
PH'YSICAL RE VIE% B VOLUME 15, %UMBER 4

Jahn-Teller-like model for the 2QS-K phase transition in the solid electrolyte RbAg4I&f
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Because the optical birefringence in RbAg4I, has been found to depend linearly on the order parameter near

the 208-K phase transition, it is necessary to consider a model in which the order parameter couples linearly

to the static strain. In this paper, such a model is developed in which coupling to lattice strains lifts the

degeneracy of nearest-neighbor pairs of Ag ions and leads to a Hamiltonian which is very similar to that for

cooperative Jahn-Teller systems. The large number of such pairs (12) requires the use of group-theoretical
methods in choosing the appropriate combinations. This Hamiltonian is treated in the Landau theory, and is

shown to predict the occupancy of Ag sites in the rhombohedral lower-temperature phase, to explain the

softening of the C44 elastic constant, and to lead to the observed linear dependence of the birefringence on the
order parameter.

I. INTRODUCTION

A number of highly ionic-conductive materials
are characterized by an excess of crystallographic
sites for the mobile species. ' In some of these
materials, a partial ordering of the mobile ion
into a portion of these sites occurs, accompanied
by the behavior generally associated with a second-
order phase transition. '' A model for such tr3nsi-
tions has been proposed by Pardee and Mahan, '
based on an effective interaction between ions
mediated by optical phonons and giving rise to an
Ising-like phase transition. In the original calcula-
tion, an idealized alternating site model was as-
sumed. It is our purpose here to describe a some-
what modified model as applied to a specific ex-
ample of such a material RbAg, I,.

Ne have already reported' that the specific heat
and optical birefringence of RbAg~I, behave, in the
vicinity of the 208-K phase transition, as they
would for a three-dimensional Ising system. Un-
like an Ising magnet, ' however, the birefringence
varies linearly rather than quadratically with the
order parameter, as noted in Table I. This forces
us to consider a model in which the order param-
eter can couple directly to the lattice distortion,
in a manner similar to the cooperative Jahn-Teller
effect. ' Such a model was suggested for RbAg, I,
in Ref. 3, and will now be described in detail.

RbAg, I, crystallizes into a cubic phase with

space group P4, 32 with four formula units per unit
cell. ' The 20 iodide ions are so arranged as to
produce 56 tetrahedral sites for the I6 silver ions.
These sites are composed of two sets of 24 general
positions, labeled Ag(II) and Ag(III), and one set of
eight special positions, labeled Ag(c). The co-
ordin3tes and room-temperature occupancies are
listed in Table II. Recently, Geller has succeeded'
in solving the structure of this material in the

TABLE I. Comparison of experimental specific-heat
critical parameters and the birefringence exponent with
Ising-model values (Ref. 3).

Experiment
Ising, series
Ising, -expansion

0.14+0.02 0.46+0.01 0.36~0.03
0.125 0.62+ 0.03 0.31
0.08 0.53 0.33

intermediate phase (120 ~ T «208 K) and in the low-
temperature phase. The intermediate phase is
rhombohedral 832, a subgroup of P4, 32, and is
characterized by having only small distortions and
shifts of site coordinates. The previously equiva-
lent 24 Ag(II) sites are, of course, split into four
groups of six equivalent sites, but the occupancies
of the new sets are quite different, one set being
empty within experimental error. A considerable
shift in occupancy among the Ag(1II) sites occurs a
as well. In the cubic phase' of RbAg,I„the Ag(II)
sites play a unique role: every second diffusive
step must involve an Ag(II) site Wha.t is more,
these sites occur in pairs and therefore represent
a degeneracy in the system which could be lifted
by a suitable lattice distortion, thereby giving us
the Jahn-Teller-type interaction required to ex-
plain the observed linear birefringence.

In Sec. II we describe the location and symmetry
properties of the Ag(II) sites and define a set of
pseudospin operators for use in the Jahn-Teller
Hamiltonian. This operator is combined in Sec.
III with local distortions and an effective coopera-
tive Jahn-Teller Hamiltonian is derived. This is
discussed in mean-field theory and found to agree
qualitatively with experiments, although a weakly
first order transition is expected, which has not
been observed.
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TABLE II. Positions and occupancies of Ag sites in
the cubic phase of RbAg4I5. Data floIQ Ref. 7 and the
lattice parameter a= 11.24 A.

