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Expressions for the third-order elastic (TOE) constants have been derived from the Lundqvist potential for
ionic solids. It has been observed that the Cauchy relations among these constants are broken owingto the
presence of the many-body term in the crystal potential. All the parameters, except one, appearing in the
expressions for the TOE constants, can be determined from the values of the second-order elastic (SOE)
constants, the equilibrium condition and a plausible assumption concerning the overlap repulsion. Determining
the remaining parameter from the expression for dS'/dp, we can evaluate all the six TOE constants (Cy;,
Ciiz» Cissy Cizz Ciass Cuse) and the remaining two independent pressure derivatives of the SOE constants. The
values, so calculated, compare very well with the corresponding experimental results.

I. INTRODUCTION

In the infinitesimal theory of elastic deformation,
the strain energy is expressed in a series of
powers of the strains, with coefficients repre-
senting the elastic constants of orders correspond-
ing to the powers of the strains in the respective
terms. In particular, the third-order elastic
(TOE) constants are the coefficients of the cubic
terms in this series. Considerable attention has
been given to the study of the TOE constants of the
cubic crystals during the last few years. Chang’
has experimentally determined the TOE constants
of NaCl and KC1l. Swartz?® also determined experi-
mentally the TOE constants of NaCl, while Dun-
ham?® experimentally determined the two ratios of
linear combinations of SOE (second-order elastic)
and TOE constants of NaCl. Naran’yan* and
Ghate® have calculated the TOE constants for
NaCl- and CsCl-type crystals, using the Born cen-
tral-force model for which Cauchy relations (C,,,
=C,q and C,,,=C,,,=C,;,) are satisfied at 0 K.

It is well known that the many-body interactions
in the ionic solids can account for the Cauchy dis-
crepancy between the SOE constants to a good ap-
proximation.®” It is natural to expect that these
interactions could lead to deviations from the
Cauchy relations among the TOE constants also.

In fact, the breakdown of the first Cauchy relation
C,,,=C g has been reported by Paul,® who has
based his analysis on an approximate formulation
of many-body forces due to Sarkar and Sengupta.®
These many-body forces are short range in nature,
whereas the quantum-mechanical analysis of Low-
din® and Lundqvist” leads to a long-range many-
body potential.

The effect of this long-range many-body potential
on the TOE constants does not seem to have been
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studied so far. In the present paper, we are re-
porting a complete study of the SOE and TOE con-
stants, and the pressure derivatives of the SOE
constants of alkali-halide crystals, solidifying in
the NaCl structure, as derived from the Lundqvist
potential.” We show here that the many-body term
in the crystal potential leads to deviations from
both the Cauchy relations among the TOE con-
stants, although an identity C,,;+2C,;-3C,,,=0,
connecting the constants, still exists. The pre-
liminary results based on this study have already
been reported (Puri and Verma'®).

We have expressed the TOE constants and the
pressure derivatives of the SOE constants in terms
of six parameters derived from the short-range
overlap potential and the three-body force (charge-
transfer) parameter. Four of these parameters
appear in the expressions for the SOE constants
and the equilibrium condition and can be evaluated
from them. The fifth parameter can be evaluated
by taking a plausible empirical relation, concern-
ing the overlap repulsion. Choosing one of the
pressure derivatives of the SOE constants, dS’/dp,
to obtain the sixth parameter, we can evaluate all
the TOE constants and the pressure derivatives of
the SOE constants of all the alkali-halide crystals
solidifying in the NaCl structure. The values so
obtained agree fairly well with the available ex-
perimental results.

Section II is devoted to deriving the expressions
for the SOE and TOE constants in terms of various
coefficients. In Secs. III and IV, we describe the
Lundqvist potential-energy function which is then
used to evaluate the various coefficients and there-
from the SOE and TOE constants, and the pressure
derivatives of the SOE constants. The numerical
results are reported in Sec. V, which is followed
by a short discussion of these results.
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II. EXPRESSIONS FOR THE SOE AND TOE CONSTANTS

An ion in the lattice will be designated by the
pair of indices (/, k), where I=(!,,1,,l,) represents
the cell to which the ion belongs and k=1 and 2 for
the positive and negative ions, respectively. A
position vector will be denoted by x,(a=1,2,3).
Thus the position of the (/, k)th ion will be given by
x,(l, k). The vector joining the (I, k)th ion to the
(Z’, k’)th ion is denoted by

KU =1, k") =2, (U k") — x4, (Ly k) . (1)

The displacement of the (Z, k)th ion from the equi-
librium position will be denoted by
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Uy, k)= x, (1, k) —x2(1, k) . (2)

The equilibrium value of a vector being denoted by
a zero superscript. The relative displacement
can be expressed as

U, (U =1k )=U, (', k") = Uy(l, k). (3)

The modulus of a vector will be indicated by just
dropping the vector suffix. Thus fUa(l, x)|= U(l, k).

