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Expressions for the third-order elastic (TOE) constants have been derived from the Lundqvist potential for
ionic solids. It has been observed that the Cauchy relations among these constants are broken owingto the
presence of the many-body term in the crystal potential. All the parameters, except one, appearing in the

expressions for the TOE constants, can be determined from the values of the second-order elastic (SOE)
constants, the equilibrium condition and a plausible assumption concerning the overlap repulsion. Determining

the remaining parameter from the expression for dS'/dp, we can evaluate all the six TOE constants (Cl»,
C, », C,«, C»„C,„4, C456) and the remaining two independent pressure derivatives of the SOE constants. The
values, so calculated, compare very well with the corresponding experimental results.

I. INTRODUCTION

In the infinitesimal theory of elastic deformation,
the strain energy is expressed in a series of
powers of the strains, with coefficients repre-
senting the elastic constants of orders correspond-
ing to the powers of the strains in the respective
terms. In particular, the third-order elastic
(TOE) constants are the coefficients of the cubic
terms in this series. Considerable attention has
been given to the study of the TQE constants of the
cubic crystals during the last few years. Chang'
has experimentally determined the TOE constants
of NaCl and KC1. Swartz' also determined experi-
mentally the TQE constants of NaCl, while Dun-
ham' experimentally determined the two ratios of
linear combinations of SOE (second-order elastic)
and TOE constants of NaCl. Naran'yan4 and
Ghate' have calculated the TOE constants for
NaCl- and CsC1-type crystals, using the Born cen-
tral-force model for which Cauchy relations (C»,
=C,«and C«, =C», = C„,) are satisfied at 0 K.

It is well known that the many-body interactions
in the ionic solids can account for the Cauchy dis-
crepancy between the SOE constants to a good ap-
proximation. " It is natural to expect that these
interactions could lead to deviations from the
Cauchy relations among the TOE constants also.
In fact, the breakdown of the first Cauchy relation
Cyy2 C,«has been reported by Paul, ' who has
based his analysis on an approximate formulation
of many-body forces due to Sarkar and Sengupta. '
These many-body forces are short range in nature,
whereas the quantum-mechanical analysis of Low-
din' and Lundqvist' leads to a long-range many-
body potential.

The effect of this long-range many-body potential
on the TOE constants does not seem to have been

studied so far. In the present paper, we are re-
porting a complete study of the SOE and TOE con-
stants, and the pressure derivatives of the SOE
constants of alkali-halide crystals, solidifying in
the NaCl structure, as derived from the Lundqvist
potential. ' We show here that the many-body term
in the crystal potential leads to deviations from
both the Cauchy relations among the TQE con-
stants, although an identity C„,+ 2C„,—3C„4=0,
connecting the constants, still exists. The pre-
liminary results based on this study have already
been reported (Puri and Verma").

We have expressed the TQE constants and the
pressure derivatives of the SOE constants in terms
of six parameters derived from the short-range
overlap potential and the three-body force (charge-
transfer) parameter. Four of these parameters
appear in the expressions for the SOE constants
and the equilibrium condition and can be evaluated
from them. The fifth parameter can be evaluated
by taking a plausible empirical relation, concern-
ing the overlap repulsion. Choosing one of the
pressure derivatives of the SOE constants, dS'/dP,
to obtain the sixth parameter, we can evaluate all
the TQE constants and the pressure derivatives of
the SQE constants of all the alkali-halide crystals
solidifying in the NaC1 structure. The values so
obtained agree fairly well with the available ex-
perimental results.

Section II is devoted to deriving the expressions
for the SQE and TOE constants in terms of various
coefficients. In Secs. III and IV, we describe the
Lundqvist potential-energy function which is then
used to evaluate the various coefficients and there-
from the SQE and TOE constants, and the pressure
derivatives of the SQE constants. The numerical
results are reported in Sec. V, which is followed
by a short discussion of these results.
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II. EXPRESSIONS FOR THE SOE AND TOE CONSTANTS

An ion in the lattice will be designated by the
pair of indices (l, «), where l =(l„L»l,) represents
the cell to which the ion belongs and I(;=1 and 2 for
the positive and negative ions, respectively. A

position vector will be denoted by x (o. =1,2, 3).
Thus the position of the (l, «}th ion will be given by
x (l, «). The vector joining the (l, «)th ion to the
(l', «')th ion is denoted by

x (l' —l, ««') =x„(l', «') —x„(l,«) .
The displacement of the (l, «)th ion from the equi-

librium position mill be denoted by

U. (l, «) =x„(l,«) -x.'(l, «).
The equilibrium value of a vector being denoted by
a zero superscript. The relative displacement
can be expressed as

U (l' —l, ««') = U, (l', «') —U (l, «) .

The modulus of a vector mill be indicated by just
dropping the vector suffix. Thus l Uu(L, «')

I
= U(l, «).

