a reciprocal-
lattice vector, q and q' are in general independent
in a random system. In order to calculate the
statistical average in (2.14) we need to determine
the deviation 5z of the quasiparticle density ma-
trix from its equilibrium va.lue. That is, for time-
dependent problems, we must solve the equation
of motion of the quasiparticle density matrix:

A. „„,describes the spin-independent part of the
quasiparticle interaction and 8 „„,describes the
exchange interaction between quasipartic les. It
is convenient to write

5n„=5f„+5+„a, (2.9)

where we have defined the matrices

(2.10)

(2.11)

h „=e„5„+2+A„„,5f,„+2cr ~ QB „„,54,„.
(2.12)

(here tr, denotes a trace over spins). 5f„and
5+„are the number density and spin-density
matrices, respectively. One finds that the quasi-
particle Hamiltonian may be written in terms of
5f and 5q as

(2.iS)

obeyed by the quasiparticle density matrix. Equa-
tion (2.15) in our theory is the analog of the Lan-
dau-Boltzmann equation in the Landau theory of
Fermi liquids.

We observe that after linearizing (2.15) we will
have an integral etiuation to solve for 5n(&o) as can
be seen by recalling (2.5).

It should be clear from (2.14) and (2.15) that
(A(q', q, v)) is a functional of the parameters of
our theory. That is, the statistical average in
(2.14) will in general depend functionally on the
quasiparticle energies &„and the interaction ma-
trix @ „„,. These parameters are random vari-
ables describable by a probability distribution
function. In order to compare calculated quantities
such as (A(q', q, u&)) with the results of measure-
ments we must perform a further configurational
average over an ensemble of random systems. We
denote such a configurational average by a sub-
script c. If the configurational statistics are ho-
mogeneous, off-diagonal (qwq') elements of
((A. (q', q, &u))), will vanish.
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The specific heat at constant volume t"„ is given
by

c ( ) (3.1)

where E =E —p, (N) is the free energy of the glass.
If we recall (2.4) the deviation of the free energy
from equilibrium is given by

5E E E, =t-r(h —l)) 5n+ —,
' tr5h5n. (3.2)

The change 5n in the quasiparticle density matrix
arises from the thermal excitation of quasiparti-
cles and is given by

enp
5n =n'(T+5T) -n'(T) = 5TBT (3.3)

III. APPLICATIONS OF THE PHENOMENOLOGICAL THEORY

A. Static properties

1. Specific heat

so that

C„=—', )) hsv(p) T. (3.11)

2. Static magnetic susceptibility

If we apply a static magnetic field Hp:Hpz to
the glass then the quasiparticle Hamiltonian may
be written

h =h —2gppIIpg, +5k . (3.12)

In the presence of Hp the glass will be in a state
of constrained equilibrium and we may write the
quasiparticle density matrix as

As in the uniform Fermi liquid, the low-temper-
ature specific heat is not affected by the interac-
tions between quasiparticles. The only modifica-
tion of the noninteracting theory is the replacement
of the free-electron density of states by the quasi-
particle density of states.

for an infinitesimal change 5T in the temperature.
Since

n'(h) =n'(h) +5n, (3.13)

n'(T) =(e t" "~+1) ',
we can write (3.3) as

sn' (h —l), )
Gh T

(3.4) where nc is a Fermi function. If we combine (3.12)
and (3.13), we find that the deviation 5n of the
quasiparticle density matrix from equilibrium may
be written

If we substitute (3.5) into (3.2) we have
On

5n =
h

(5h ——,'gp. eH, o,). (3.14)

5E =2 g (&„—q)' — +O((5T)'),Bn

Bcq T

(3.6)

We want to calculate the average magnetization
(M) =yH, produced by the external field. This is
given by

where we have observed that the second term in
(3.2) is of O((5T)') since 5h-O(5n). If we recall
(3.1), then we can read off from the above equa-
tion that

(3.7)

(lVI) =-,'gps tro 5n. (3.15)

We note from (3.14) and (3.15) that only the spin-
dependent part of 5h will contribute to (M) since
the spin-independent part of 5A. will vanish on
taking the trace over spins in (3.15). If we recall
(2.11), then (3.15) becomes

which may be written (M) =gl), ~ Q 5g„„. (3.16)