The potential energy ¢ of the crystal, due to the
interactions among the ions in a given configura-
tion, may be expanded in a series of powers of the
displacements from the initial equilibrium config-
uration as

b=dy+ Z Z O (U =1, k" )VUL( -1, KK')+§1!—Z Z Z Dol =Ly ki’ 1" = Ly k"YU (U= 1, k" YUGL" - 1, kK")

Lk ',k

AT Y Y

Lk 1,k 1% k" 1 k™

Lk U,k 1,k

Z Gyl =Ly kK 17 =L kK" 17 = Ly kK"VU, (I = T, kK" YUR(L” = 1, kK"VU, (1" = 1, kK" )+ 22,

(4)

where summations are always implied for repeated Greek suffixes. ¢, is the crystal potential when the
ions are all located at their equilibrium positions. The potential energy coefficients ¢, (I’ - I, kk’),

Gap(l =L KK 1" =1, KK"), Gupy(U =1, KK, 1" = 1 kK", 1" = 1, kK™ ), . ..
configuration, so that ¢, (I’ - I, kk’) must vanish and

¢

, are all evaluated from the equilibrium

Gapll’ =1y kK" 1" — 1, kK") = [a

3

%o (1" =1, k6")3x,5(1" - 1, kK")

]0 ’ (52)

o ]- (5b)

’ r qn " opm my =
¢aﬂy(l -1,kKk’,1 —Z,KK S =1, kK ) [8xa(l'—l,;cx’)3x3(l”—l,KK”)ax.,(l”’-l,KK”’)

The suffix 0 indicates values corresponding to the
equilibrium configuration. In these equations, the
cell index ! can be chosen to be any finite number
without affecting the value of the potential-energy
coefficients. It is, therefore, put equal to zero
and is dropped.

For a homogeneous deformation of crystals with
every ion at a center\of inversion symmetry, the
displacement of an ion, away from the boundary,
can be expressed as

Uy (U k") = ug p25(1’, kK) (6a)

r
where u,, are the displacement gradients

_dU, (U, kk')
Uyp™ ax (I, KK') (6b)

Using Eq. (6a), we can express Eq. (4) as
¢ = ¢0+ VAaﬁuaB+ %VAanbuaBu‘rb

1 vee
+3 VA pyorutte syt + . (7

This equation defines the A coefficients in terms
of the potential-energy coefficients as

Ayg=V"t E E MU T PR (AT O (8a)
LAY
AaB76= V-l E E Z ¢ay(l'KK',l”, KK'”) xB(l’, KK’)xb(l”, K.'K”) s (Bb)

kUK 1", kK"
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Aagron =V 2020 2
K

LK ,‘K" 7 Kk

where ¢, and ¢,,, are given by Egs. (5a) and (5b).

For rotational invariance, the crystal potential
must depend only on the symmetric finite strain
parameters 1,,, given by Wallace,"

Nes™ %(uaﬂ'*'uﬂa +umuvﬂ) . (10)

Hence the potential energy may also be expanded
in a series of powers of the symmetric finite
strain parameters 7,

0= o+ VCygllup+2VCopyellaglye
++VCoporuagMyehu* """ (11)

defining the C coefficients, which are the elastic
constants of various orders in Brugger’s defini-
tion.'?

Equations (7), (10), and (11) lead to

Aap=Cos (12a)
Aaprs=Copyot Coslay » (12b)
and
Aggvorn = Caroru + CoponOn
+CyopuBar+ Caou Oay » (12¢)

where §,5 are the Kronecker delta symbols. C,g
and A, must vanish for the equilibrium of the
lattice in the absence of external stresses.
Therefore Eq. (12b) can be written

Anprs=Copys - (13)

Changing to Voigt notation, we obtain from Egs.
(13) and (12c¢),

Cu=A4A,, C,p=4,, Cu=4, (14a)

and

Cin=A;-3C,, Cp=A,1,-Cy, Cip=A,,,

(14b)

Craa™A1a—Clyy Cue=Ages Cree=Aie—Cra— 2C,,.
III. DERIVATIONS OF THE SOE AND THE TOE CONSTANTS
OF NaCl-STRUCTURE SOLIDS

The potential energy of the crystal as given by
Lundgvist” is

€(k)e(k’)
¢_— Z 2 (', KKy

+e? Z Z VYU, k')

”,k'

v ootvyy_ €(K7)
R T T Sl

Kk 1,k ,iv iv

(15)

Z d)a_“(l/KK/, Z”, KK”, l’”, KK”’) xs(l/

, KK’)xs(l”, KK”)xu(l'”’ KKI”) , (9)

where €(k) is the valence of the k type ion and

€= |€(K) | . The first term represents the Coulomb
energy. The second term is the overlap repulsive
energy, coupling the nearest neighbors, and the
third term represents the three-body potential
term. The function f can be defined in terms of
the overlap integrals derived from the free-ion
one-electron wave functions. However, in the
present analysis this function and its derivatives
have been chosen as disposable parameters.

The contribution of the various terms in the po-
tential-energy expression (15) to the coefficients
AaB’yb and Aaa'yb)m9 and hence to CaBM and caBr(nu
are obtained in Appendixes A-C.