Ag(c) Ag(II) Ag(III)

x jg
y/a
z/g
Occupancy
F1'actlonal
occupancy

0.1739
=x/a
=x/a

0.88 + 0.30
0.11

0.5299
0.2713
0.7980

9.38 + 0.8'7

0.39

0.9964
0.8506
0.2154

5.50 + 0.83
0.23

II. PAIRING OF Ag(II) SITES

The 24 sites labeled Ag(II) are derived from the
general position (x, y, z) by application of the 24
elements of the crystallographic space group. For
these sites x=0.5299a, y=0.2713g, and z =O.V98a,
and g =11.24 A. One of the sites so generated
(g —y, g —x, -', —z) = (0.4'I8"t, 0.2201, 0.952) lies in
an adjacent iodine tetrahedron across a shared
face. In the set of 24 Ag(II) sites there are 12 such
pairs. The members of the pairs which may be
generated from (x, y, z) by the eight threefold rota, —

tions and the three twofold rotations along the cube
axes are denoted a, while those generated by the
six fourfold and six twofold group elements are
denoted P. Owing to the proximity of these sites,
it is highly unlikely that both members of a pair
would be simultaneously occupied by Ag+ ions,
but on the average each would be equally occupied.
The room-temperature determination by Geller

showed that 9.4 of the 16 ions are on these sites,
on the average.

Consider now the first pair (x, y, z) and
(-,' —y, —,

' —x, —,
' —z). The point midway between these

sites is at (x', —,+x', —,) where x'=0.5043, a, site of
twofold poin't symmetry. This enables us to define
a pseudospin operator for the pair as the difference
between the occupancy of the n-site n",

~ and the P-
site n;~ of the ith pair, in the jth cell which is

~Z 0! 8
4 n4 4 /gal ~cj lJ

and which takes on the values 9', , =+1. This pseu-
dospin is taken to occupy the 12 sites of twofold
point symmetry located at the midpoints of the
pair sites. It is clearly odd under the tw'ofold ro-
tation which interchanges n and P.

It is convenient to introduce the Fourier lattice
sums of these pseudospin operators as follows:

S;(k) = ~ Q S(~ e '~' ~J,

where R& is the coordinate of the origin of the jth
cell. These 12 functions transform among them-
selves under the operations of the space group and
therefore form a 12-dimensional (reducible) rep-
resentation of the little group of k. In particular,
at k =0, the space group is isomorphous with the
point group 432, and the 12-dimensional repre-
sentation decomposes into

I'(S,. (0))=A, +E+2T, +7, .
As we have noted above, the lower-temperature
phase of this material is rhombohedral which in-

TABLE III. Definitions of pair sites for the pseudospin operators in the jth cell and the
coefficients for symmetrized combinations which transform according to the 7.'2 representa-
tion at 0=0. The coordinates x, y, and s are given in Table II for Ag(H} sites; the present
coordinates are in units of a=11.24 A. The Cz „aredefined in Eq. (7}.2' 'I

Cg 4 Cg

S(

S8.

(x,y, z}

(x-z, l -y, Z)

(x.2+y 2-~)
(-' -x,y, —.'+~}

(2', x,y)

(z, x—2, 2 —y)

(-' -&,x, 2+y)

(-:+&,—:-x,y)

(y,z, x)

(-: —y, &,x-3)

(2 y«2 «

(y, —,
' +z, -2l -x)

(g-y, 4-x, 4-8)3

(4-y» —4 ~+~)l l l

(4+y, 4 —x, 4 +8)

(g +y, 4 +x, 4 -8)l 1,

(4 -a «4 -y, 4 -x)3 .3

(g +8,4 —y, x-4 )
l l l

3
(4+8«& +y«g x)

(-.' -~, 4+y, &+x)

(4-x.~ —~ 4-y)3 3 3

(g+x, 4-&,z -y)

(~ 4+ «~

(4+x, ~1 —z, g3+y)

0
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dicates the presence of a static strain of T, sym-
metry. Since we will eventually wish to include
coupling terms between the static strain and the
symmetric combinations of the pseudospins at
& =0, we have written the definitions of the sites
S;j and the combinations of them which transform
according to 72 in Table III.