=1 2 an'
C„=— de v(e) (e —g)'—

V 86
(3 8) On multiplying both sides of (3.14) by o and taking

tr we find
At low temperatures we may use the Sommerfeld
expansion

enp

eg 6P p,
=5(e —g) + 25 (e /l) +0

in (3.8) and find

]C„= q de 2 [v(e) (e —p. ) ] 5(e —)u),6P2 T p
dC2

(3.10)

p

))f„= 2 EB Z„—5—,'), g H„, „)),„„),
rs

(3.17)

where we have used (2.12). Equation (3.17) is an

integral equation for the spin density which in gen-
eral does not have a solution in closed form. We
can however obtain a series solution for 5+„by
direct iteration of (3.17):
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0

tl

(3.18)

If we recall (3.16), we find the static magnetic
susceptibility may be written

Z=l(gp, )'v(l-) &B)+~'&B'&-" ), (3.19)

where we have used (2.6) to introduce the quasi-
particle density of states and have defined the
dimensionless parameters

&X, &
= (gp.,)'~/4(1+B. ), (3.21)

where the parameter B, is defined by the series

(1+B,) '=(1 —v((B», +v'&(B'», — ). (3.22)

As in Fermi-liquid theory the parameter Bp must
be determined experimentally. The nature of the
exchange interactions in the glass determines the
algebraic sign of Bo. If Bo&0 (Bo&0), then the ex-
change interactions in the glass are antiferromag-
netic (ferromagnetic), leading to a reduction (en-
hancement) of the susceptibility. If B, is negative,
then the stability of our assumed paramagnetic
ground state requires that Bp& 1, since for Bp
= —1 the interactions lead to a ferromagnetic in-
stability.

(a) =-'E (-2,'" ~„,„,„,„.(-2,'"
tip tl2

96„8
(3.20a)

.(a)=-' E (-2 '"')a„,„,„,„,(-2,'"'
)

ny tl2 ngn4

enpxBn3n~n4n4
&n4

(3.20b)

and so forth. The configurational-averaged sus-
ceptibility ( y&, is then obtained by replacing each
term (B") in the series (3.19) by ((B")),.

In the absence of exchange interactions ((B")),=0
for all g and the configurational-averaged suscep-
tibility (y&, = —'(gi), e)2()(e„) is a Pauli-like suscep-
tibility which is identical to the result one would
obtain from Fermi-gas theory by simply replacing
the free electron density of states by the quasi-
particle density of states. The modifications of
the susceptibility arising from the exchange inter-
actions are given by the series in (3.19). In anal-
ogy with Fermi-liquid theory we can define a sin-
gle parameter Bp to represent the effects of the
exchange interaction on the configurational-aver-
aged susceptibility of the glass. That is from
(3.19) we can write

x&RR~ B~ R'R'&

gq R', K' (3.24)

(We have simplified notation by not writing the
matrix indices of B twice. ) If the quasiparticle
interactions are short ranged, or, more pre-
cisely, their range is much less than the localiza-
tion length, only terms with R =R' contribute.
Then (3.24) contains an average of the quantity

(H, K~B~ H, K') over all localization regions R,
with the constraint that c( H, K) and e(R, K') must
be within =T of the Fermi level. within a particu-
lar localization region, two states

~
H K) and

~
R K') will have energy Ez only if the two wave

functions have about the same number of oscil-
lations: ( K( =~ K'~. This gives them about the
same kinetic energy; they both have about the
same potential energy because they are localized
in the same region R. So fox a given region 8,
there will be a particular magnitude of K and K',

A necessary and sufficient condition for the
stability of our theory is that the series in (3.22)
converge to a positive number. The general con-
ditions for the convergence of such a series are
beyond the scope of this paper. However, we note
that if

v ((B"")&, (3.23)
g -mao «Bn»

then the series in (3.22) is absolutely convergent.
If we recall (3.20a) we see that (B) is the average

of the quasiparticle exchange interaction B „„,over
states at the Fermi energy. An interesting theo-
retical situation prevails if the following two con-
ditions are met: (i) the configurational average
of the quasiparticle exchange interaction vanishes
(i.e. , ((B)),= 0) while there remains other nonzero
terms in the series (3.22); and (ii) the series in