The final expressions for the SOE and the TOE
constants of the NaCl-type crystals are obtained
as follows:

e? of
Cn=———4[—5.1126[e+12f(a)]+A+9.320€ agza )l

4a
(16)

cw::—; [1.391e[€+ 121(a)] + 9-32°<<“27fﬂ , a1
c44=£%{2.556€[€+ 12 f(a)]+ B}, (18)

2
Cul:{‘éz[37.556€[€+ 12 f(a)]+C - 34

+13, 980e< 22 f) - 89.3056((1;];)} ,
(19)
Cri= 424[_4 836€[c + 12f(a)] + 4. 660e< 52;>

—18.640e<a2—£>] , (20)

e? of
Cm=‘~1? ~4.836¢[ €+ 12f(a)] + 5.564¢ agz) ]

(21)
0123=43;;[2.717e[<+ 12f(a)]+ 16.692<<ag_f&>} ,

(22)
Cias= . 4|:2 T17€[ €+ 12f(a)] +5. 5645( a{;ﬂ ,

(23)
C4ss=4£—{2 117 + 127 (a) ]} (24)
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The parameters A, B, C are defined as

22V(»r)] _ 1 3V(1f)] 1
[—’aw L;s‘a‘sf" [ o |82l

(25)

33V (7») 1
[ay L;Wc’

where V(7) is related to the Lundqvist repulsive
potential in the following manner:

V(r)=V'(¥)+ (aMe/a)f(af) s (26)

and ¢, is the Madelung constant, equal to 1.7475
for NaCl-type crystals. The expressions for the
SOE constants, obtained above by the finite de-
formation method, agree with those deduced by
Verma and Singh'?® by the method of long waves,
in view of the equilibrium condition

B=-1.165¢[€+12f(a)]. 27

The Cauchy discrepancies among the SOE and the
TOE constants are therefore given by

2 )
Cpom Coamior | 9.320¢ (%)] , (28)

2 9%
Ciiz = Cie6= v [4 660¢ v

—24.2046(51%];-)] , (29)
2 )

Ciss— Cus 6:%;[16.6926 <a5§ﬂ , (30)
2 ]

Cras - C456=4%;4[5.5646 <a5€>] : (31)

Equations (16)-(24) have been derived, ignoring
the thermal vibrations, and are, therefore, ex-
pected to be best satisfied at 0K. Obviously the
Cauchy relations break down both for the SOE con-
stants and for the TOE constants in the presence
of three-body interactions even at 0 K., However,
if we put the function f and its derivatives equal to
zero, the Cauchy relations are satisfied, leaving
only two independent SOE constants and three in-

dependent TOE constants, a consequence of the
central-force model used by Naran’yan? and
Ghate.®

It is also obvious from Egs. (30) and (31) that
even in the presence of three-body forces, the
TOE constants satisfy the following identity:

Clp+2C,6-3C,,=0. (32)

IV. PRESSURE DERIVATIVES OF THE SOE CONSTANTS

When a cubic crystal is subjected to hydrostatic
pressure, the symmetry of the crystal is pre-
served. Birch* has derived a set of effective SOE
constants Cj; which determines the response of an
initially stressed crystal to additional infinitesimal
strains. The expressions for C;,, C;, and C}, are
given below:

Ci =C, +n(2C,,+2C,+C,;,+2C,,,), (33)
Clo=Cio+M(=Cy; = Cp+ Cpp3+2C, ), (34)
Cla=Cuyt M(C +2C,+ Cyy+ €y +2C ) (35)
where
.
n B Cll + 2012

and the C;,, are those defined by Brugger.'?
Hence the pressure derivatives of the SOE con-
stants are

dcfmz _ Cii+2C15+ Cyg+ Cryg + 2C166> (36)
dp C,+2C,
ﬁ: _ <3Cu+ 3Cp+Cyyy = Clzs) (37)
dp 2(C,,+2C,,) ’
K: _ Cyyy+6Cy5+2C0 (38)
dp 3(C,,+2C,) ’
where S’ =3(C!, - C!,) and K’ =%(C},+2C],). We can

write pressure derivatives of the SOE constants in
terms of the parameters A, B, C, f(a), adf/9a, and
a®8%f /9a® by substituting the expressions of the
SOE constants and the TOE constants given by
Egs. (16)-(24). Thus

dCi,_ [ -6.7129¢[e+12f(a)]+ A+ B+ 44-652€(aaf/3a)> (39)
a ““< -2.330€[c + 12f(a)]+ A + 27.961€(adf /2a) )’

ds’_ [ 23.676e[e+12f(a)]+ C - 51.075€(adf /2a) + 13.980€(a’%f /0a%) (40)
-,;,;;—-< 2{-2.330¢[ < + 12f(a)]+ A+ 271.961¢(adf /2a)} > ’

ap

dK’ [ 13.975€[ e+ 12f(a)]+ C - 3A — 167.764€(adf /2a)+ 41.940¢(a?0%f /0a® (41)
‘“< 3{-2.330€[<+ 12/ (a)]+ A+ 27.961€(adf /3a)} >
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TABILE I. Input data at room temperature [lattice para-
meter (Ref. 16) in A and the calculated values of the iso-
thermal SOE constants (Refs. 15 and 16) in units of 101!