The potential energy P of the crystal, due to the
lllteractlons among the lons 1n a given

configurat-

ionn, may be expanded in a series of powers of the
displacements from the initial equilibrium config-
uration as

P= P, + g g $,(L' —l, ««')U (l' —l, ««')+ —
t g g g Q ~{L' —l, ««', l" —l, ««")U (l' l, «-«')U~(L" —l, ««")1

g g gl it/ g» ft»

+ —,g g g g P «„(L' —L, ««L" —L, ««", L"' —'L, «' )U„(l' —L, ««')Uz(L" —l, ««) „U(
"L—l, ««")+'1

g + Il +I I» ~» gt» Ltt»

where summations are always implied for repeated Greek suffixes. p, is the crystal potential when the
ions are all located at their equilibrium positions. The potential energy coefficients P„(L —l, ««),
$„8(L' —l, ««', l"- L, ««"), P z&(L' —l, ««', l"- l, ««", l"' —l, ««"'), . . . , are all evaluated from the equilibrium
configuration, so that &f&„(L' —l, ««') must vanish and

82
Aes(L —L~ «« ~

l —L~ KK' ) =
s (p l ~)e (Ln l ~r)

Q fh

A~gy(L —L~ KK i l Ly KK i l Ly KK ) s (Li l I)s (Ln l rr)s (Ltd l ~t) (5b)

The suffix 0 indicates values corresponding to the
equilibrium configuration. In these equations, the
cell index 1 can be chosen to be any finite number
without affecting the value of the potential-energy
coefficients. It is, therefore, put equal to zero
and ls dropped.

For a homogeneous deformation of crystals with
every ion at a center(of inversion symmetry, the
displacement of an ion, away from the boundary,
can be expressed as

U~(l ~ KK ) = B~gxg(L ) ICK ) ~

where u z are the displacement gradients

&U, (L', ««')
&x«(L', ««') '

Using Eq. (6a), we can express Eq. (4} as
1g= P, + VA„qu q+ 2VA «„,u qu„,

+
6 ~+OgyN, g+egly6+)tlf +

This equation defines the A coefficients in terms
of the potential-energy coefficients as

A, «
= V ' g g Q (l', ««')xa(L', ««'), (8a)

A 8„,=V 'g g g P „(L'««', L", ««") z(L'x, )««(L"x, )«,«
I», KX»
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A~gy~g~=V Q Q Q Q $~~~(l KK (l )KK ql iKK ) xg(l iKK }xg(1 yKK }xg(1 (KK )1

where P „and P „,are given by Eqs. (5a) and (5b).
For rotational invariance, the crystal potential

must depend only on the symmetric finite strain
parameters g» given by Wallace, "

Tj~ g
= 2 (@~8+ Qg~ + a~~a~g} . (1o)

Hence the potential energy may also be expanded
in a series of powers of the symmetric finite
strain parameters q»

1
0+ VC~Bq„z+ 2VC~s~~q~sq»

+ —VCn&yap, inggy6g&u, + ~

defining the C coefficients, which are the elastic
constants of various orders in Brugger's defini-
tion. "

Equations (7), (10), and (11) lead to

where e(w) is the valence of the v type ion and
e =

i
a(z) i. The first term represents the Coulomb

energy. The second term is the overlap repulsive
energy, coupling the nearest neighbors, and the
third term represents the three-body potential
term. The function f can be defined in terms of
the overlap integrals derived from the free-ion
one-electron wave functions. However, in the
present analysis this function and its derivatives
have been chosen as disposable parameters.

The contribution of the various terms in the po-
tential-energy expression (15) to the coefficients
Anby6 and AnBy6&~, and hence to Cnpy6 and Cngy6&p

are obtained in Appendixes A-C.
The final expressions for the SOE and the TOE

constants of the NaCl-type crystals are obtained
as follows:

A.e= C.a

ngy6 Cngy6+ Cg6~ny &

(12a)

(12b}
e2 Bf

C» ——
~ -5.112&[a+12f(a)]+A+ 9.320@ a-ll 4g4 ~Q

(16)
n By6Xv nBy6Au Ot86u yX

y68v nX 86Xv ny & (12c)
Bf

C» ——
~ 1.391&[@+12f(a)]+ 9.320& a—,(17)4a4 ~a

An~y6 = Cn~y (13)

Changing to Voigt notation, we obtain from Eqs.
(13) and (12c),

where 5
&

are the Kronecker delta symbols. C
&

and An& must vanish for the equilibrium of the
lattice in the absence of external stresses.
Therefore Eq. (12b) can be written

C« =,(2.556&[@+12f(a)]+B)I,

e2
C», =, 37.556&[&+ 12f(a)]+ C —3A111 4'

+ 13.980& a2 —89.305& a—2 8'f sf
~Q ea

(18)

C„-A„, C„-A„, C44 =A44 (14a}
e2 Q2f

C»2 ——
4 -4.836@[&+12f(a)]+4.660@ a'

112 4g4 ~Q

(19)

111 111 11 P 112 112 12 I 123 123 0

(14b) -18.640& a (20)

C,44-A, 44 —C„, C4,~ -A4,6, C,66 =A, 66
—C,2- 2C44.