(3.22) diverges. This situation might appropriately
be called a "Fermi spin glass. "'

The meaning of the formal expressions (3.18)-
(3.20) we have derived can be made more tran-
sparent by an approximate treatment in the con-
text of the informal (H, K) representation we dis-
cussed in Sec. I. The first-order correction to

it [Eq. (3.20a)] becomes
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which we call I4~(B), a sort of local Fermi mo-
mentum, for which e(K, H) =e(K', Jl) =E~. [K~(N)
will be large in deep trap regions and small in
shallow ones. j In this picture, the K and K' sum-
mation in (3.24) becomes an integral over a local
Fermi surface. In a transparent notation,

z &» =
z {&,(&)), (3.25)

B. Dynamic properties

l. Dynamic susceptibility: Application to electron-spin resonance

In an electron-spin-resonance experiment one
applies a small uniform rf magnetic field b(t)
transverse to an applied dc field H, . If the fre-
quency u of the rf field is near the resonance con-
dition ~=g p, ~IJ0, then the rf field will induce mag-
netic dipole transitions between the Zeeman levels
and produce a net transverse magnetization M, (&u)

proportional to the applied rf field. The linear
response function for the driven spin system is
the frequency-dependent transverse susceptibility
)t+(oz), which we now calculate.

The guasiparticle Hamiltonian can be written

h =h —,'(gp. H—s~o) +5h, (3.2 7)

where H=EIoz +b(t). It is convenient to introduce
the quantity 6g which is the deviation of the quasi-
particle density matrix from local equilibrium and
is given by

zz =zz'(h) + 5n =zz'(h) +5n, (3.23)

and in the same way, (3.20b) can be expressed as
v (80(R))„. Each term in the series (3.19) be-
comes an average over localization regions of a
power of a local Landau coefficient B,(A), and

X =l (gtz, )'z {[I+&.(&)] ')~
M, (~) =-,'gpzz tro, bzz= y, (~—) b(~), (3.31)

where o+=o„+io, and b =b, +ib, . If w. e use (3.29),
then AI, (&u) may be written

g 0

M, (~) =-,'gtz, t», bzz +
sh l5h —2(gwsH o)j

(3.32)

It is clear from (3.31) that we may write 5n =5~I o

since the 5f term in (2.9) will vanish on taking
the spin trace in (3.31). With this in mind we may
write the interaction part of the quasiparticle
Hamiltonian as follows:

5h„.=2 g „I.I„,5 ,„zz+2 pa„.„,
'"

5h, „

g
0

——,'(gp, st ~ o) 2 QH„„„—"—,
r r

where we have made use of (3.29). From (3.33)
we see that 5k~ and 5h ' satisfy the following
integral equations:

(3.33)

en0a„.„,—,
'"—5h',"„'

——,'-(giz, a,o, ) 2 Qa„„„„ (3.34)

+[h, 5~] ——,'gl, a, [o,, 5n]+[5h'", 5n].
(3.30)

In (3.30) 5h~" and 5hi" are the parts of 5h which
are first and zeroth order, respectively, in the
small rf field b(t).

We want to calculate the transverse magnetiza-
tion M+(&~) produced by the rf field. This i. gi,ven

by

so that from the above equations we have

0

5n = 5zz+ - -[5h ——,(g p, ,H o)] . (3.29)
5h&". =2+a„.„,be,„+2+II„.„,—'" 5hP

The reason for introducing 5g is that it facilitates
the linearization of our transport since 5' is pro-
portional to the applied rf field while Ding contains
a piece which is zeroth order in the applied rf
field. This zeroth-order piece gg 0 i.s proportional
to the dc field H, and already appeared in our
earlier calculation of the static susceptibility.