dynem~%; original references for d S!/dp values are
given in parentheses alongsidel.

dast

a (o Cih Cd ap
LiF 2,013 10.655 4.632 6.350 3.60 (17)
LiCl 2.570 4,510 2.184 2.480 3.70 (17)
LiBr 2.751 3.528 1.770 1.930 3.75 (17)
NaF 2.317 9.176 2.394 2.810 4.79 (18)
NacCl 2.820 4.585 1.264 1.265 4.79 (18)
NaBr 2.989 3.704 1.066 0.990 4.83 (18)
Nal 3.236 2.762 0.856 0.740 4.80 (18)
KF 2.674 6.185 1.440 1.250 5.25 (18)
KC1 3.146 3.838 0.683 0.633 5.61 (18)
KBr 3.300 3.263 0.564 0.504 5.68 (18)
KI 3.533 2.577 0.445 0.370 6.03 (18)
RbF 2.826 5.251 1.377 0.925 4,93 (19)
RbC1 3.291 3.448 0.609 0.465 5.88 (19)
RbBr 3.445 2.986 0.491 0.380 6.03 (19)
RbI 3.671 2.412 0.366 0.278 6.26 (19)

V. RESULTS AND DISCUSSION

The application of the above theory demands
evaluation of the sixparameters A, B, C, f(a),
adf /da, and a*8%f /8a®. The parameters A, B, f(a),
adf /8a can be evaluated from the SOE constants
[Egs. (16)~(18)] and the equilibrium condition
[Eq. (27)]. The parameter C can be evaluated by
approximating the overlapped repulsive potential
V(7) as a two-parameter potential of the form

V(r)=be"!?, (42)
so that
C=A?/B. (43)
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The parameter a?9%f/94®> may be evaluated from
the experimental value of the pressure derivative
of shear modulus dS’/dp (or the pressure deriva-
tive of bulk modulus dK’/dp), and all six TOE
constants and the remaining two pressure deriva-
tives of the SOE constants can, then, easily be
calculated. The input data are given in Table I.
The parameters, so calculated, are listed in
Table II. The calculated values of the TOE con-
stants and the pressure derivatives of the SOE
constants, together with other theoretical and ex-
perimental values, are reported in Table III.

Naran’yan® and Ghate® have deduced the expres-
sions for TOE constants from the central Born-
Mayer potential, for which.the Cauchy relations
(C112= Ciggy C103=C 56 =C,,,) are satisfied at OK.
They deduced the failure of the Cauchy relations
at a finite temperature T by introducing the vibra-
tional part of the energy. These changes came out
in general very large, in some cases up to 40%
too large, and are difficult to comprehend in crys-
tals like alkali halides. QOur study shows that
much of the failure of the Cauchy relations could
be due to many-body interactions, which lead to
the breakdown of the Cauchy relations among the
TOE constants even at 0K. An identity C,,,+2C,
-3C,,,=0, however, is still satisfied. This iden-
tity can be considered as a single Cauchy relation
satisfied by the TOE constants derived from the
Lundqvist potential.” Therefore, low-temperature
measurements of the TOE constants through this
identity can provide a direct check on the validity
of the Lundqvist potential” in ionic crystals.

Our calculated values of the TOE constants and
the pressure derivatives of the SOE constants
agree fairly well with the experimental values, as
compared to the theoretical values of Ghate® and

TABLE II. Calculated values of the parameters.

a y al 2
A B C f(a) da da?

LiF 10.167 -1.514 —68.266 2.498x1072 —5.248 %1072 —-0.4306
LiCl 10.529 —1.571 ~170.5667 2.905x10"2 —2.,402x1072 —~0.8788
LiBr 10.707 -1.6053 ~71.4134 3.149x10"2 —1.705%x10"2 -1.0536
NaF 9.954 -1.176 ~84.249 7.939%x1074 —2.2305x10"%  —0.54678
NacCl 10.1269 ~1.162 —88.275 —2.3096x 104 -1.1765x10"*%  —0.7201
NaBr 10.266 —1.147 ~91.8475  —1.248x1073 —1.125x1072 —0.4300
Nal 10.644 -1.178 -96.141 9.5978x10~4 -2.3725%x10"2  —0.1579
KF 9,7238 —0.928 —~101.880 —1.6946x10"%  —1.8071x10"2 0.3427
KCl 10.386 —0.9005  —119.789 -1.892x107? 9.0573x1073 0.1994
KBr 10.395 —0.8680  —124.499 —2.124 %1072 1.3238x10™2 0.3547
KI 10.4348 —0.8371  —130.065 —2.345x1072 2.168x10"2 0.0856
RbF 9.0705 —0.8567 —96.0305  —2.205x10~2 5.362x102 —0.4267
RbC1 10.195 -0.7921  =131.211 —2.667x1072 3.151x10"2 0.3647
RbBr 10.4331 —0.7772 —140.043 —2.773%x1072 2.898x1072 0.6350
RbI 10.5350 -0.7332  -151.371 —~3.088x1072 2.980%10"2 1.008
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TABLE III. TOE constants (in units of 102 dyn/cm?) and pressure derivatives of the SOE constants at room temper-
ature, p is in the units of 10~% cm,