III. DERIVATIONS OF THE SOE AND THE TOE CONSTANTS

OF NaCl-STRUCTURE SOLIDS

The potential energy of the crystal as given by
I undqyist' is

—, + e' Q Q (Vr(l', ~~')}
8 F-(K)E(K )

K l K l pK

I

+e', V l", I(.'K l,
l' K' liV KiV

7 t

C,«= 4 -4.836e[e+12f(a)]+5.564m a-e' sf
166 4g4 ea

C», ——
~ 2.717e[e+12f(a)]+16.692@ a-e' sf

123 4' ~a

C,~
=

4 2.717&[&+12f(a)]+5.564& a-e sf
144 4' 80

C~56= 4(2.717@[&+12f(a)]].

(21}

(22)

(23)

(24)
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B2V(2) 1
8a

BV(2) 1
Sa2

-B3V(~)
8a'

The parameters A, B, C are defined as

(25)

dependent TQE constants, a consequence of the
central-force model used by Naran'yan' and
Ghate. '

It is also obvious from Eqs. (30) and (31) that
even in the presence of three-body forces, the
TOE constants satisfy the following identity:

Cy23 + 2C456 ~ 3Cy44 0 ~ (32)

where V(2) is related to the I.undqvist repulsive
potential in the following manner:

V(2.) = V'(2.) + (c[„e/a)f(2),
and n~ is the Madelung constant, equal to 1.7475
for NaCl-type crystals. The expressions for the
SOE constants, obtained above by the finite de-
formation method, agree with those deduced by
&erma and Singh" by the method of long waves,
in view of the equilibrium condition

B = —1.165&[e+12f(a)]. (27)

The Cauchy discrepancies among the SQE and the
TQE constants are therefore given by

C,', = C„+]I(2C„+2C„+C„,+ 2C„,),
12 12 q( 11 12 123 112}2

C,', = C«+ ]I(C»+ 2C»+ C«+ C,«+ 2C,«},

(33)

(34)

(35)

IV. PRESSURE DERIVATIVES OF THE SOE CONSTANTS

When a cubic crystal is subjected to hydrostatic
pressure, the symmetry of the crystal is pre-
served. Birch'4 has derived a set of effective SOE
constants C,',. which determines the response of an

initially stressed crystal to additional infinitesimal
strains. The expressions for C,'„C,', and C,', are
given below:

C„—C44 = —
4 9.320& a-e2 Bf

12 44 4a4 8a

82 82
—Cise =

4 4.660& a---
4a' ~a

—24.204& a-Bf
Ba

C —C — 16.692& a
e' Bf

123 456 4a4 ~a

(29)

(30)

where

pg—C„+2C„

(36)

and the C,,~ are those defined by Brugger. "
Hence the pressure derivatives of the SOE con-
stants are

dC44 C„+2C„+C44+ C,44+ 2C„,
dp C„+2C

Cy44 C45 4 5 564& a
e2 Bf

144 456 ~a

dS 3C,] + 3C,2+ C„,—C„3
dp 2(C„+2C„) (37)

Equations (16)-(24) have been derived, ignoring
the thermal vibrations, and are, therefore, ex-
pected to be best satisfied at OK. Obviously the
Cauchy relations break down both for the SOE con-
stants and for the TOE constants in the presence
of three-body interactions even at 0 K. However,
if we put the function f and its derivatives equal to
zero, the Cauchy relations are satisfied, leaving
only two independent SOE constants and three in-

Cxxx+ 6C~x2+ 2Cx23

dp 3(C„+2C„}

where S'= —2'(C1, —C,',} and K'= —,'(C,', +2C,',). We can
write pressure derivatives of the SOE constants in
terms oftheparametersA, B2 C, f(a), asf/Ba, and
a'B'f/Ba' by substituting the expressions of the
SOE constants and the TOE constants given by
Eqs. (16)—(24). Thus

6C,', 6.7294[a+12f(a)] ~ A )7 44.6524(7f/ )}4696
dp -2.330&[@+ 12f (a) ]+A+ 27.961m(asf /Ba}

(39)

dS'

dp

23.676@[&+12f(a)]+C —51.075&(asf/Ba)+ 13.980&(a B f/Ba )
2(-2.330&[&+12f (a)]+A+ 27.961'(asf/Ba))

