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Electron-phonon interaction in a dielectric slab: Effect of the electronic polarizability*

James J. Licari~ and Roger Evrard
ESIS, Institut de Physique, Universite de Liege, Sart Tilman, 4000 Liege I, Belgium

(Received 21 June 1976)

The operators describing the interaction between an electron and the phonon modes of an ionic crystal slab

(the bulklike sinusoidal modes and the localized surface modes) are calculated with the proper inclusion of the
electronic polarizability. Since the effect of the electronic polarizability on the interaction operators exhibits
itself through the amplitudes of the polarization eigenvectors, we must first derive the eigenvectors,
eigenfrequencies, and amplitudes of the various phonon modes. We show that the electron —LO-phonon
operator derived here is equivalent, for a very thick slab, to the Frohlich operator for bulk LO phonons, and
that the electron —surface-phonon interaction operator leads to the classical image-charge theory result for the
interaction energy of an electron external to a semi-infinite crystal and the polarization eigenmodes of the
crystal.

I. INTRODUCTION

In recent years, considerable theoretical effort
has been directed towards a study of the modes
(phonon, plasmon, etc.) existing at a free surface
or at an interface. Equally interesting, and es-
pecially important from a technological point of
view, is the interaction of a charged particle with
these various modes. For example, the effect of
the surface modes on an electron or ion approach-
ing a free surface is important in various surface
spectroscopies and adsorption studies, while the
understanding of the interaction of a conduction
electron with the surface modes is crucial to the
study of semiconductor devices.

In this paper we are interested in the problem
of a conduction electron interacting with the opti-
cal-phonon modes of an ionic semiconductor slab,
that is, with both the sinusoidal bulklike modes
and the surface modes. ' These interaction oper-
ators have already been derived both for the slab"
and the semi-infinite crystal. ~ However, these
derivations either have assumed the ions to be
nonpolarizable, that is, the high-frequency di-
electric constant e„ is taken to be unity, or they
have included the electronic polarizability incor-
rectly. In fact, this electronic polarizability plays
an important role in the interaction operators and
can give a large contribution to their magnitudes.
For example, the strength of the interaction with
the bulklike sinusoidal modes is proportional to
(&/e„—&/eo)'~, where eo is the low-trequency or
static dielectric constant. For typical II-VI semi-
conductors and alkali halides, the effect of setting
e„=1 is to overestimate the strength of the inter-
action by a factor of from 4 in the former com-
pounds to 1.5 in the latter ones. This is certainly
a non-negligible effect, especially for the tech-
nologically important II-VI compounds. For the
interaction with the surface modes, the wave-

vector dependence as well as the strength of the
interaction is altered. This led us to rederive
the interaction operators, properly treating the
effect of the electronic polarizability. This de-
rivation is the main subject of the present paper.

However, it is necessary to point out that we
are not considering that part of the electronic
polarization produced by the electron itself as it
moves through the crystal. When we consider a
bulk crystal (that is, one without surfaces), this
polarization will follow the electron's motion
rigidly, if it is not moving extremely fast, and
will not undergo any transitions due to interaction
with the electron since the characteristic frequency
of the oscillations of the electronic shell &, is of
the order of 10" sec '. The electron's energy is
thus lowered by a constant and is usually ignored.
But as an electron approaches a surface, the pat-
tern of electronic polarization must alter. Then
the lowering of the electron's energy is not con-
stant as it approaches the surface and should be
taken into account. A measure of the extent of the
polarization around the electron is (8/2m&v)'~',
where m is the electronic mass and ~ is the fre-
quency of the polarization mode excited. For opti-
cal phonons this distance is of the order of 100 A,
while for the electronic polarization it is about 4
or 5 A, or roughly comparable to the lattice spac-
ing. So for the optical modes it is valid to use the
continuum approximation, where the discreteness
of the lattice is ignored, whereas for the elec-
tronic polarization the continuum approximation is
not valid. Since this paper is based on the con-
tinuum approximation we will not be able to in-
clude the effect of this part of the electronic po-
larization.

For the sake of completeness, and to have the
entire problem treated consistently in a single
publication, we will first derive the polarization
eigenvectors and eigenf requencies. Previously,
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only the result of the effect of the electronic polar-
izability on the eigenfrequencies" has appeared
in the literature (the i'orm of the eigenvectors is
unchanged) without any details of the method used
or of the effect on the amplitudes of the eigen-
vectors.