acy  dx’
P Cit Cito Ciee Cios Ciy Cuse ap ap Ref.
LiF 0.2507 -18.0130 -2.5687 -2.3100 0.9325 1.1377 1.2402 0.43 5.28
0.3333 -5.9770 —2.6180 —2.6400 0.9173 0.9768 0.9540 0.84 3.21 Theor. 5
0.2800 —13.5300 ~2.5950 —-2.5420 0.8791 0.9803 0.9551 0.74 4.27 Theor. 5
-20.7000 —2.5600 -2.4200 1.1100 1.3200 1.3200 0.45 5.66 Theor. 4
1.38 5.30 Expt. 17
LiCl 0.3835 -8.1498 -1.3444 ~0.8798 0.4314 0.4667 0.4844 0.177 5.76
0.3333 -6.3720 —0.9059 —0.9355 0.3142 0.3741 0.3617 0.32 3.93 Theor. 5
0.3030 -8.572 —0.8592 -0.9014 0.2945 0.3742 0.3620 0.24 4.61 Theor. 5
1.70 5.63 Expt. 17
LiBr 0.4124 —6.5440 -1.1333 -0.6805 0.3483 0.3674 0.3769 0.133 5.964
0.3333 —-5.9850 —0.6670 —0.6980 0.2271 0.2870 0.2769 0.19 4.14 Theor. 5
0.3050 -17.7210 —0.6272 -0.6699 0.2087 0.2867 0.2770 0.12 4.80 Theor. 5
1.80 5.68 Expt. 17
NaF 0.2737 -16.3699 —1.4035 -1.0017 0.4743 0.5240 0.5488 —0.142 5,691
0.3333 —6.6710 -1.4310 -1.4570 0.5001 0.5601 0.5436 0.51 3.47 Theor. 5
0.3120 -8.5630 -1.3940 -1.4290 0.4875 0.5606 0.5439 0.47 3.88 Theor. 5
-7.1400 —1.4380 -1.2800 0.5580 0.7600 0.7600 0.11 3.51 Theor. 4
0.205 5.18 Expt. 18
NacCl 0.3236 —8.3224 —0.7456 -0.4398 0.2468 0.2470 0.2710 -0.288 5.764
0.3333 -5.7980 -0.5837 -0.6153 0.1970 0.2568 0.2476 0.19 4.18 Theor. 5
0.2880 —8.6050 —0.5220 -0.5744 0.1637 0.2563 0.2479 0.08 5.36 Theor. 5
~5.4540 —0.6880 -0.6300 0.2690 0.3550 0.3540 0.22 4.25 Theor. 4
-8.8000 —0.5710 -0.6110 0.2840 0.2580 0.2710 0.37 5.27 Expt. 1,18
NaBr 0.3339 -6.5505 —0.4738 —0.3487 0.1798 0.1888 0.1934 -0.298 5.160
0.3333 -5.3830 —0.4418 ~0.4744 0.1441 0.2039 0.1964 0.043 4.17 Theor. 5
0.3080 —6.6230 -0.4139 ~0.4566 0.1279 0.2036 0.1965 —=0.013 4.83 Theor. 5
046  5.29 Expt. 18
Nal 0.3581 —4.,7425 -0.2727 -0.2642 0.1237 0.1376 0.1445 -0.292 4.567
0.3333 —4,7810 —0.2984 -0.3322 0.0891 0.1488 0.1432 -0.08 4.45 Theor. 5
0.3410 —4,5120 —0.3045 -0.3358 0.0932 0.1489 0.1432 -0.06 4.35 Theor. 5
0.61 5.40 Expt. 18
KF 0.2552 ~10.6856 -0.2164 —0.4459 0.2101 0.2328 0.2441 -0.411 4.252
0.3333 —6.1380 —0.7461 -0.7767 0.2563 0.3162 0.3053 0.17 3.56 Theor. 5
0.3410 -7.6220 -0.7134 -0.7532 0.2418 0.3161 0.3055 0.12 4.02 Theor. 5
—0.43 5.26 Expt. 18
KCl1 0.2728 ~7.0615 -0.1753 -0.2171 0.1325 0.1266 0.1236 —0.530 5.028
0.3333 ~4.,9710 -0.3386 -0.3720 0.1047 0.1645 0.1583 -0.01 4.42 Theor. 5
0.3090 —-6.0130 —0.3152 -0.3581 0.0892 0.1641 0.1584 —0.06 4.95 Theor. 5
-~5.0700 -0.4580 -0.4000 0.1480 0.2270 0.2270 —0.02 4.82 Theor. 4
-7.0100 —0.2440 ~0.2450 0.1330 0.1270 0.1180 -0.39 5.34 Expt. 1,18
KBr 0.2755 —6.0266 -0.0977 —0.1716 0.1092 0.1020 0.0984 —0.565 4.854
0.3333 —4.,6170 -0.2675 -0.3015 0.0770 0.1315 0.1367 —0.030 4.74 Theor. 5
0.3030 —5.8050 —0.2412 -0.2875 0.0568 0.1316 0.1362 -0.090 5.91 Theor. 5
—~4.,5380 ~0.3880 —0.3290 0.1110 0.1865 0.1865 —0.014 5.26 Theor. 4
-0.328  5.38 Expt. 18
KI 0.2834 -5.0020 --0.1288 -0.1242 0.0856 0.0767 0.0723 —0.611 5.387
0.3333 —4.1030 —0.1869 -0.2214 0.0444 0.1041 0.1002 —0.16 4.76 Theor. 5
0.3170 —4.6140 —0.1754 -0.2160 0.0345  0.1039 0.1002 —-0.19 5.19 Theor. 5
—4.,7100 -0.3140 -0.2560 0.0740 0.1405 0.1445 —=0.07 5.98 Theor. 4
-0.244 5.47 Expt. 18
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TABLE 111 (Continued)
acy 4K
P Cin Cis Cigs Cizs Ciy Cuse ap dp Ref.
RbF 0.2669 ~9.6190 —0.5918 —0.2946 0.2616 0.2076 0.1806 —0.64 5.27
0.3333 ~5.7980 -0.5837 —0.6153 0.1970 0.2568 0.2476 0.06 3.56 Theor, 5
0.2910 -8.3830 -0.5268 -0.5774 0.1666 0.2563 0.2479 -0.03 4.49 Theor. 5
-0.70 5.69 Expt. 19
RbC1 0.2557 -6.8375 -0.1069 -0.1530 0.1167 0.0994 0.0908 —0.656 5.18
0.3333 —4.,6260 -0.2689 -0.3028 0.0775 0.1372 0.1320 -0.13 4.16 Theor. 5
0.2830 —6.7870 —0.2219 -0.2793 0.0388 0.1363 0.1322 -0.23 5.50 Theor. 5
-0.56 5.62 Expt. 19
RbBr 0.2566 -5.7322 -0.2671 —0.1255 0.0940 0.0821 0.0742 ~-0.670 4.825
0.3333 —4.2810 -0.2116 -0.2460 0.0546 0.1142 0.1099 —0.180 4.390 Theor. 5
0.2980 -5.5400 -0,1837 -0.2382 0.0301 0.1137 0.1100 —0.220 5.310 Theor. 5
—0.550 5.590 Expt. 19
RbI 0.2555 —4.6992 0.0341 -0.0938 0.0701 0.0596 0.0543 —0.681 4.610
0.3333 -2.5800 -0.1389 -0.1737 0.0278 0.0875 0.0842 -0.33 3.57 Theor. 5
0.2930 -5.0720 -0.1223 -0.1744 0.0002 0.0882 0.0856 —0.33 5.60 Theor. 5
-0.51 5.60 Expt. 19
Naran’yan.? As a matter of fact, the agreement rived our expressions ignoring thermal vibrations
between our values and the experimental ones in and, therefore, our calculated values should nec-
the case of KC1 is excellent. The values of dK’/dp essarily show some deviations from the room-
are invariably positive, whereas dC;4/dp is posi- temperature experimental results.