(40)

alC 13.9754[a+12f(a)]+C —3A —167.7644(a&f/6 )+41 9497(a'9'f/9a'}.
dp 3(-2.330@[@+12f(a)]+A. + 27.96le(asf/Ba))
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C(2
T

as'
dp

LiF
Licl
LiBr
NaF
NaCl
NaBr
NaI

-KF
KCl
KBr
KI
Rbr
H,bcl
abBr
HbI

2.013
2.570
2.751
2,317
2.820
2.989
3.236
2.674
3,146
3.300
3.533
2.826
3.291
3.445
3.671

10.655
4.510
3.528
9.176
4.585
3.704
2.762
6.185
3.838
3.263
2.577
5.251
3.448
2.986
2.412

4.632
2.184
1.770
2.394
1.264
1.066
0.856
1.440
0.683
0.564
0.445
1.377
0.609
0.491
0.366

6.350
2.480
1.930
2.810
1.265
0.990
0.740
1.250
0.633
0.504
0.370
0.925
0.465
0.380
0.278

3.60 (1V)
3.70 (1")
3.v5 {1v)
4.79 {18)
4.79 (18)
4.83 (18)
4.80 (18)
5.25 (18)
5.61 (18)
5.68 (18)
6.03 (18)
4.93 (19)
5.88 {19)
6.03 (19)
6.26 (19)

V. RESULTS AND DISCUSSION

The application of the above theory demands
evaluation of the sixparametersA, 8, C, f(a),
aef/Ba, and rP&'f/ea'. The parameters A, B,f(a),
a&f/Sa can he evaluated from the SOE constants
IEqs. (16)-(18)]and the equilibrium condition

IEq. (27)]. The parameter C can be evaluated by
approximating the overlapped repulsive potential
V(x) as a two-parameter potential of the form

v(r) =be "~',

so that

TABLE I. Input data at room temperature tlattice para-
meter P,ef. 16) in A and the calculated values of the iso-
thermal SOE constants {Refs. 15 and 16) in units of 10~~

dyncm 2; original references for d S~/dp values are
given in parentheses alongside].

The parameter a'&'f/&a' may be evaluated from
the experimental value of the pressure derivative
of shear modulus dS'/dp (or the pressure deriva-
tive of bulk modulus dE'/dP), and all six TOE
constants and the remaining tmo pressure deriva-
tives of the SQE constants can, then, easily be
calculated. The input data are given in Table I.
The parameters, so calculated, are listed in
Table II. The calculated values of the TOE con-
stants and the pressure derivatives of the SQE
constants, together with other theoretical and ex-
perimental values, are reported in Table III.

Naran'yan' and Ghate' have deduced the expres-
sions for TQE const'ants from the central Born-
Mayer potential, for which;the Cauchy relations
(C», = C,«, C», = C„,= C,«) are satisfied at 0 K.
They deduced the failure of the Cauchy relations
at a finite temperature T by introducing the vibra-
tional part of the energy. These changes came out
in general very large, in some cases up to 40%
too large, and are difficult to comprehend in crys-.
tals like alkali halides. Our study shows that
much of the failure of the Cauchy relations could
be due to many-body interactions, which lead to
the breakdown of the Cauchy relations among the
TOE constants even at 0 K. An identity C,23+ 2C456

3Cy44 0
p however, is stil l satisfied. This iden-

tity can be considered as a single Cauchy relation
satisfied by the TQE constants derived from the
Lundqvist potential. ' Therefore, low-temperature
measurements of the TOE constants through this
identity can provide a direct check on the validity
of the Lundqvist potential' in ionic crystals.

Qur calculated values of the TQE constants and
the pressure derivatives of the SQE constants
agree fairly mell with the experimental values, as
compared to the theoretical values of Ghate' and

TABLE II. Calculated values of the parameters.

f{a)
Bfa— 82f

Q Ba2

LiF
LiCl
LiBr
NaF
NaCl
NaBr
NaI
KF
KC1
KBr
KI
RbF
H,bC1
8,1Br
a,bI

10.167
10.529
10.707
9.954

10.1269
10.266
10.644
9.7238

10.386
10.395
10.4348
9.0705

10.195
10.4331
10.5350

-1.514
-1.571
-1.6053
-1.176
—1.162
-1.147
-l.178
-0.928
-0.9005
-0.8680
-0.8371
-0.8567
-0.7921
-0.7772
—0.7332