The plan of the paper is as follows: in Sec. II
we explain the notation used throughout the paper
and introduce the geometry of the problem; in
Sec. III we analyze the types and properties of
the oscillation modes for the slab geometry based
on the macroscopic electrostatic approach (this
facilitates comparison with and understanding of
the modes subsequently obtained via a microscopic
approach); in Sec. IV we begin the microscopic
approach and find the normal modes by evaluating
the local electric field at an ion site; in Sec. V we
consider the free-polarization Hamiltonian and
give physical arguments for its form; in Sec. VI
the electron-phonon interaction operator is de-
rived showing the proper dependence on the elec-
tronic polarizability; in Sec. VII we consider an
electron outside the slab interacting with the po-
larization eigenmodes and compare this interaction
energy with that gotten from classical electro-
statics; and in Sec. VIII we give a brief summary
of our results. Finally, in the Appendix we show
that in the limit when the slab thickness becomes
large, the interaction Hamiltonian for an electron
and the sinusoidal bulklike modes present in the
slab is equivalent to the usual Frohlich Hamiltonian
for an electron interacting with bulk longitudinal-
optical phonons.

II. NOTATION AND GEOMETRY OF THE PROBLEM

Since the primary purpose of this paper is to
derive the correct form of the electron-phonon
interaction operator, we will, for the most part,
use the notation of Lucas, Kartheuser, and Badro'
(hereafter LKB) who have previously derived this
interaction term without the inclusion of the elec-
tronic polarizability. The Einstein summation
convention, where repeated indices indicates a
sum over the values taken by those indices, is
used throughout.

Because we are considering a semiconductor
slab, the geometry is that of Fig. 1 which is nearly
identical to the corresponding figure of Ref. 1. The
slab lies between +a with faces normal to the z
axis and extends to infinity in the x and y direc-
tions. The other indications on the figure will be
explained in the following sections as they become
relevant.

t (t, zj.
z=0

X,g

FlG. 1. Geometry relevant to the discussion of the
dielectric slab.

III. MACROSCOPIC ANALYSIS

The understanding of the physical meaning of
the different vibrational modes that will be ob-
tained later on by a microscopic approach is great-
ly facilitated if one first considers the problem
using the classical macroscopic approach. There-
fore, in this section we consider the crystal slab
from the point of view of classical electrostatics,
that is, based on the equations

V ~ D =4mp, (r), (3.1a)

D(r) =eE(r) (3.1b)

= E( r) + 4w P( r), (3.1c)

E(r) = —V'y(r), (3.1d)

where E(r), 5(r), P(r), and p(r) are the elec-
tric field, electric displacement, electric polari-
zation, or dipole moment per unit volume, and
scalar potential; p, (r) is the free charge density;
and e is the dielectric constant of the slab. Since
the system is translationally invariant along the
surface, one may take p(r) of the form

y ( ~r) y (a ) c5 k ' P (3.2)

where p and k are two-dimensional position and
wave vectors in the plane of the surface. If we
consider the case where po(r) =0 (free oscillations)
the above equations lead to

2 -k g =0. (3.3)

Besides the trivial solution p(z) =0, there are two
possible solutions to this equation, either z =0 or
the quantity in large parentheses is zero.

Consider first the case where & =0 inside the
slab. If we write the frequency-dependent dielec-
tric constant for a semiconductor in the usual way,
that is,

(3.4)
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where &To is the restrahlen or transverse-optical
(TO) frequency, then for e = 0 the frequency is

= oioTO (eo /k„), which is the longitudinal-optical
(LO) phonon frequency according to the Lyddane-
Sachs-Teller relation. In this case, the solution
of Eq. (3.3) is an arbitrary function of z which we
will write

Ia) Lo

y(z) =g (y, sink, z+y, cosk, z). (3 6)
k

The solutions of Eq. (3.3) in the regions outside
the slab ( i z i &a) where q = 1 are of the form p(z)
=i', e ', where the plus sign is chosen for z « —a
and the minus sign for z &+a in order that p(z)
remain finite at z = ~~. The amplitudes iti„p„
p„, and p are determined by the boundary con-
ditions on E and 0 at the bvo surfaces. These con-
di tioIIS yield Q ~

= 0 so thRt (j) (z ), E( 1'), arid D( 1')

are zero outside the slab for this mode. Inside
the slab the matching of boundary conditions is
sR'tlsfied 111 two ways~ either Qo

= 0 ol' etio
= 0. Thlls

we have bvo solutions with polarization vectors

Pl 3 ~ Vl 7T ~ Vl 7T

P, (r) = ~' e'k'" ika cos z -z sin z
4wa 2a 2 2a

(m =1, 3, . . . ) (3.6a)

FIG. 2. z dependence of the k and z components of (a)
the even LO mode P+' (r) of Eq. (3.6a), (b) the odd I.O
mode P2(r) of Eq. (3.6b), and (c) the even and odd SO
modes P~~(r) of Eqs. (3.8a) and (3.8b). Note that for the
I,O modes the k components vanish at +a in accordance
with the boundary condition on E. For both the I,O and
30 modes, the finite g components at +a result in a
surface charge density. The relative amplitudes of the
k and z components have not been portrayed in the
figure.

m ~ (t)Q jgeP
( )= e'"' lkas' *+* cos )2a 2 2a

$0(r) y k &ik P

4m'

x (I'k cosh kz +z sinh kz) (3.8a)

(m = 2, 4, . . . ), (3.6b)

where 2 is the unit vector in the z direction. We
have chosen to give the polarization vectors here
for comparison with the results of the microscopic
calculation in Sec. IV. Because the slab possesses
a plane of mirror symmetry at z =0, the polari-
zation vectors exhibit even or odd symmetry with
respect to this plane, this being indicated by the
+ subscripts. Figure 2 shows the components of
PP(r) for I =1 and 2.