If we substitute (3.27) into (2.15) and use (3.28) and

(3.29) we obtain the linearized equation of motion

. 0

& (g&"8 o) g Hnmrr
r r

(3.35)

In order to calculate 5zz we need to solve (3.30),
(3.34), and (3.35) self-consistently. We look for
a solution of the form

(3.35)5zz„k) =&(~) —,
—[-k(glz, b o)]5. ,

where A(&u) is to be determined. If we substitute
the an .atz (3.36) into (3.35) we find

0 0

5h„".(~) =--,'-(gtz, b o) l&(~)+Ij2 Q&. „„—"- -+2+It„.„,,
rs

(3.37)
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If we iterate (3.3'l) we obtain the following series solution:

o eno 0
55„' (a))= ——,(B5, 5'5)[B(5)5(](2I B„„„++2B„„2B„„+~ ~

)r
96'„

(3.38)

In the following analysis it will also be useful to have a series solution for 5h(B). Iterations of (3.34) pro
duces the following equation:

0 0 0
(o)—5(I„=— (BB, B 5, ) B B„„, +F 8 „„B„,„+ ).

r
ee„+~ " a&,rst ee,

(3.39)

If we substitute the ansatz (3.36) into our time
Fourier-transformed equation of motion (3.30)
multiply both sides of the resulting equation by

o+ and take the trace over spins we find on using
E(ls. (3.38) and (3.39) thatA(e) satisfies

[A ((2)) ((2) -gy, s Ho) +(2)]S„=0,
where we have defined

(3.40)

SB = +g +BBB2'
r

eno ano
(3.41)

For S„y0 we have from (3.40) that

A((u) = —(u/((o -g)usao) . (3.42)

If we combine (3.42} and (3.36}, we can write the
deviation from local equilibrium as follows:

0

(d gp'8 Ho ~~n 2

2. ac conductivity of localized quasiparticles

In order to calculate the ac conductivity o((d)
of the Fermi glass we must first obtain an ex-
pression for the current produced when a time-
dependent external electric field is applied to the
glass. For a noninteracting system one simply
solves the linearized Liouville e(luation for 5n((2))

and calculates the induced current from the stan-
dard expression

J((2)) =e tr V5n((d), (3.45)

where the velocity operator is given by

in our theory. The reason is that the electron spin
resonance frequency is the rate of precession of
the total magnetization of the quasiparticles which
is a constant of the motion (i.e. , commutes with
the microscopic Hamiltonian including Coulomb
interactions in the absence of spin-orbit interac-
tions).

(3.43) t V=[r,h] (3.46 )

The many-body effects which are contained in the
terms involving 5h ' and 5h + in (3.30) have not

appeared in the solution (3.43) and the function

5tf„(&u) is resonant at the free-electron Larmor
frequency ~~ =g p.~Ho. The remainder of the cal-
culation is straightforward. We substitute (3.43)
into (3.32) and make use of (3.38). After a little
algebra one finds that the configurational-averaged
transverse susceptibility (y, (up)&, may be written

t50=[r, 5@] . (3.46)

If we include this contribution the induced current
becomes

(h is the single-particle Hamiltonian}. In the Fer-
mi glass the change 5~ in the (Iuasiparticle density
matrix, produced by the external field, produces
a change 5h in the quasiparticle Hamiltonian and
therefore a first order (proportional to the applied
field} change 5'f in the velocity operator given by

(y, (~)&.= -($&.gp, ff, l(~ -gi), If, ), (3.44) J((2)) =e trnB(h)5V((2)) +e trV5n((2)) . (3.47)

where (l(&, is given by (3.21). We see from (3.44)
that all of the many-body effects in (g ((d)&, are
contained in the static susceptibility. In particular
we note that the position of the electron-spin reso-
nance occurs at the free-electron Larmor frequen-
cy ~1, =gp,~Ho and is not affected by the exchange
interactions. We could have anticipated this re-
sult since we have not included spin-orbit coupling

5 =I +5I +V(t),

where

V(t} = —eEoxe '

(3.48}

(3.49)

If we apply a time-dependent electric field E
=Eoxe '~' ((d =(2) +t 0) to the glass the (Iuasiparticle
Hamiltonian may be written
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The linearized Liouville equation becomes If me observe that

M„„(f)=e-""-' "&'5n„„„(~),

In order to solve (3.50) it is convenient to intro-
duce the auxiliary function 5g defined by

which when substituted into (3.50) yields the fol-
io@ring equation:

then we find from (3.54) that

5n.„(~)=(6a„„-eZ, X„„)I.„„((u),

vrhere me have defined the function

L„„((u)=[n'(e„)-n'(e )]/((u-e +e„+fq).