tive or negative, depending on the crystal. It is
true that the degree of agreement between the

APPENDIX A: COULOMB CONTRIBUTION

theoretical and experimental values of dC,/dp The expressions for ¢,, and ¢,,, derived from
falls short of that desired, but this should not be the Coulomb energy term according to Egs. (5a)
considered to be too serious because we have de- and (5b) are

3ka(l', kK )y (17, kK" 8y y } P
[’r(l’, KK')]S [T(Z', KK')]a o Uk k"

2
BE o', 1, k") = () (k)]

¢°C‘n(l/’ KK', lII’ KK”, l”’, KKIII)

_e 3020 s yor Oy 2, (17, KK") | 38,8 0 0 B oKy (17 KK")
3 e(k)e(x’ )[ [V(Z',KK’)]s + (", k)P

RN N2y KK™) 15050y Oy o Ky (1 kK" )2, (17, kK" )2, (1", KK™)

[, )T CENTON J et

Here the superscript C over ¢,, and ¢, denotes the Coulomb part. The expressions of Aaayf, and
Aaﬂyaw from Eqgs. (8b) and (9) can be wrltten as

3 5o
Alsys = 22a Z Z e(k)e(k [‘x—a‘L _1]”5"5’

3x4,0 3xy 8 3x,8 15x,xyx
Alponn=3 i > Zle(x)e(K )[ afn, 30, Snbay _ 18%aty x] P
K

(A1)

(A2)

(A3)

(A4)

Here all the vectors are denoted by the same index numbers (I, kk’) and a denotes the nearest-neighbor
distance. 2a® is the volume of the elementary unit cell. Since NaCl-type crystals are diatomic, « takes

two values.