In the case where cu0 inside the slab, p(z ) is
a linear combination of exponentials, that is,

A(z) =4.e"'+4. e "
~

Outside the slab, p(z) is again equal to p, e"'.
Matching boundary conditions there gives for this
mode the polarization fields

o(r) k
1 —& eik P~

7r

x (ik sinhkz +z cosh kz), (3.8b)
th

where k is the unit two-dimensional wave vector.
These two polarization vectors describe the sur-
face-optical (SO) modes associated with the slab.
Tile coIIlpoI1611ts of P~(1') RI'6 Rlso showl1 111 Flg. 2~

where we see that the polarization decreases ex-
ponentially on moving away from the surfaces.
Their frequencies are given by

(1+a)/(1-6) =+e '", (3.9)

gotten from the boundary conditions, so that using
c(oI) of Eq. (3.4), we find

(&o+ 1)+ (&o 1) &
oi~=oITo

( ~1)p (6 1)e-oka (3.10)

The + (-) sign on oI~~ indicates the even (odd) mode

frequency and is to be associated with the upper
(lower) sign on the right-hand side of Eq. (3.10).

The above macroscopic electrostatic approach
was able to give us the LQ and SQ modes because
for both of these modes there exists a polarization
charge density. For the LQ modes there is both
a volume density p' =-V ~ P and a surface density
O' = —P II (II is the unit normal to the surface
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pointing into the vacuum), while for the SO modes
there is a surface density alone. It is this polar-
ization charge which acts as a source for the fields
associated with these modes. Since V 5=0 (also
0 n =0 at the surface) for a transverse mode, we
cannot expect to find transverse bulk modes via
the macroscopic approach. We should point out
that the results of this section include the effects
of the electronic polarizability since e„el, and
they are identical to those of LKB and those of
Sec. IV.

In Sec. IV we begin a microscopic approach,
microscopic in that we consider the forces acting
on an individual ion and formulate the problem in
terms of relative ionic displacements and the local
electric field (rather than the macroscopic field
E). The electronic polarization will be introduced
here via the polarizability n. This approach will
give us, besides the LO and SO modes found
above, the TO modes associated with the slab;
these modes are also needed to formulate the
Hamiltonian. In constructing the electron-phonon
interaction operator, besides the functional form
of the polarization eigenvectors which we found in
this section for the LO and SO modes, we also
need the polarization amplitudes. These ampli-
tudes are gotten from the orthonormality and
completeness conditions imposed on the eigen-
vectors, which can only be formulated in the mic-
roscopic framework.

IV. EQUATION OF MOTION AND NORMAL MODES

u(r, t) =u, (r, t) —u (r, t), (4.1)

is

(4.2)

where p,
= M, M /(M, + M ) is the reduced mass

of the ion pair or reduced mass per unit cell, &,
is the frequency associated with the short-range
force between ions, and E'(r, t) is the local field

As mentioned previously, the basic approach
used in this section is that of LKB, modified to
include the electronic polarizability of the ions.

We consider an ionic crystal consisting of one
pair of positive and negative ions per unit cell,
the magnitude of the charge on each being e. Since
we are interested in the long-wavelength optical
modes, we will use the continuum model where
we write the displacement of the positive and
negative ions as u, (r, t) and u (r, t), respectively,
r being the position vector of the center of the
cell containing the pair of ions. The equation of
motion for the relative displacement of the positive
and negative ions

=T,, (r —r')P,. (r', t), (4 4)

where i and j indicate Cartesian components, and
r is a unit vector. Therefore, the total contribu-
tion of regions I and II to the local field at r, which
we will call E'( r, t), is

8';(r, t) = (4.5)

As indicated, the integral is in principle only
over the regions I and II. However, we are inter-
ested only in modes with large wavelengths, that
is, far larger than the dimensions of the unit cell.
Indeed, in the framework of Frohlich's polaron
theory' it is assumed that these are the only modes
to have an appreciable interaction with conduction
band electrons or valence band holes. The thick-
ness of region III can then be taken large compared
to the dimensions of the unit cell (so that regions
I and II can be treated macroscopically) but small
compared to the phonon wavelength. Therefore,
the integral in Eq. (4.5) can be extended to the
entire crystal slab without introducing any ap-
preciable error.