(3.56)

(3.5 "i)

5i (t) =e'"'5I (f)e (3.53)

and similarly for V (t) We .easily solve (3.52)
ob ta1Qing

M.„(f)=-f df'e-" -' ""&"

&&[5k „((u) —eE, X „][n'(e„) -n'(e )].
(3.54)

O» taking the tr, of both sides of (3.56) we find
that the spin-independent part of the quasiparticle
density matrix satisfies the equation

ef .(re)=(2I X „ef -eX,„X „)„I.„(re).

(3.58)

by iteration the series solution of (3.58)

ilf „( )= —eX, (X ++IX„,X„I,„(re) eI 2X,I„(re)2X,„„X„I„(re)+ ~ )I „(re).
F8 rat tI

(3.59)

By making use of E(ls. (3.45'), {3.46), and (3.47)
it is easy to sho+ that the current may be written
in the forln

where vre have defined the function

I.„„((u)=I. „((u) -I. „(0). {3.62)

Jlre) =2el (I„(llf „(re) —1,2X„„„,ef„(re)I- „(r()),
tftff rs

where the second term in the above expression is
the analog of the "backflow current" in the Landau
theory of Fermi liquids. ' If we make use of (3.58)
then we can write (3.60) in the form

We note that when f1 „„=0 E(I. (3.61) reduces to
the Kubo-Greenwood formula for noninteracting
particles. ' Since the interaction (3.61) always ap-
pears multiplied by I „((u) we can immediately
deduce that there are no interaction effects at zero
frequency. The real part of the dc conductivity
vanishes as in the noninteracting case' since
I. „(0)=0. If we observe that

J((u) =2e g V„+2ft „„,1.„„((u)6f,„((u}
t@jt t'S

—eX,X.„r,.„(re)), (3.61}

I „((u) =(uI „((u)/(e —e„)
then on substituting (3.59) into (3.61) we find that
the ac conductivity is given by

e(re) =2'e'(I X„I„(re)X„(e„—e„)ere I X„„Z, „l ) 2X. , Z,„( )X„

~ re I X„ I. „( )Ie( „„I,„( ) I„(2X)X„+ ) . (3.64)

From (3.64) we obtain an expression for the real part of the conductivity
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Beo(&u) =-2e'~1m' I.g(2AQ" x =-2e'~lmx ~ L(1-2AL) 'x
n=o

(3.65)

where A and X are matrices with elements

(1,1, IA. I l, l~) =A. . . , , (1,121@1,l~) =I ... 5, , 5... , (3.66)

and x is a vector vrith components X „. EKplicitly

x "Lr(2AIr) x g (x~ i Li ~ (4)) 2Ai
~ i ~

' ' ' 2A~' i i i Iwi i (4))g )
4."' bn+a

Since I is the only complex quantity in these ex-
pressions. The iDlaglnary part of the '/th order
term in (3.65) is proportional to

lmx I.(2AX)" x=-gx (2I.*A)'-'

x 1mL(2AI )n+I-r ~ x

in the same matrix notation. Hence

Hea((o) =-2e'(ox Q (27*A)"lmI. Q(2AI. )"' x
c-0

=-28'&ux ~ (1 —2I *A) 'imL(l —2AL) ' x.
(3.69)

x-x' = (1 —2AL, )-'x

(3.'lo) is simply the Kubo-Greenwood formula
valid for noninteracting quasiparticles. Mott's
al gument fox' the x'esultlDg frequency dependence

(3.Vo)

(3.71)

then goes through in essentially its original form.
The frequency dependence remains of the form
(3.'ll); only ihe magnitude of o is affected by the
vertex cox'l ectlons.

Thus, except for the vertex correction to the posi-
tion operator

prohibits an electron from scattering into an oc-
cupied state.

In thl8 section We %i11%'ork ln R basis Qf stRtes
I n) in which the exact single-particle Green's
function 6 is diagonal. Ihs, this basis G satisfies
the usual Dyson equation

G.-'(E) =Z —e'."-Z.(E) .