III. JAHN-TELLER-LIKE INTERACTION

In the cubic phase, with all ions at their equili-
brium positions, the Ag(il) sites are equivalent.
If, however, the iodine lattice is displaced from
equilibrium, there will be a difference in energy
between the a and P sites when the local strain at
the ith site in the jth cell is odd under the twofold
rotation symmetry of this site. Such strains lift
the twofold degeneracy of the occupancy of this
pair of Ag(II) sites, which effect may be described
in terms of an interaction energy'

HI ~
— V~S';, Q;j,

H,„,= Q V~S; (k)Q; (-k),

where

qB( k) g q8 &ik' Ri

The Qa( —k) may be written as an expansion in the
phonon mode operators g~, (k) which belong to the
qth row of the pth representation (or ifth polariza-
tion of the pth branch) at wave vector k. Only those
representations p which are compatible with the B
representation of 2(C, ) will appear. ' After shifting
the phonon coordinates in the usual manner,
Gehring obtains a new interaction Hamiltonian

H,„,= g Z, , (k)S;(k)S ','(-k),
Z &$

(6)

where V~ is a coupling constant, Q, j is the local
strain at site i in cell j, 2nd B refers to the non-
trivial representation of the point group 2(C, ).
This is precisely the Hamiltonian for a coopera-
tive Jahn-Teller system, but with one important
difference. In the Jahn-Teller system, the spaee-
group operations do not affect the state of the
pseudospin operators while in the present situa-
tion certain group elements interchange n and P
sites, thus reversing the spin. This requires more
careful consideration of the symmetry properties
of the pseudospin operators here than is necessary
in the Jahn-Teller problem.

Hamiltonian (4) has been treated for the Sahn-
Teller problem by Gehring. ' The sum over cells
is eliminated by converting to a lattice sum similar
to (2),

where Z, , .(k) is a sum of the contributions of all
compatible phonon modes with wave vector k. At
k =0, all phonon modes except those of Ay symme-
try contribute to the exchange interactions. Thus
it appears unlikely that one of these modes will be
driven soft by the interactions. Even without
actually calculating these pseudoexchange con-
stants, we can use the symmetry properties of the
crystal to determine which terms are nonzero.

As noted above, the S;.(k) form the basis of a 12-
dimensional (reducible) representation of the group
of k. This representation may, in general, be
brought into block form by a matrix C~, (k) in which

i =1, . . . , 12 and p and q take on the labels p of the
irreducible representations with rows q into which
this representation decomposes. " This matrix
also defines the combinations of the reducible basis
functions which form bases for the irreducible
representations through

Sp, (k) = Q C~(k)s',.(k) .

In the same way, the S;(-k)'s form a, conjugate
representation to the first, and may be expanded in
terms of the irreducible conjugate representations.
Then, using a well-known theorem, ' we can form
invariant products of the basis functions of the ir-
reducible representations, obtaining

H,.„,= Jpk Sp k Sp, -k (8)

where only those

z, (k) = g J„'(k)(c-'),', (c-'),*,'

which are independent of q will appear.
Clearly, (8) has the form of a multisublattice

Ising system. However, we have considered only
the interaction with k g0 acoustic modes and with
optic modes. As is usual, we consider the coupling
to the uniform strain separately. Since x-ray
studies have now shown the intermediate tempera-
ture phase to be rhombohedral, we expect the
uniform strain to have T, symmetry. Vsing the
notation 4=yz, 5=hz, and 6=xy, we can write the
strain-pseudospin coupling as

H„„„„=2 NII C~4(e 4 + e ', + e 6)

+q(N)" [e,S;, ,(0) + e,S;, , (O)

+ es S r, , s(0)],
where the e, are the usual strain components and
the S~, are symmetrized combinations of pseudo-
spins which transform according to the T, repre-
sentation of P4, 32 at I'(Ii =0) and which are given
in Table III.

Because we expect the strain to couple to the
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order parameter we need consider only the term
P = T, and k = 0 in (8). It is then possible to return
to the more standard interaction Hamiltonian (6),
where, now

Keeping terms to fourth order in the densities, but
only quadratic in the strains, we obtain

E = —P (aP', + bg', +2C«e', +pe, Q, )
V

J, , i(0) =Zz, (0)Q Cr, C$',
a

and where the C~, are given in Table III.
~

Tpg
Without detailed knowledge of the lattice dynamics

of RbAg, I„it is not possible to determine the J~(k),
and a solution of the problem is not possible. We
note that, in general, the presence of lattice cou-
pling in the Ising model leads to first-order be-
havior sufficiently close to T,." The strength of
the first-order component will depend in general
on the size of dT, /dU For .RbAg, I, the transition
temperature has been found to vary quadratically
with pressure, "with dT, /dP very small near zero
pressure. Thus, the observation of Ising-like
critical behavior even very close to T, may not be
inconsistent with the addition of terms such as (9)
to the interaction (8). Despite the clear evidence
of Ising-like behavior in this system (see Table I),
we ignore this and treat the system in terms of a
Landau model which should at least reveal the
qualitative features of the phase transition.