-68.266
-70.5667
-71.4134
-84.249
-88.275
-91.8475
-96.141

-101.880
-119.789
-124.499
-130.065
-96.0305

-131.211
-140.043
-151.371

2.498 x 10
2.905x10 2

3.149x10
7.939x10 4

-2.3096x10 4

-1.248x10 3

9.5978x10 '
-1.6946x10 2

-1.892x 10 2

-2.124x10 2

-2.345x 10-2
-2.205x 10
-2.667x 10
-2.773x10 '
-3.088x10 2

-5.248x10 2

-2.402x10 2

-]..705x 10-'
-2.'2305x10 2

-1.1765x10 4

-1.125x10 2

-2.3725x10 2

-1.8071x10 2

9.0573x10 ~

1.3238x10 2

2.168x10 2

5.362x10 2

3.151x10 2

2.898x10 2

2.980x10 2

-0.4306
-0.8788
-1.0536
-0.54678
-0.7201
-0.4300
-0.1579

0.3427
0.1994
0.3 547
0.0856

-0.4267
0.3647
0.6350
1.008
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TABLE III. TOE constants (in units of 10~2 dynfcm2) and pressure derivatives of the SOE constants at room temper-
ature. p is in the units of 10 ~ cm.

LiF

LiCl

Nacl

0.2507
0.3333
0.2800

0,3835
0.3333
0.3030

0.4124
0.3333
0.3050

0.2737
0.3333
0.3120

0.3236
0.3333
0.2880

-18.0130
-5.9770

-13.5300
-20.7000

-8.1498
-6.3720
-8.572

-6.5440
-5.98 50
-7.7210

-16.3699
—6.6710
-8.5630
-7.1400

-8,3224
-5.7980
-8.6050
-5.4540
-8.8000

-2.5687
-2.6180
-2.5950
-2.5600

-1.3444
-0.9059
-0.8592

-1.1333
-0.6670
-0.6272

-1.4035
-1.4310
-1.3940
-1.4380

-0.7456
-0.5837
—0.5220
—0.6880
-0.5710

-2.3100
-2.6400
-2.5420
-2.4200

-0.8798
-0.9355
-0.9014

-0.6805
-0.6980
-0.6699

-1.0017
-1.4570
-1.4290
-1.2800

-G.4398
-0.6153
-0.5744
-0.6300
-0.6110

0.9325
0.9173
0.8791
1.1100

0.43 14
0.3142
0.2945

0.3483
0.2271
0.2087

0.4743
0.500 1
0.4875
0.5580

0.2468
0.1970
0.1637
0.2690
0.2840

1..1377
0.9768
0.9803
1.3200

0.4667
0.3741
0.3742

0.3674
0.2870
0.2867

0.5240
0.5601
0.5606
0.7600

0.2470
0.2568
0.2563
0.3550
0.2580

1.2402
G.9540
0.9551
1.3200

0.4844
0.3617
0.3620

0.3769
0.2769
0.2770

0.5488
0.5436
0.5439
0.7600

0.2710
0.2476
0.2479
0.3540
0.2710

0,43
0.84
0.74
0.45
1,38

0.177
0.32
0.24
1.70

0.133
0.19
0.12
1.80

-0.142
0.51
0.47
0.11
0.205

-0.288
0.19
0.08
0.22

37

5.28
3.21
4.27
5.66
5.30

5,76
3.93
4.61
5.63

5.964
4.14
4.80
5.68

5.691
3.47
3.88
3.51
5.18

5.764
4.18
5.36
4.25
5.27

Theor. 5
Theor. 5
Theor. 4
Expt. 17

Theor. 5
Theor. 5
Expt. 17

Theor. 5
Theor. 5
Expt. 17

Theor. 5
Theor. 5
Theor. 4
Expt. 18

Theor. 5
Theor. 5
Theor. 4
Expt. 1, 18

NaBr 0 3339
0,3333
0.3080

-6.5505
-5.3830
-6.6230

-0.4738
-0.4418
-0.4139

-0.3487
-0.4744
-0 4566

0.1798
0.1441
G. 1279

0.1888
0.2039
0.2036

0.1934
0.1964
0.1965

-0.298
0.043

-0.0 13
0.46

5,160
4.17
4.83
5.29

Theor. 5
Theor. 5
Expt. 18

NaI

KF

KCl

0„3581
0.3333
0.3410

0.2552
0,3333
0.3410

0.2728
0.3333
0.3090

0.2755
0.3333
0 „3030

0.2834
0.3333
0.3170

-4.7425
-4.78 10
-4.5120

-10.6856
-6.1380
-7.6220

-7.0615
-4.9710
-6.0130
—5.0700
-7.0100

-6.0266
-4.6170
—5.8050
-4.5380

-5.0020
-4.1030
-4.6140
-4.7100

-0.2727
-0.2984
-0.3045

-0.2164
—0.7461
-0.7134

-0.1753
-0.3386
-0.3152
-0.4580
-0.2440

-0.0977
-0.2675
-0.2412
-0.3880

-0.1288
-0.1869
-O.1754
-0.3140

-0.2642
-0.3322
-0.3358

-0.4459
-0.7767
-0.7532

-0.2171
-0.3720
-0.3581
-0.4000
-0.2450

-0.1716
-0.3015
-0.2875
-0.3290

-0.1242
-0.22 14
-0.2160
-0.2560

0,1237
0,0891
0.0932

0.2101
0.2563
0.2418

0.1325
O. 1Q47
0.0892
0.1480
0.1330

0.1092
0.0770
0.0568
O. 1110

0.0856
0.0444
0.0345
0.0740

0.1376
0.1488
0.1489

0.2328