In order to prove Anderson'8 conjecture that there
exist vrell defined quasiparticle excitations in the
Fermi glass @re need to examine the irreducible
self-energy Z (E) in Eq. (4.1). We will examine
Z (E) by using self-consistent perturbation theory,
in @which the fermion lines in all diagrams rep-
resent exact propagators G (E), and we omit all
diagrams with dressings on the propagator lines.
The first-order contributions 'to Z (E) correspond
to the standard Hartree-Fock diagrams. These
diagrams give a real, energy-independent con-

A. Single-particle properties

The existence of the Fermi-glass theox'y vte have
constructed depends, like the Fermi-liquid theory
of Landau, on the notion of vrell defined quasi-
particle ezcitations near the Fermi energy. The
pux'pose of thl*s subsection 18 to demonstx'ate
t at the same phase space restrlctlons on elec-
tron-electron scattering that exist in the Fermi
liquid are also operative in the Fermi glass. As
in the liquid, the physical basis for those restric-
tions lie lD the Pauli exclusion priDclple %which

FIG. 1. Two second-order diagrams contributing to
lm Z„(E). The solid fines are exact single-particle
propagators and the dashed l.ines represent the el.ectron-
electron «nteract«on.
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tribution to Z (E) which corrects the single-par-
ticle energy e . The first contribution to Im& (E)
(and therefore to the quasiparticle lifetime) comes
from the two second-order diagrams in Figs. 1(a)

and 1(b). We will consider in detail the diagram
shown in Fig. 1(a) [the diagram in Fig. 1(b) leads
to similar results].

The contribution of the diagram in Fig. 1(a) is

" dE'dE"
Z„(E)=Q V„„,U, „„(22 G (E')G, (E")G„(E+E"—E').

mrs
(4.2)

To proceed, we introduce the zero-temperature spectral representation for G„(E)

(4.3)

where A„(x) is the spectral weight function, f '(x) =e(+x) [e(x) is a step function] and fi =0+. If we
substitute (4.3) into (4.2), we find

Z„(E) = Q V„~„d V, „v dx~dx2dx3A (x~)AA(x2)Av(x3) . +
f (x )f'(x )f (x ) f'(x, )f (x, )f'(x, )

Since the spectral weight functions are by definition real we have

(mZ„(d) = —dg V„„,V,„„,f dx, dx. (A (x, )A, (x. )A, (x, x*,-d)(f'(x, )f'(x. )f (x, + , x)d-
mrs

(4.4)

-f -(x, )f -(x, )f'(x, +x, —E)]] . (4. 5)

A„(x,) =Z„6(x,—e„) . (4.6)

To show the self-consistency of this ansatz is the
aim of this subsection. If we substitute (4.6) into
(4.5), then to O(E') we find that 1m Z„(E) has the
form

lm Z„(E) = —-g E' V,.„,V,.„„Z.Z„Z,
mrs

x 6(e.-)I')6(c,-q')6(E q e + e ).

(4.7)

We find the same proportionality to E' that char-

There are two cases to be considered in (4.5):
(i) E &0 and (ii) E&0. We shall only consider the
case E ~0 since E &0 can be similarly analyzed.
For E &0 the term proportional to f (x, )f (x2)f+ (x~
+x, E) vanishes d-ue to an incompatibility of the
step functions. If we consider the limit E»O+ in
the remaining term, then because of the step func-
tions the only contribution from the integral comes
from x„x2-0+ for x, +x,&E. Since all energies
in (4.5) are then near the Fermi energy (er =0) we
make the quasiparticle ansatz for the spectral
weight function

acterizes the quasiparticle decay rate in the nor-
mal uniform Fermi liquid. It arises because of
the restrictions on the region of integration in
(4.5) imposed by the Fermi functions f '; x~, x2&0
and (x, +x, ) &E. The part of 1mZ„coming from
Fig. 1(b) gives a contribution of the same form,
that is, a series of 5-function spikes modulated by
a factor E'.

In general we can write a spectral representa-
tion for Z„(E) which has the form

G (E((())
Zn(E) Q E E(n) ~~ E((() (4.8)

That is, g has a set of poles E =E" +ig with resi-
dues C (E"l) ~E~) .