IV. LANDAU THEORY

+c(4'~45+ 054'6+ 4'648 —d444548 (1o)

where a=a, (T- T, ), b, c, and d are temperature-
independent positive constants, and C«and q have
the same meaning as above. The form of the free
energy is such that upon minimizing with respect
to the P, and e, , the a.mplitudes of the g, and of
the e, are equal but not necessarily the phases. In
the low-temperature phase, there are four possi-
ble states, representing rhombohedral distortions
along the four threefold axes. In each of these the
phases of the distortions are different. Thus, for
example, if the e, are equal in both amplitude and
phase, the distortion is along the [111]axis and
the combination Q~+ P, + $8 is invariant under the
operations of the space group of the low-tempera-
ture phase; for a distortion along [111]the proper
combination would be P, + P, —(I),.

If we now write (10) in terms of the amplitude

f, =
~ Q, t of the order parameter and the amplitude

e, = ~e, ~
of the distortion we have

F = (~U)[a(g+ b(g+ 2C«e 0 + t) eogo+ ego —(~ad)Qo]

In the Landau theory, "the free energy of a sys-
tem undergoing a phase transition is assumed to
be expandable in powers of a physical density
which vanishes in the high-temperature phase and
has finite value in the low-temperature phase. In
the high-temperature phase, this density, the
order parameter, transforms according to some
irreducible representation other than the identity
representation of the space group of the system at
a point k; in the low-temperature phase, the order
parameter transforms according to the identity
representation of the smaller space group. The
transformation from P4, 32 to 932 involves a re-
duction in the number of group elements from 24
to 6, and thus does not violate the rule" that the
number of elements cannot be reduced by a factor
of 3. In RbAg, I, the phase transition is accompa-
nied by only a small change in the rhombohedral
angle (to 90.1+0.05'), and lattice parameter (from
11.24 to 11.19 A), and no change in the cell dimen-
sions. Thus, the transition is characterized by
zero wave vector and the order parameter must
transform according to some irreducible repre-
sentation of P4,32 at I"(k= 0), at whichpoint the space
group is isomorphic withthepointgroup432. Inview
of the coupling terms (9)we expand the free energy
in powers of the densities p, =N '~'Sr, (k =0),
q =4, 5, 6, and 4 = yz, 5 = gz, and 6 = ~y as above.

Upon minimizing with respect to the amplitudes we
find that

e, =(-q/4C„)4, , (12)

which shows that the distortion follows the ampli-
tude of the order parameter. The presence of a
cubic term in (11) causes the transition to be first
order with a transition temperature of.

T,* =T, +g'/BaoC«+d'/32ao(b+c) . (13)

C,', = C„[I +q'/Ba, C„(T- T,')] ' . (14)

This softening of the C«elastic constant has been
observed by Graham and Chang. " At 7 —7,' =-10
K, the elastic constant has decreased by 5/&, and
we may estimate rP —= BaoC«(5 K). From the
rhombohedral distortion of 5g =0.1', we estimate
a,T, —= C«(58) =—10 'C«. This gives an estimate

If d /32 (ba+oc) is small, the transition is only
weakly first order. In view of the failure to ob-
serve a first-order component experimentally, we
shall take 4=0.

We may now add a stress term -Se, to (ll) and,
conside ring only te rms quadratic in the density P„
calculate the effective elastic constant C4,
,sS/seo —The res. ult is that, above T,'

= T, + q'/Bc«a 0,
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of g =10 'C«, the small value of which may ex-
plain the absence of observable first order effects
produced by (9).

In the absence of the cubic term (d=0), the order
parameter increases as (T, —T)'~' and the specific
heat has a step discontinuity, as usual in Landau
models. The true behavior of the system, as
noted in Table I, is Ising-like and the Hamiltonian
(8)+(9) should be used. We shall, nonetheless,
proceed to discuss the nature of the intermediate
temperature phase in Landau theory terms, with
the understanding that this is a qualitative descrip-
tion only.

V. NATURE OF THE INTERMEDIATE TEMPERATURE

PHASE

The intermediate temperature phase of RbAg, I,
is rhombohedral, with one of the threefold axes
compressed. ' In a normal crystal, all four pos-
sible distortions are observed, ' ' making inter-
pretation of experimental results in this phase
difficult. We shall assume that the [111]axis of
our idealized crystal remains a threefold axis in
the rhombohedral phase. Quite clearly, the com-
bination p&»»= $4+ p, +g, is invariant under a
threefold rotation about [111] and defines the order
parameter in the rhombohedral phase. Referring
to Table III, one can easily show that the combina-
tion of pseudospins corresponding to this sym-
metrized order parameter is

Qillll ( 2f — 3j+SOJ S7J+ 10 j ll i)
When the order parameter takes on its maximum
value, pairs labeled 2, 6, and 10 will have the z-
site occupied and the P-site empty, while pair sites
3, 7, and 11 will be oppositely occupied. The re-
verse is also obviously possible. The remaining
pairs 1, 4, 5, 8, 9, and 12 will not be affected.
Should we have chosen a different direction for the
rhombohedral axis, the combination would be dif-
ferent and these other sites ordered. Thus, the
ordering described above represents one of four
possible domains.