Based on these assumptions, we use the well-
known result of Lorentz' to describe the contribu-
tion of region III to the local field. This field can
be written for the slab geometry as

E',. ( r, t) = q, P,. ( r, t), (4 5)

at the position of the ions. The oscillating ions
produce a polarization field P(r, t) consisting of
two parts: the ionic polarization produced by the
relative separation of the positive and negative
ions when the crystal vibrates in an optical mode,
and the electronic polarization caused by the elec-
tric field associated with the optical mode. So we
write 5( r, t) as

I~( r, t) = ne u(r, t) + no. E'(r, t), (4.3)

where n is the number of ion pairs (or unit cells)
per unit volume, and g is the electronic polar-
izability per ion pair.

Following the method of Fuchs and Kliewer and
LKB for calculating the local field E'(r, t) at the
position r = (p, e), we divide the crystal into three
slabs whose faces lie parallel to the external sur-
faces of the crystal, as in Fig. 1. Regions I and
II are sufficiently far from r that the distribution
of polarization in these regions can be taken to be
continuous and the field produced at r can be cal-
culated macroscopically. The contribution to the
field at r of a unit volume of polarization charge
located at r' in one of these two regions is'
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where

o

0

I, o o 8——71'
3

(4.7)

+ T,.& r —r' P& r', t dr'.
slab

We continue now with the method of LKB to ar-
rive at the equation giving the normal modes of
the system. Differentiating Eq. (4.3) twice with
respect to time and using Eq. (4.2), with the local
electric field given above, one finds

(4.8)

P',. (r, t) = —(d', P,.(r, t) +o q, , P, (r, t).
+o T,

& ( r - r') P& ( r' t)) d r'

+nnq;, P, (r, t)

+ne T,, r-r' P,. r', t dr', 4.9

where

g = nO. (do+ne /t(, . (4.10)

Assuming that the polarization field has a sinu-
soidal time dependence, that is, P(r, t) = P(r) e'
where & is a normal frequency of vibration, and
def lnlng

A. o
= 4W(d() /(dp ) A. = 4V(d /(dp )

(Z -X, ) (8;, -noq;;)y. =
1 —no. (X -A.o)

(4.11)

(4.12)

Then the total local field at r is the sum of E' and
E', so that its ith component is

EI ( r, t) = q, , P, (r, t).

the Fourier transform of T,, ( r —r ) is written

with the three-dimensional vector K defined as
K=(k, ik8(z -z')). As is usual, the e function is
given by

e(z -z') = +~~ 8 )Z

. -1, z (z'.
(4.17)

Using the Fourier transforms defined above, Eq.
(4.14) takes the form

27T

(~,, -r, , )P,.(k, z) = —dz Z,. IC,.

x e-ol z-o'I P (k z')

(4.18)

With the indices i and j denoting the three Car-
tesian components of the vectors concerned, let
us choose the x axis to lie along k. Since the z
axis is defined as normal to the surface, this
makes the y axis lie also in the surface plane
and be normal to k. From this point on we will
indicate the coordinate directions by k, y, and z.
In this system then, the vector K has only k and
S components, as indicated in its definition.

We now consider Eq. (4.18) for each of the co-
ordinate directions. When we take the y compo-
nent of this equation we find

(y, -Z, )P„(k,z) =0, (4.19)

since K has no y component and both y, , and I',,
are diagonal. Then for P, (k, z) oo0 we must have

y =I', and so the frequency of this mode is given
by

Z,, =-7),, /[I -no. (X -X,)j, (4.13)

2

(d = (d
3 (dp

1-+me3
(4.20)

we arrive at

(r;; —r;;) )',. ( r) = —J r, , ( r - r') )',. ( r', () O r .

O(r)=, fr(rr'"'O((r r) (4.15)

where A is the area of the slab surface (the factor
A will drop out of all physical results) Similarly. ,

(4.14)

In Eq. (4.11), (d~ is the ion plasma frequency de-
fined by (d~ = 4mnez/p, .

To write the integral on the right-hand side of
Eq. (4.14) in a, more transparent form, one can
introduce the two-dimensional Fourier transform
of P(r),

This is the TO frequency associated with the in-
frared resonance of the ionic crystal. This is a
purely transverse mode since the polarization is
normal to the surface wave vector k. Since the
polarization can be an arbitrary function of z, we
may expand it in a complete set of orthonormal
eigenfunctions. Following LKB we choose the
eigenfunctions in Table I, indicated by P, , (z).
From Eq. (4.18) it is seen that this TO mode is
completely uncoupled to the remaining modes of
the system. Thus the eigenfunctions of the P,' ~(z)
also satisfy a closure relation of the form

gP,',(z)P,*',(z') =8(z -z'), (4.21)
i e& o

where p is the parity index taking the values + and
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TABLE L. Polarization eigenvectors for the dielectric slab.