This form is valid in a finite system (of arbi-
trary size). For a uniform system, as the limit
of infinite size is taken, the number of poles
grows like the size of the system while the resi-
dues of the individual poles scale like the inverse
of the size. Hence Z (like G) acquires a branch
cut singularity. When the states of relevance (i.e. ,
those near Ez in this case) are localized, however,
the analytic structure of Z in the infinite-volume
limit is rather different, as Anderson' has pointed
out for the case of the Green's function in the non-
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terval as the end point is approached the corre-
sponding residues decrease in successive inter-
vals. In an interval for which the shift is —,'5 the
residue will be decreased by roughly a factor of
2 relative to the residue at the root in the first
interval. Therefore let the shift in the Nth inter-
val be —,'6. Then from (4.14) & is given by N5'/8C
= —,'5. If we define the midth in energy I'=X5, then

(4.15)

This is the desired result, since C is proportional
to the square of the energy (measured from the
Fermi energy) Th. us the behavior of the envelope
of the spikes in the spectral weight function for the
Fermi glass is the same as that of the spectral
weight function itself for a uniform normal Fermi
liquid. In either case lmG can be approximated
as well as one wants by a single spike at the quasi-
particle energy, provided that the energy is close
enough to the Fermi level.

Higher order diagrams should not change this
result. They can be analyzed using the reduced
graph expansion of Langer' and Ambegaokar' and
(to leading order in E) only affect the magnitude
of (4.7), not its E~ dependence.

B. Collective properties

The intent of this section is to give a micro-
scopic basis to the phenomenological transport
equation introduced in Eq. (2.15). In the course
of this analysis we shall also relate the phenom-
enological effective interaction C, [see Eq. (2.1)]
between quasiparticles to a quantity which can in
principle be calculated microscopically. In writing
this section we have followed as closely as pos-
sible the original mork of Landau. '

The four-point vertex for particle-hole scat-
tering in the glass satisfies the Bethe-Salpeter
equation

(4.16)

In (4.16) I"n„,(e, e', &u) is the irreducible four-
point vertex for particle-hole scattering. The
Bethe-Salpeter equation (4.16) is shown graphi-
cally in Fig. 3.

We are interested in I' „„(e,e', &u) for energies
near the Fermi energy &~ =0. By virtue of the
results of Sec. IVA the exact Green's functions
in (4.16) may be written at T = 0 in the form

G, (E) =Z, f, /(E —e, —iq)+Z, f~/(E —e~+iq),

(4.17)

(4.19)

withe =g . Wenotethatlimg —,fore-0and~ —,—0
is not mell defined since it depends on the order
in which the two limits are taken. We define the
limit I' (e, e') of I'(e, e', m) by first performing
the sum over states e—=e—, in (4.16) keeping v
finite and then letting ~-0. If we use (4.18) we
find that

where all quantities appearing in (4.17) have been
previously defined.

The poles in the four-point vertex I' „„,(e„e„&u)
as a function of the energy transfer & in a scat-
tering correspond to the collective modes in the
system. In (4.16) we expect some singular be-
havior in I' „„,(e, e', ~) for ~-0 since for e-=e,—=0
the poles of the two internal propagators in (4.16)
coincide as &-0 and &—=e- —e;-0. A gener-
alization of the argument given by Landau' leads
to the result

lim G—(E + up) G;(E) =G,—'(E) +iR (E, (o, &o—), —
QJ ~ 0

where we have defined the quantity

(4.18)
FIG. 3. Graphical representation of the Bethe-Salpeter

equation (4.16).
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(4.20)

If we take the limit (d-0 in (4.16) and use (4.18), we have

)
(,) (,)

. " dE~, ) ( ),( )
)w(s , t s(ala-(e;-)(a —

)

p(d (I +p(1)GR) lp(1) {4.23)

On writing a similar equation for (4.21) we have

(4.24)

%'e can eliminate I"~'~ from the above equation by
combining (4.24) and (4.23). We find that

+P RI'.
[Equations (4.22)-(4.25) are analogous in form to
equations found by Landau for the uniform Fermi
liquid. ] In the limit &o 0 (i.e., near the pole of I')
I"»I' so that (4.25) may be written as the follow-

ing homogeneous integral equation:

In (4.21) we have set a& = 0 in I'~n since it is a regu-
lar function of (d. If we write (4.20) m Rn obvious
matrix notation, we have

p(l) ~p(1)g2 ptt)

which may be formally solved for I' to give

((u -(d „)5n „((o)

=(()„„QI' „;„(e)Z-„Z.6-(e,-)6n, -((d)—.

%e recall that our phenomenological transport
equation [see (2.15)] in its linearized form is
given by.