0.3162
0.3161

O. 1266
0.1645
0.1641
0.2270
0.1270

0.1020
0.1315
0.1316
0.1865

0.0767
0.1041
0.1039
0.1405

0.1445
0.1432
0.1432

0.2441
0.3053
0.3055

0.1236
0.1583
0.1584
0.2270
Q. 1180

0.0984
0.1367
0.1362
O. 1865

0.0723
Q. 1002
0.1002
0.1445

-0.292
-0.08
-0.06

0.61

-0.411
0.17
0,12

-0.43

-0.530
-0.01
-0.06
-0.02
-0,39

-0.565
-0.030
-0.090
-0.014
—0.328

-0.611
-0.16
-0.19
-0.07
-0.244

4.567
4.45
4.35
5.40

4.252
3.56
4.02
5.26

5.028
4.42
4.95
4.82
5.34

4.854

5.91
5.26
5.38

5.387
4.76
5.19
5.98
5.47

Theor. 5
Theor. 5

Expt. 18

Theor. 5
Theor. 5
Expt. 18

Theor. 5
Theor. 5
Theor. 4
Expt. 1, 18

Theor. 5
Theor. 5
Theor. 4
Expt. 18

Theor. 5
Theor. 5
Theor. 4
Expt. 18
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TABLE III (Continued)

C«2 C 166 C i44 C4S6

d C44

dp
dZ'
dp Ref.

RbF 0.2669
0.3333
0.2910

-9.6190
-5.7980
-8.3830

-0.5918
-0.5837
-0.5268

-0.2946 0.2616
-0.6153 0.1970
-0.5774 0.1666

0.2076
0.2568
0.2563

0.1806
0.2476
0.2479

-0.64 5.27
0.06 3.56

-0.03 4.49
-0.70 5.69

Theor. 5
Theor. 5
Expt. 19

RbCl 0.2557
0.3333
0.2830

-6.8375
-4.6260
-6.7870

-0.1069
-0.2689
-0.2219

-0.1530 0.1167
-0.3028 0.0775
-0.2793 0.0388

0.0994
0.1372
0.1363

0.0908
0.1320
0.1322

-0.656
-0.13
-0.23
-0.56

5.18
4.16
5.50
5.62

Theor. 5
Theor. 5
Expt. 19

RbBr 0.2566
0.3333
0.2980

-5.7322 -0.2671
-4.2810 -0,2116
-5.5400 -0.1837

-0.1255 0.0940
-0.2460 0.0546
-0.2382 0.0301

0.0821
0.1142
0.1137

0.0742
0.1099
0.1100

-0.670
-0.180
-0.220
-0.550

4.825
4.390
5.310
5.590

Theor. 5
Theor. 5
Expt. 19

RbI 0.2555
0.3333
0.2930

-4.6992
-2.5800
-5.0720

0.0341
-0 ~ 1389
-0.1223

-0.0938 0,0701
-0.1737 0.0278
-0.1744 0.0002

0.0596
0.0875
0.0882

0.0543
0.0842
0.0856

-0.681
-0.33
-0.33
-0.51

4.610
3.57
5.60
5.60

Theor. 5
Theor, 5
Expt. 19

Naran'yan. ' As a rnatter of fact, the agreement
between our values and the experimental ones in
the case of KC1 is excellent. The values of dE'/dp
are invariably positive, whereas dC,', /dp is posi-
tive or negative, depending on the crystal. It is
true that the degree of agreement between the
theoretical and experimental values of dC,', /dp
falls short of that desired, but this should not be
considered to be too serious because we have de-

rived our expressions ignoring thermal vibrations
and, therefore, our calculated values should nec-
essarily show some deviations from the room-
temperature experirn. ental results.

APPENDIX A: COULOMB CONTRIBUTION

The expressions for Q, „and P» derived from
the Coulomb energy term according to Eqs. (5a)
and (5b) are

(Al)

(l ~K/c'gl plcK ~P pKlc )

e
( ) (,)

35„~5, , 5„.„-x„(f",xa") 35»5, , ~ 5„-„-.&„(f',Kx')
2 [~(l', KK )] [1'(l KK )]'

35 5&~
&

~ 5 ~ gy(l &
gf& ) 155~a ~

~ 5&g &ee K+(l & KK )Ã~(l y KK )Xg(l yxx )
( 2)[x(l', KK )] [&(f K& )]'

Here the superscript C over p „and Q„„~ denotes the Coulomb part. The expressions of A.„sz~ and
Aca ~~„ from Eqs. (Sb) and (9) can be written as

c 1 e' 3X XK6 K s —
3 XgXgy2 2g

K l', K'

3X Qgy O'Xy 5 y 3X) 5 g 15XcfX)IX )
a8y@p=2 3 j ~ ~ j & ) s + s + sr r r

(AS)

(A4}

Here all the vectors are denoted by the same index numbers (l', zx'') and a denotes the nearest-neighbor
distance. 2a is the volume of the elementary unit cell. Since NaCl-type crystals are diatomic, K takes
two values.