Eigenvectors

~&~,+'(s)=i a 2 cos(j rz/a)

@~, (z)=~Q ~csin(jr'/Q)

80 r+0(k, &)=CO(i cosh ks, sinhkz)

r~ (k, &)=CO(i sinhka, coshkz)

LO
mr mr mr

(k &)=C isa cos—z,— sjn—z
2Q 2 2Q

m pl rrm(k z)=C kka sin——z, —cos—z
2Q 2 2Q

m=13 .

sz2)4$ ~ ~ ~

sm'r sl r mr
r+ (k, &)=C~ cos—8, AQ sin —z

2 2a 2Q
Sl 2 $ 4$ ~

SPYr mrr~(k s)=C — sin —8,ka cos—8
2 2Q 2Q

m=1 3

To find the other modes, we write the 0 and E components of Eq. (4.18), again using the fact that y;; and
I',, are diagonal. These are

(4.22a)

(
""'"' ")~(i,.)=2.a f"a*.'(-"([e(*-")~(i,*)-~(i,*)].j.-nz A, -A, o

~2 & y~-Bke
3

2 1+2i(nc. ( '+e '") '- (4.23b)

Although the left-hand sides differ by the inclusion
of the a dependence, Eqs. (4.22a) and (4.22b) are
otherwise identical to the coupled equations de-
rived and solved by Fuehs and Kliewer in their
treatment of the normal modes of an ionic crys-
tal slab. %'e therefore find solutions having the
same form. There are three types of modes:
modes whose frequency is the bulk transverse-
optical frequency, the To modes; modes whose
frequency ls the bulk longitudinal-optical fre"
quency, the I.O modes; and modes whose ampli-
tudes decrease exponentially on moving away from
the surfaces, the surface-optical or SO modes.
The frequencies of these modes are as followers:

(dio = (do —
q (d])/(1 —

& w()EQ) ) (4.20)

(dLo = (d() + p (d])/(1 + 3 WSQ) ) (4.23a)

((do ) must be associated with the upper (lower)
sign on the right-hand side of Eq. (4.23b), which
is equivalent to Eq. (3.10). The eigenvectors for
all the modes are given in Table I, indicated by
v~(k, z); they are the eigenvectors of LKB. The
normalization constants of LKB are

C, = (a/sinh2 ua)" (4.24a)

(4.24b)
1/Wa

(k'a'+-,'m'ii')'~' '

The v'ectors ii &~(k, z) are two-dimensional nor-
malized eigenveetors with k and 2 components
alone, and the connection between them and

P(k, z) is

]i(k, z) =1/P [P,(k, z),f,(k, z)],
where P is taken to be e(n/A)'~~ in order that
P(k, z) have the proper units. ii~(k, z) as defined
satisfy the orthonormality relation

(Fuchs and Kliewer' indicated that the inclusion
of the electronic polarizability would result in the
above frequencies. ) Again for the SO modes, (do+ l

+ I2

dz]i+ (k, s) v, ,'(k, ~)=II, 3», , (4.25)
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and the closure relation V. FREE-POLARIZATION HAMILTONIAN

(4.25)g ~,*",.(k, z))i,-,.(k, z') =5,, 5(z -z') .
m, P

Both these relations will be used in deriving the
Hamiltonian. In Eqs. (4.25) and (4.26), only the
modes whose polarization is confined to the plane
defined by the k and 2 vectors are to be included,
that is, the )i~(k, z). As pointed out earlier, the
P„' ~(z) are completely uncoupled to the other
modes and satisfy their own closure and ortho-
normality relations.

We have found in this section all the modes
obtained by the macroscopic method of Sec. III,
that is, the LO and SO modes. As explained there,
the TO modes found in this section could not be
gotten by the macroscopic method because they do
not produce a. polarization charge density.

As regards the p-labeling of the modes, our
notation differs somewhat from LKB. For the LO
and To modes, the index m denotes the 2 compo-
nent of the wave vector through k, = m)i/2a. The
surface modes are indicated by m =0.

In deriving the Hamiltonian, we will need the
explicit relationship between the hvo-dimensional
Fourier transform of P(r) and that of E(r) and

u(r). We proceed as follows.
Using Eq. (4.8) and Fourier transforming the

vectors E{r) and 5(r) and the tensor T,„(r-.r. '),
we write for the ith component (i is either k, y,
or E) of E(k,z),

E,. (k, z) =q, , P,. (k, z)
+ C

dz'If, . X,. e-'i'-"iP, (k, z') .