(4.31)

or more explicitly by

((o-ro „)an „((v) =6h „[n'(e„)-n'(e„)], (4.32)

where at T =0 the quasiparticle equilibrium dis-
tribution function is a step function n (c„)=8(-e„).
Therefore at 7.' =0 we may write

n'(e„)-n'(» ) =(d „6(e„).
If we recall that 5Pg. „ is x'elated to the effective
interaction C „„,by the equation

~mmmm ~ ' ~nues ~ &
Z-Z-6(e-)())—

(4.26)

6@mn =g@wn)86ss) &

then we may write (4.32) as follows:

(4.34)

Vfe observe that the indices s and x and the vari-
able &' play the role of parameters in the above
equation. Therefore we look for a solution of the
form

I „„(e,E, (()) ~g~„(e, (())Il~„(E,(()) . '

If we substitute (4.2V) into (4.26) and divide both

sides of the resulting equation by the common fac-
tor h„(e', (()) we obtain the equation

Z-Z-, 6(e, )(u-;
Z „(e,~)=pi';„-(e) ' ' . ' g-;(~).

(('mn)6"mn((()) =+mn6(en) g C'Neam 6@ms (~) )

01 upon wrltlQg

5n „{(o)=6n „6(e„),
we find that (4.35) becomes

(4.35)

(4.36)

((o -(o „)6n„„((o) =(u Qe„„, 6n (co-)5-(e;—),

(4.28)

In order to make further progress towards re-
lating (4.28) to our phenomenological transport
equation we %'rite

6n ((u) = [(d /((u - (o +in)] g(",),

which leads to the equation

so that our homogeneous phenomenological trans-
port equation is identical in form to (4.30) which

was obtained by an analysis of the Bethe-Salpeter
equation and which determines the collective modes
of the glass. By a comparison of (4.3'I) and (4.30)
we find that the effective interaction 4, between
quasiparticles is related to their scattering by the
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equation

which is completely analogous to a result obtained
by Landa ' for the uniform Fermi liquid.

V, SUMMARY AND CONCLUSIONS

We have constructed a theory to account for the
effects of the electron-electron interaction on the
low-temperature (T «Tz) electronic properties ot'

disordered solids. Although we have placed spe-
cial emphasis on the case where the single-parti-
cle states at the Fermi energy are localized, the
theory we have constructed is easily adapted to the
case of extended states. The low-lying excitations
of the system are viewed as quasiparticles. Each
quasiparticle is then viewed as a single entity
moving in the self-consistent field of all the other
quasiparticles. The resulting theory has the form
of a mean-field theory for the quasiparticles.

We have shown that the low-temperature elec-
tronic contribution to the specific heat is unaf-
fected by interactions; the only modification of
the free-electron theory is the replacement of the
free-electron density of states by the quasiparti-
cle density of states. The static spin suscepti-
bility has been calculated and shown to be either
enhanced or reduced by the interactions. Con-
diti. ons under which the series for the suscepti-
bility may diverge and a phase transition into a
"Fermi spin glass" state can occur have been
briefly discussed. The transverse dynamic sus-
ceptibility observed in an electron-spin-resonance

experiment has also been calculated. The position
of the resonance is unaffected by either the dis-
order or interactions and occurs at the free-elec-
tron Larmor frequency. We have calculated the
ac conductivity of localized quasiparticles and
shown that Mott's result' Bea(~) ~ &u'(in+)' is still
valid for interacting electrons; only the magnitude
ot Be(T(&u) ls aftected hp the interaction. We have
studied the single-particle Green's function G(E)
for the interacting system and proven the self-
consistency of the quasiparticle picture by show-
ing that close enough to the Fermi energy one can
approximate the spectral weight function arbitrari-
ly well by a single spike at the quasiparticle ener-
gy. Finally, .we have studied the Bethe-Salpeter
equation satisfied by the four-point vertex for
particle-hole scattering and have obtained a mic-
roscopic justification of the phenomenological
transport equation used to study time-dependent
phenom ena.

As we have noted, our theory applies only to
what we call "normal" Fermi systems. A can-
densation into an abnormal state would be signaled
by the divergence of the power-series expression
for some response function. The modification of
this theoretical framework to accommodate ab-
normal ground states is under study.
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