Geller has succeeded' in deconvolving the do-
main structure of RbAg, I, and has determined the
occupancies based on the setting of the crystal in
which [ 111] is the rhombohedral axis. In this
setting, the 24 equivalent Ag(II) sites a,re split into
four sets of six equivalent sites, with both mem-
bers of the pairs 1, 5, and 7 belonging to one set,
which we label 6f, ; both members of pairs 4, 8,
and 12 belonging to another set, 6f, ; the o.-site
members of 2, 6, and 10 and the P-site members
of 3, 7, and 11 belonging to 6f, ; and the remaining
sites belonging to 6f, . Thus, the ordering des-
cribed above occurs with either set 6f, or 6f, be-

coming full and the other empty. Sets 6f, and 6f~
do not participate in the ordering in a single do-
main sample. In Table IV we have listed the co-
ordinates of the various equivalent sets in the
rhombohedral phase assuming the positions to be
unshifted along with the actual positions and oc-
cupancies found by Geller' at 125 K.

VI. DISCUSSION

TABLE IV. Coordinates of equivalent Ag(G) sites in
the intermediate temperature phase. Cubic coordinates
are referred to an origin shifted by (Q 8 Q) relative to
the original cell. The rhombohedral values were ob-
tained by Geller. Here a, = 11.24 A and a,h= 11,19 A.

6fg 6f

Xcublc /a

xrh /a, h

3'cubic /ac

yrh/a rh

~ cubic/a

Occ theor.

OCC expt.

0.160

0.160

0.895

0.886

0.42

0.428

3.0

0.66

0.86

0.825

0.395

0.397

0.325

0.327

0.095

0.096

6 or 0 0 or 6

4.8

0.92

0.92

0.595

0.601

0.355

0.344

2.7

It is clear from Table IV that our Zahn-Teller-
like model, treated in mean-field theory, has been
successful in explaining the partial orde ring of A g
ions in the intermediate temperature phase.
Despite this success, the picture has been greatly
oversimplified. Geller's data' also show ordering
in the Ag(III) sites, though to a lesser degree.
Nearly a third of the Ag ions are located on the 6f,
sites, and this occupancy has come at the expense
of both the 6f, Ag(II) sites, and some of the Ag(III)
sites. In the cubic phase, each Ag(III) site has two

Ag(II) neighbors. ' Thus we might expect that or-
dering of the Ag(II) sites will affect the occupancies
of the neighboring Ag(III). In fact we find that those
Ag(III) sites having both neighbors taking part in
the ordering process are reported empty by Geller;
those having only. one ordered neighbor contain
1.2 ions among the six sites; while those having
no ordered neighbors contain 3.0 ions, approxi-
mately the same as their disordered Ag(II) neigh-
bors. This would seem to indicate that our con-
sideration of only pairs of Ag(II) ions is too sim-
plified a picture, despite its complexity, and that
a complex of Ag(II) pairs and their Ag(III) neighbors
is the proper unit for consideration.

The model we have presented is capable of ex-
plaining, in at least a qualitative manner, the
Ising-like nature of the phase transition in RbAg, I,.
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We have not included the dielectric constant ex-
plicitly, but by analogy with other systems, "we

expect the birefringence to follow the strain through
the elasto-optic coupling. Thus, the linear de-
pendence of the strain on the order parameter
given by (12) is directly responsible for the linear
dependence of the birefringence on the order pa-
rameter.

In the Landau model we have also been able to
demonstrate the softening of the C,4 lattice con-
stant accompanying the partial ordering of Ag ions,
such as has been observed. " This softening is
relatively weak, and indicates that the order pa-
rameter is coupled only weakly to strain modes.
This was to be expected on the basis of the per-
sistence of second-order-like critical behavior to

small values of reduced temperature. "
Having determined the nature of the ordering

process in RbAg, I„wemust next determine its
effect on the ionic conductivity. The relationship
between the known correlations in this system
which accompany the partial ordering transition
and the activation energy for ionic conductivity
will be the subject of a subsequent publication.
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