The ASBY s and Agsym can be evaluated by using various lattice sums, already determined by Verma and

Lal.2® Thus
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é* o
A% =-sa12 e, A =1.3915; "2, A -2.556 g -
_2_ 2
Al :22'220424 €, Al :_3'445H62’ AS  =-0.663 484 €?,
(A6)

AC 24.108-5nc2 . AC =2.717-5
144 = %+ M€, 123 T 4. pry

1A Afe 2T

4q*
APPENDIX B: REPULSIVE CONTRIBUTION

The expressions for ¢4, and ¢, derived from the short-range repulsive part of the Lundqvist poten-
tial energy”’ are

& (U, ki, 1" KK")=e2[x“(l’,KK’)xv(l”,KK”) o2V (r (U, kk'))
ol'y b b )

(2, k)P 3[lr(l, kk")f
doy  OVUr(l, kk')) _xa(l’, KK )y (1", k") 8V (r (I, KK'))J 5 5 (B1)
r(U', k') or(l, kk') [»(U, kx") P AT I
B (U, kK )ty (17, kK" )0y (17, KK )By1ymB 1 BV (v (', kK'))
R 12 v on n o qm ny . ,2 o ) Y > A ) 1’1
¢rxy)\(l y KK ;l y KK, l y KK ) € [ [,r(ll, KK')]S BT(Z’, KK )
+5a>\61111’15K:K/nXY (1", k") 82V (r (', kK'))
(U, k)P olr (¥, ki)
6)/)\51//1/1/6K11Kmxa(ll KK ) ZV/(/V(ZI, KKI))
[r(U, kx") P alr(l, kk')f
+6OL)’ élr,mOKerx)\(l’”, KK/") 82V’(’r(l’, KK,))
7 (7, k') alr(l, kk')P
+6,,,m6,<,,< mxg (U, kK )oey (17, k"), (17, kK™) 3V (U, kK'))
[l kx")? olr(l, kk') P
_ 3 (U, kK )y (1", kK205 (27, KK™)B 0y mb vy OV (I, kK'))
[, k) ]} a[v(l', kx')P
BonOprymdyremxy (I, kk") 3V (r(l', kK'))
[r (¥, kk") P dr (¥, kk')
_ Oy Bymymbym mxg (U, kK') 3V (7 (¥, KK))
[r(, kk’) P ar(l', kk')
By Oyrymdremxr (1", k™) 3V (r (1, KK )) 9
- COTa 57 (U 1K) -l 5, pnByren (B2)

The superscript R indicates repulsive contribution. The expressions for Aasyé and Agfsmu can now be re-
duced to

Koy 02V WXy 3V/(r) 1 2y’
ocByé 2a Z Z [(x - 2( ) x—fl (r)-\‘-;éay a:’)’) >0x5x5:| 3 (B3)

9
k 1! 4 4

3xaxyx>\ 8V'(r) éa)\xYBV'(r) Oy X 8V'(r) Ogyxy 8V'(r) Oary 3%V'(r)
fxByéM 245 Z E - - +

8r rs oy r o r  or r ot

kK 1'Kk!

Syate 82V'(r) Oy xy 82V (r) Bxgxyxy 3°V'(r) xuxyxy 83V'(r) ]
+ yzot pre el - - 52 T, 57 Oxsxaxu. (B4)

or r
In these equations also, all the vectors are denoted by the same index number (I, kk’). The values of
Agm and Agsm\u, by carrying the lattice sums only up to the first-nearest-neighbor atoms, have been ob-
tained in the form

& P
Aﬁ:EA ’ Aﬁ=0; Aﬁl_4 7B’, (B5)
Aﬁl 4(14 CI Aﬁz = 166 Ags Aﬁm Afse 0, (B6)
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where parameters A’, B’, and C’ are defined as

[azv’z(r)] :81_513A” [aV’(r)} ZE%B" {a‘*v’ﬁr)] =§}Fc" B7)

or r=a ar r=a a or r=a

The value of the parameter B’ can be obtained from the equilibrium condition

99 -
<;>r=a—0’ (Bs)
where ¢ is defined by Eq. (15). Thus

B'=-1.165¢. (B9)

APPENDIX C: THREE-BODY POTENTIAL CONTRIBUTION

The expression for ¢, and ¢, arising from the three-body potential term of the Lundqvist potential-
energy’ expression are given by

d)gzy(l,,KK',l",KK”)
2 : v v o? [_e(x") €(k’) 3 f a7 (11, kiiY))
=2, ‘Sl[f a0 1) [ e )+ mc’)][axau', T,

s (., s sl

(C1)

¢’§n(l'7 KK, 1", kK", 17, KK™) = €2 E {[f,(iv(y(liv, KKiv))][ ( 93 ) / €(k’) >]
I

Pt il Bxa l', KK’)Bxy(l”, KK )Bxx(l”', KK”’) \1/’([', KK')

N CS) H S foan v (117, kK1) J
v (U, k") Lo (7, ki) ox (17, k") 8, (1", kK™) 111

02 f i (7 (1YY, KK”)):H: ] [ el’) >:[
II1

8x (1", kk")ox, (1", k™) I Lox (1, kk")\ v (1", k")