The A~8& z and A~a&z), „can be evaluated by using various lattice sums, already determined by Verma and
al '0 Thus
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e2

Aic 5 112 4e4a4
e2

Alll 22.220 4
6'

4a4
e'

A144 = 4.108 4 e',
4a4

e2 e
A.„=1.391 4e', A44 =2. 56

e2 e2

e2 e2

APPENDIX B: REPULSIVE CONTRIBUTION

The expressions for P~ and g~„~ derived from the short-range repulsive part of the Lundqvist poten-
tial ener gy

' are

[r(l', KK')]' &[r(l', KK')]'

&V'(r(l', KK')) xn(l', KK')x„(l", KK") & V'(r(l', KK'))
r(l', KK') &r(l', KK') [r(l', KK')]' &r(l', KK')

3xcr (l r KK )Xy(l r KK )Xy(l r KK )5IrI 5 re &Krrr SV (r(l r KK ))

(Bl)

5~I 5, , 5, , x, (l", KK") O'V'(r(l', KK'))

[r(l', KK')]' B[r(l', KK')]'

5yy5I rr I rr 5 K rr& rrrx& (l r KK ) 5 V (r(l r KK )).
[r(l', KK )] s[r(l', KK )]'

5~y 5I rI rrr5K r& rrrxI (l r ICIC ) 8 V (r(l r KK ))
[r(l', KK')]' s[r(l', KK')]'

5I I 5 „X (l, KK )Xy (l", KK")X~(l'', KK'") & V'(r(l KK ))
[r(l', KK')]' s[r(l', KK')]'

3x (l', KK')xy(l", KK")x~(l"', KK'")5, , 5, „, &' (Vr(l', KK'))

[r(l', KK')]4 &[r(l', KK')]'

5„,5. ..„,5...„,x, (l", KK") SV'(r(l', KK'))

[r(l', KK')]' &r(l', KK')

5y y5 I rrI 5K ~
K rrrrrrx& (l r KK ) & V (r(l r KK ))

[r(l', KK')]' ar(l', KK')

5&y 5I I 5 rrrrrKx re (rl r KK ) V (r(l r KK ))]
[r(l', KK')]' sr(l', KK ) J, (B2)

The superscript g indicates repulsive contribution. The expressions for A„8&z and A"8&z~& can now be re-
duced to

e' v x„xy &'V'( )rx„xy &V'(r) I &V'(r)
ah

—23~ 2 ~2 3 ~ y 8 86+
K 1 ~ K 0

e ~ ~ 3x„xyx~ SV'(r) 5~gxy &V'(r) 5yIX„SV'(r) 5„yx~ SV'(r) 5„~xy & V'(r)
2a'~ ~' r' er r' br r' er r' Br r' Br'

~5~X~ O'V'(r) 5~yxI, s V'(r) 3x„xyx~ s V'(r) x„xyx„s V'(r)
+ --+--

r2 er2 +r4 Br2 r3 Br3 86 P
x x x

0
(B4)

In these equations also, ail the vectors are denoted by the same index number (l', KK'). The values of

A„8&q and A~8&z~» by carrying the lattice sums only up to the first-nearest-neighbor atoms, have been ob-
tained in the form

8 I 8 e2A„„4A, A.,2
—0 ) A44 —-„4-B )4a 4a

e2
ill 4 4 ~ ) A112 166 A123 144 A456
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where parameters A. ', 8', and C' are defined as
' '()

8a'

' &V'(r) 1
8a'

s'V'(r) 1
8a4

The value of the parameter 8' can be obtained from the equilibrium condition

(B8)

where (1) is defined by Eci. (15). Thus

B' = -1.165m' .