(5.1)

Since the true transverse polarization described
by the eigenvectors P,'(z) is completely uncoupled
from the )i~(k, z) modes, and our interest lies
solely with the )i~(k, z) modes, we consider only
these. So we write the k' and 8 components of Eq.
(5.1):

E,(k, z) = ,' ~P„(k,z) --2vt
+6

dz'e i' "i[ P( k, z') +i e(z— ')P (k, )zj

(5.2a)

(5.2b)

Using the eigenveetors given in Table I, we find
from the above equations that E(k, z) is related to
P(k, z) by

E p (k, z) = y, 5,"(k,z), (5.3)

where (t)~ is defined as follows: TO modes,

(1))) ii )3 (5.4a)

describing the free vibrations of the lattice in the
absence of external chal ges. We again pQHlt out
that in none of the following do we include the true
transverse P~(z) modes since these modes, and
the Hamiltonian describing them, must be treated
completely independently of the 7r ~ ( k, z) modes.

The free-polarization Hamiltonian is composed
of three terms and is written as follows:

jj~=Ã dl —u r

SQ modes,

4
0 2&(1 P -2)(a) (5.4c)

+ —
i) (d' d r u'( r) —— d r e E(r) u(r) .0

{5.5)

u, (k, z) =(I/ne) (I-no. y, ) P~(k, z). (5.5)

We are now in a, position to consider the free-
polarization Hamiltonian, i.e., the Hamiltonian

In Eq. (5.3), the fact that the vectors bear the
indices m, p indicates that they are two-dimen-
sional vectors with 5 and 2 components alone.

From the Fourier transform of Eq. (4.3) we can
find the relation between u(k, z) and P(k, z). This
ls

The first term is the kinetic energy of the oscil-
lating ions. At the frequencies considered here,
the electron cloud around each ion follows adiabat-
ically the ionic oscillations and so introduces no
additional inertia. . The second term is the poten-
tial energy associated with the short-range restor-
ing force —p(e,'u(r) acting between ion pairs. If
the ions were uncharged their oscillation frequency
would be determined by this force alone and would
be u0. However, since the oscillating ions are
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u(k, g) =PB
x [a,(k) +at, (-k)] up (k, g),

and for its conjugate momentum p(k, g)
=nap. [du"(k, g) jd&],

(5.7a)

charged, a long-range electric field is produced
which alters the oscillation frequency. Equations
(4.20) and {4.23a) show that this field stiffens the
lattice in the LO mode and softens it in the TO
mode. The third term in H~ accounts for this
effect and is the potential energy of the ions in the
dipole field P.

Vfe now Fourier transform the Hamiltonian H~
according to Eq. (4.15), but changing the integral
over k to a sum by using f d k-(4v'/A)pk. The
vectors u(k, g), E(k, g), and P(k, g) are now con-
sidered as quantum-mechanical operators and are
written as linear combinations of the correspond-
ing eigenvectors. For example, we have for the
displacement u(jt, g) that

where we have used the fact that A, ~ is related to

(5.13), =x, —y, /(I -no. y;) .

Since uP (k, g) as defined is dimensionless, B
must have the units of length. So we choose

B p=(@/2g(u p)'~z(1 —no. yp) '.
Since p =e(n/A)'~', we have for the Hamiltonian

(5.14)

B~ =g Q N~, [a t, (k) a, ( k)+-,'].
m, P

k

(5.15)

As throughout this section, the sum over m, p
runs over the TO, LQ, and SO modes as given
by Table I and by Egs. (4.20), (4.23a), and (4.23b).

B ~, as given above, is essentially the ampli-
tude of the polarization field P(k, g). The elec-
tron-phonon interaction operator is proportional
to P(k, g) and therefore to B„z Since .B,de-
pends on z, the interaction operator derived in the
next section will. differ from that given by LKB.

p(k, g) =inA p, g &u ~B

x [at P(-k) -a P(k)]u (Tc, g) .

(5.7b)

VI. ELECTRON-PHONON INTERACTION

The interaction energy of an electron and the
polarization modes just described is written'

The vectors u(k, g) and p(k, g) satisfy the com-
mutation relation where

D(r —r') ~ P(r) d r, (6.1)

[P, (k, g), u, (k', g')] =(h/i) 6;& 5k k, 6(g -g') . (5.8)

In the above equations, at P(k) and a P{k) are
creation and annihilation operators, respectively,
for the m, p mode. They satisfy the usual com-
mutation relation

(5.9)

For the vectors E(k, g) and P(k, g) we write simi-
larly

E(k, g) =g B,P [a P(k) +a P(-k)] EP"(k, g)

(5.10)

P(k, g) =QB P [a,(k)+a ~(-k)] PP(k, g).
(5.11)

Using Egs. (5.3) and (5.5), the orthonormality
relations for the vP (k, g), and the above com-
mutation relation for a P(k) and at P(k), &z be-
comes

D(r -r') =-e(r —r')/~ r-r'~'. (6.2)

one finds

+a
Hl — 2ve Qe 'lk' P dg -z)z z ),Pz(k g)

-a
k

(6.4)
where X is the two-dimensional vector defined by
LKB as

(6.5)y =(ijk) K =[i, -e(g -g')].
Making use of the expansion of P(k, g) in terms
of the eigenvectors of Table I, we finally have

D(r —r') is the field produced at the point r by an
electron at r'. P(r) is the full polarization field
of Eq. (4.3) since the electron interacts with both
the ionic polarization and the electronic polariza-
tion resulting from this ionic polarization.