8 fanlr (117, KK”))}[ 92 ) ﬂ
9x (l/ KIC ax,(l”, KK”)axh(l’”, KK”/) \T(l’, KK’) v

[

[

[
s e e,
[

[

+

+

+

8 fivlr (117, KK”))][ o? (<) ﬂ
8x, (1", kk") 8x (¥, k&) 8, (1", k™) \r (1, kK') ) 41

8% f a7 (117, k")) :I[ 3 [ ek’ )]
VII

*ox ol k") ox (17, kK")

BxX(l”’, KK!II)\y(ZI’ KK/)

[ 2Lt )] G (e )] } ©2)
ox,(1", kK™) ax, (U, k") 0x (17, k" )\ (U, k") ) ) gy
Here the superscript T over ¢,, and ¢,,, denotes the three-body potential term. We have divided the ex-
pressions of ¢§, and ¢£” into four and eight different parts, respectively, and now we will calculate the
contribution of each part to AL, and AT, separately.
First part. Since the function f is defined in terms of overlap integrals which are assumed significant
only for the nearest neighbors, the contribution of the first part of ¢>£y and ¢§n can be expressed as

_ g o [ elx”) _12f(a)

ee <0100 5, s e, e )
., 8° ( e’ _12f(a)

¢§£h_ e X ef(a)[axa(l’, KK’)Bx,(Z", KTK") axh(l”’, KK’”)\’V(Z', KK'))]O = E(K) g)’h . (04)

These terms can be added to the Coulomb part modifying €® to €[e +12f(a)].
Second part. Evaluating the lattice sums, we get
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pTi=e? aye[  Ef vl kk")) )J , (C5)

ar Lax (l', KIC’)ax,,(l”, K"
3 ’ 4
Tr1— o2 2u€ [ 8 for (v (U, kK')) ]
¢ayx e 2 axa(l’, KK')Bxy(l”, KK axh(lm, KK™) . ’ (C6)
which may be added to the repulsive potential part, so that the total contribution can be derived from the

overlapped repulsion V(7) given by Eq. (26).
Third part. The expressions ¢’Iit and ¢Z1IT are

[(xa(l', K'Y B 1300ty @ o (I, KK')) )(-e(x'>x,(z", KK")B,1 By >] , ")

’V(l”, KK”) 37"(l"KKw) [’V(l,, KK')]a o

o In(l, k', 1", kk") = €*
1iv,kiv

T m "
o BN, ki 17y kK" 17, KK™)

e Z [( 17y KK )X (17 5 K" )8 g1v8 0 190 o 1138, B tv 817 (1'Y, kKY))
oy [7(1Y, k)P o[r(I™, k™)
6,’,)‘5111 livéx",(iv gn g 6#”:(’” 3f,‘1v(1’(l“ KKiv))
(117, kx'Y) o[7 (11", kk'")]
_ %07, kk") %, (1", kK™)0 4 1190 (170 g 1v8 o 1y B il (1YY, KK"))) ‘E("')xa(l':’“")ﬂ . (C8)
[, k)T o[7(I™, kx'¥)] [+, k)P 0
Hence the expressions for A3 and A3 can be obtained from Egs. (8b) and (9) as
T & %, 3f(7) —e(k’)x,
Aubre=g3 [ 2 <“fv x| | 22 —Vrl)xs] ) (C9)
K 1V, kv 0% go xt 0
Tinx =‘ei [ <x Xy¥a 82f(1f) XyXp af(«y) 1 af(r) ) ] [ <—€(K’)x¢x) ] 10
AaB?bhu 207 ; ZW’ZK“‘ 72 92 ,},3 ar ,}, FY% ‘y)q, XXy o l:;: ] Xg 0- (C )

All the vectors within the first square brackets are denoted by the same index number (I*", kx!¥) and within
the second square brackets, by the index number (I’, kx’). By summing the first-bracket expressions
over nearest neighbors and the second-bracket expressions over the whole lattice, and writing »df (v)/dr

evaluated at »=a as adf/9a, we get

T 9 T 9 T
= 4660F€< a{;), = 466044e< f), A =0, (C11)
50 9
A=y, 660Te< aaf >, A=A =4.660 4€< 2 ), AfHi=AfIT=pTUI=0, (c12)

Slmllary, we can get the contributions of the remaining parts of qbf,, and ¢§n to the A",ms and AT Byonu -
Thus, the total contributions of ¢T, and ¢J,, to the various A coefficients are

A% =9.320 4€< af>, Ag=9.320%e<ag—£), AT =0, (C13)
A{u=§_[13 9806( 52 > 61.344¢ (%{;ﬂ , (C14)
Aflz—:—z[4 660€< :Z) 93206( 8-")], (C15)
A,T66=—e7;[:14.8845 (a%{;)] , (C16)
A1T23=—e[;—[14.884e <a§£>] , (c17)
Aﬂ4=%[14.884e <aa_{l>] , (C18)
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AT =0.

456

(C19)

Combining these three contributions to A coefficients, the SOE and the TOE constants can be obtained by

transforming these A coefficients to the C coefficients.
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