APPENDIX C: THREE-BODY POTENTIAL CONTRIBUTION

The expressipn for p, and p, ~ arising from the three-body potential term of the Lundqyist potential-
energy' expression are given by

Ct) r,(l', KIc', l", KK")

( (,„,„)) s' e(K') e(K') s' f„,gr (l",KK"))
„sx„(l,IcK )sxy(l ) IcK ) t(l, KIc ) I t(l, KK„)'ex~(l ) IcK ) ex'(l, IcK ) - Ic

8f„;,(r(l", KK")) ' 9 e(K') s f„(,(r(l", KIc'")) 9 e(K')
iv, (l', za') - Ilx,()",vz") r()', &d) .„, 8*,()",Klr") - -8*,(i', &8) y(i', & '))

93
P„~(l', KK, l, KK, l, Klc"') = e' [f„; (&( ",KK"))]

tK

q(K') &'f„;„(r(l",KK'"))

t(l KK)-)i sx (l, IcK )sx (l, KK )&xg(l ) KK )

9'f„;,(r(l", KK")) & e(K')

9f„(,(r(l", KK'")) &' e(K')
sx (l', KK') - -sx,(l", KK")sx,(l"', KIC"') I (l') KK') «
fs„;„(r(l'",KK'")) s ~(K')

&f„;,(I (l",KK")) &' ~(K')

(C1)

s' f„;,(I (l", KK")) s &(K')

& f„c,(I (l" KIc'")) s' e(K')
(C2)

(C8)

Here the superscript T over (t), and p„,~ denotes the three-body potential term. We have divided the ex-
pressions of P, and g „into four and eight different parts, respectively, and now we will calculate the
contributipn pf each part tp A. ~gyp and A~j3yp~y separately.

Ei,est part Since the fu.nction f is defined in terms of overlap integrals which a.re assumed significant
only for the nearest neighbors, the contribution of the first part of Q, and P „can be expressed as

)
9' e(K') 12f(cc)

sx, (l', KK') sx„(l",KK") r(l', KK'$, ~(K)

e(K') ( 12f(cc)
~at Sx (l, KK )sx (l, IcK )ex'(l, KK ) Y(l, KK ) (, E(K)

These terms can be added to the Coulomb part modifying e' to &[&+ 12f(cc)].
Second past. Evaluating the lattice sums, we get
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, n„e 8' f„,(r(l', «'))
(C6)

, n„~ ( 8'f„,(r(l', «'))
(C6)

(Cv)

which may be added to the repulsive potential part, so that the total contribution can be derived from the
overlapped repulsion V(r) given by Eq. (26).

Third pm'. The expressions p~«x and /~XXI are

r„,(l l. „„,) 2 g x (1', «')8) )(.8. .). 8f (.(r(l', «')) -e(x')x„(l",«")8,, ,„6„„„

n'(1', xx', l", «",l",xx")

x„(l",«")xl(l"', etc")0)-1lg5„; „1),5)~ 11„5„5„„,„(„82f1,(r(l", «1"))
[r(l'" «")]' 8[r(l" )(x")]'

giV giv

~»8) )1 ~'"( ~)-)-8; '- 8f.l (r(1"~«")}
r(l", xx") 8[r(l'", «")]

&()",« )~,() ~ "")&,:,.&„.„.5,;, .Il„,„~&f„.(r(l", ~~")) -a(~')x, ()', ~x')) ( ~)[r(l",«")]' 8[r(l",«")] [r(l', gg')]'

Hence the expressions for A, z~~ll, and A, z„'»„can be obtained from Eqs. (Bb) and (9) as

g - giV ffiV g', x' 0

XIIr„, e' x„x, 8'f(r) x„x, 8f(r) 1 8f(r) -e(x')x
egy5)tg 2g3 ~2 8~2 ~3 g~ ~ gy g)t 5 P ~3

)t 1 A, + x
—giv giv 0 P ftt

w 0

All the vectors within the first square brackets are denoted by the same index number (l",xx") and within

the second square brackets, by the index number (l', xz'). By summing the first-bracket expressions
over nearest neighbors and the second-bracket expressions over the whole lattice, and writing rdf(r)/dr
evaluated at r = a as asf Isa, we get

X "'=4.660 & g —. & "'=4.660 & g —. a "'=082 8 T 2 Q Ip

4g4 8a ' " ' 4g4 ~g

g IIX 4660 & g2 g XII ~ III 4660 & g ~ XIX ~ XIX ~ III 0
e' 82.~ r r e' &.~ r r r

ill ' 4g4 gg2 & 166 144 ' 4g4 g t 112 123 456

(C11)

Slmllary) we call get tile contrlbutlons of the 1'enlallllng pal'ts of (l)~q alld QN» to the A~))~6 and A~()„»~.
Thus, the total contributions of (t) r„and 4) r»to the various A coefficients are

2 8 2

A„,= 13.980' g' —61.344' g-8f 8f

Al~» ——
4 4.660& g', - 9.320& g—

112 4g4 ~g' ~g

(C18)

(C14)

(C15)

Ar„=, 14.884& a—166 4g4 ~g
(C16)

A~„=, 14.884& a—

A„,=, 14.884& a—
144 4g4 Bg

(C18)
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T
A456 0 e (C19)

Combining these three contributions to A coefficients, the SOE and the TOE constants can be obtained by
transforming these A coefficients to the C coefficients.
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