Fourier transforming Eq. (6.1) using

r —r' 4~
dkeik {P P') -e-Z~z-z') (6 3)

H =2& g g(pB, )'X„,(l-no. y,")'

x[at P(k)a P(k)+ —,"], (5.12)

B' = —2v g e 'k'P I (k, g') (I-nnpz) '
k, m, P

x[a p(k)+at p(-k)], (6 6)
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with

x~ ~ tt~* (k, ~) . (6.7)

2 2 1/2
2v (1+—', vno) '

8&4 COLp

Ite A+Lp
2A.

1/2

(6.9)
H' above is identical to the interaction operator
of LKB except for the factor (1/2w) (1 nc-. p~)

'
and the fact that &u ~ as defined by Eqs. (4.20),
(4.23a), and (4.23b) is dependent on o. .

To find the operator describing the interaction
between the electron and the LO phonons, we
write &v~2 (which is defined as 4ttne'/p, and there-
fore independent of o.) in terms of &uL'o, u&2To, and
o. , that is,

(u~ = ((uLo —&uT'o) (1+—,ttno. ) (1 ', wn—o —) .8
(6.8)

Then for the LO modes, the constant factor inH'
ls

e„=1+4nnn j(1-—', ttnn) . (6.10)

Since, as LKB have shown, the integral in Eq.
(6.7) for the LO modes is

ya
ds e 'i'

"iaaf ~ tt™(Q~)

cos(mtt/2a)z, m =1, 3, . . . ,2&a
(k2a2+ & m 2 tt2 )1/2 sin(mw/2a)z, m =2, 4, . . . ;

(6.11)
the electron-LO-phonon interaction operator is
given by

where we have used the Clausius-Mossotti relation

-4pe' cos(mt//2a) z
[k2+(mr/2a)2]l/2 [a (k) +a",(-k)]

ao p m =1y3...
sin(mm/2a)z

[k'+(mm/2a)']'/' [
m=2, 4. ..

(6.12)

We will show in the Appendix that for a very thick slab H„p becomes equivalent to the bulk Frohlich
Hamiltonian.

For the operator describing the interaction between the electron and the SO modes we write

(1 -nn p', ) =[—,
' /(e„+ 2) j [(e„+1)+(e„—1) e '"],

and express &~ in the more convenient form

(up =9&v,'o (e, -e„)/(e„+2)'.
For the SO modes, the integral in Eq. (6.7) is

(6.13)

(6.14)

J sinh2 pa k, coshkz ' cosh ka, p =+,e-ka

sinhkz'/sinhka, p = —,
(6.15)

In the above equation we have defined

so that the interaction operator Hsp can be written

2r 2h 1 2 sinh2 k

+G (k, z') [a, (k)+aot (-k)]]. (6.16)

When o. = 0 (e„=1), the above operators reduce to
1/2w times the corresponding operator of LKB.
This factor of 1/2m is due to the difference in the
definition of the Fourier transform, and in the
conversion from sums to integrals, as used by
LKB and in this paper.

s inh kz '/s inh ka

( + 1) + ( —1)

(e + 1) + (e 1) e-2k' 1/4

(e, + 1) + (e, —1) e '" (6.17b)

VII. EXTERNAL-ELECTRON PROBLEM

In this section we consider the interaction of a
classical electron outside the slab with the polar-
ization eigenmodes. The interaction operator H' ls
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again that of Eq. (6.6), where now the integral in
I' ~(k, e') is calculated for an electron ate' =8 +a,
where' is the distance from the surface at +a to
the electron outside. Since the electric field pro-
duced by the LO phonons is zero outside the slab,
the electron interacts only with the surface modes.
Then B' is written

7l kg 3
2A (&o & )

where q is the dielectric constant of the medium.
Setting e = ca in hE would give the energy of inter-
action of the electron with the ionic polarization
and with the electronic polarization due to both
the ionic motion and the electron itself. Since we
do not include this latter contribution to the elec-
tronic polarization in ~E, we must write for the
classical result ~E,

&-ik P' sinh2 kg

b,E above is therefore identical to ~E ' of Eq.
(7.4).

(1 e4")-(ag+hge 4")

where

a, =(e, +1)(e„+I), b, =(e, —l)(e„—1),

a, =(e, +I)',

a, =(e„+I)',

(7.2)

(7.3)

The integration in 4E ' can be performed ana-
lytically, but the result is rather cumbersome and
not very instructive. We consider instead the
simpler and more interesting case of a semi-
infinite medium, that is, we leta ~ in~E
We then immediately find that

bE = —(e /2R) (ea —e„)/(ea+ 1) (e„+1) . (7.4)

This is the interaction energy of an electron and
the polarization eigenmodes of a semi-infinite
dielectric medium when the electron is a distance
R from the surface. We point out that this result
includes the interaction with both the ionic polar-
ization and the electronic polarization produced
by the ionic motion.

To show that the result of Eq. (7.4) is the correct
one, let us consider from the point of view of
classical electrostatics the energy of interaction
of a charge e and a semi-infinite dielectric medi-
um. From the method of image charges one finds"

(7 6)

(7.1)

We consider the electron to be fixed at r = (O, z')
and we calculate the second-order perturbation-
theory energy of interaction, where we assume
that the electron does not recoil during the emis-
sion or absorption of an SO phonon. The result is

VIII. SUMMARY AND CONCLUSIONS

We have derived in this paper the eigenvectors
and the eigenfrequencies of the optical polarization
field in a dielectric slab, and the Hamiltonian
describing the interaction of this polarization field
with a free conduction electron. In particular, we
have included the effect of that part of the elec-
tronic polarization due to the ionic motion.

To show the correctness of the electron-SO
phonon interaction operator, we considered the
interaction energy of a classical electron external
to the slab and the SO polarization field. The en-
ergy found in this way is identical to the result
gotten from the classical theory of image charges.
In the case of the LO phonons we have shown that
in the limit when the slab thickness is very large,
the electron-LO phonon interaction operator of
Sec. VI is equivalent to the interaction operator of
the bulk Frbhlich Hamiltonian.

We conclude by considering how the inclusion of
the electronic polarizability in the interaction
Hamiltonians affects some previous results, for
example, those of Ref. 4 (referred to as EM). In
that work, EM calculated the energy of an electron
bound near the surface of a semi-infinite crystal,
when the electron interacts with both the bulk LO
and the SO phonons. They found very shallow bind-
ing, with no binding at all for LO-phonon coupling con-
stants greater than about two. In this geometry our
interaction Hamiltonians, Eqs. (6.12)and (6.16),
differ from those of EM by numerical factors
alone. Taking these numerical factors into account
we find that, owing to e„being set equal to unity,
EM overestimated the electron-LO phonon inter-
action by a factor of three and the electron-SO
phonon interaction by a factor of about 1.5. There-
fore, the effect of the SO phonons will be greater
than that accounted for by EM, giving a binding
energy that will be deeper, and that will extend to
coupling constants greater than 2. It appears then
that the effect of the SO phonons on electron sur-
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.face state formation in semiconductors may be
greater than previously expected.

APPENDIX

where

a, (k) =(1j~2) (ap, +ay, )

H„, —g V» e (a»+at»),
k

mhere K is a three-dimensional wave vector de-
fined by K= (k, k, ), and

(Al)

2' 8 SQ)gp
VK' (A2)

If me split the sum over K into a sum over k and
a sum over k, &0, H„', becomes

HF', = Q V»e '"'[e '"'(a-, +at;, , )
Z

I Z ~eikza (e» +e1'» )]k, -kz -k, kz

Writing the exponentials in terms of sine and
cosine, we arrive at

(A3)

H„', = v2 P V»e '"'~{cosk,z [a+(k)+at(-k)]
k, u &o

+sink, z [a (k)+at(-%)]],

In this section we shorn the equivalence of H«
of Eq. (6.12) and the electron-bulk LO-phonon
interaction operator of the Frohlich Hamiltonian.
This interaction operator can be written

a (k) =(-i/v2 ) (at, „-a-„,). (A6b)

The operators at(-k) and at(-k) follow by the
definition of the adjoint. The above operators de-
scribe phonons propagating as plane waves in two

dimensions (in the direction of k) and as standing
waves in the Z direction.

In considering the Frohlich Hamiltonian, which
treats an electron interacting with the LO phonons
in an infinite crystal, one imposes Born-von
Karmon or periodic boundary conditions on the
electron and phonon wave functions. Qf course,
all physical quantities are independent of the
boundary conditions one uses. Since we mant to
compare H„', to HLp describing the same interaction
but in a crystal slab with surfaces at ~a (we as-
sume a is very large, approaching infinity, so that
the electron is always far from the surface), we
will impose on Eg. (A4) the boundary conditions
that sink, z and cosk, z vanish ate = +a. From the
analysis of Sec. III, this can be seen to be equiva-
lent to the requirement that the potential due to
the LO phonons vanish at*a, a condition which
does hold for the LO phonons in the slab. It is
then easily seen that H„', above becomes identical
to H[„of Eg. (6.12).

*Work performed in the framework of the joint project
E. S. I. S. (Electronic Structure in Solids) of the Uni-
versity of Liege and the University of Antwerpen,
Belgium.
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