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We report independent-electron model calculations of the L,; V'V and L,L,;V Auger line shapes for ideal Si
(111), (100), and (110) surfaces and compare the results to data of Houston, Lagally, and Moore. For the
L,; V'V transitions, agreement between experiment and theory is excellent, in contrast to poor agreement
between experiment and the self-fold of the occupied Si density of states; this result shows that matrix-
element angular momentum dependence and not many-electron effects cause the latter discrepancy. For the
L, L,V lines our calculated results are less satisfactory. We suggest that the disagreement between theory and
data for these “‘Coster-Kronig” transitions is due to the difficulty of calculating accurate Auger matrix
elements at low energies and, perhaps, to the use of “ideal” (i.e., unreconstructed) surface geometries in

modeling actual Si surfaces.

I. INTRODUCTION

Measured valence-band Auger line shapes rare-
ly, if ever, agree with the predictions of the cor-
responding density-of -states (DOS) models,! or
in other words, with the line shapes obtained under

the Auger process. Since the angular momentum
character of the Si valence band changes from s-
like near the band minimum to p-like near the
maximum, the rather strong angular momentum
dependence of the Auger matrix elements is equi-
valent to a strong effective energy dependence. It
is this effective energy dependence which largely
explains the difference between the DOS model

the assumptions: (a) that the independent-particle
picture is valid; and (b) that Auger matrix element
variation is negligible across the valence band.
An example of such a disagreement is shown in
Figs. 1 and 2, in which the L, ,VV (i.e., 2p-val-
ence-band-valence-band) Auger line shapes for
Si(111) and Si(100) surfaces, measured by Hous-
ton, Lagally, and Moore? are compared to the
corresponding weighted self-folds of the occupied
density of states (WSFDOS’s®) of Si. The purpose
of the work presented in this paper is to deter-
mine, for the specific case of Si, which of assump-
tions (a) and (b) is the source of the disagreement.
Since a direct test of assumption (a) would entail
the development of a many-electron theory of Au-
ger spectroscopy, it seems more reasonable to
investigate assumption (b) first. Thus we present
below the first complete independent-particle cal-
culations of valence-band Auger line shapes for a
solid, Si.* Our calculations are “complete,” of
course, in that matrix elements have specifically
been retained.

We report and discuss our results in Sec. IV of
this paper. Our main conclusion is that, at least
for the L, ;VV lines of Si, good agreement with
measured Auger line shapes can be obtained within
an independent-particle calculation, if matrix
element variation across the valence band is not
ignored. The important matrix element variation
for Si occurs as a function of the angular momen-

tum of the valence electrons which participate in
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FIG. 1. Comparison of L, sV V Auger line shape for

Si(111) (solid line) measured by Houston, Lagally, and
Moore (Ref. 2) with the weighted self-fold of the Si(111)

density of states (defined in Ref. 3), with A=7A .
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FIG. 2. Comparison of L, svV Auger line shape for
Si(100) (solid line), of Ref. 2, compared with the
WSFDOS of Si(100) (dashed line), with A=7 A .

and experimental line shapes shown in Figs. 1 and
2.

We report results below not only for the L, ,VV
Auger lines but also for the L,L, .V “Coster-Kro-
nig” transitions on the Si (111), (100), and (110)
surfaces. Predicting the L,L, ,V line shapes is at
the outset expected to provide a considerably more
stringent test of the theory than predicting those
of the L, ;VV transitions, for two reasons:

(i) The L,L, .V lines of Si lie at only ~ 35 eV
(as against ~ 85 eV for the L, ;VV lines). Thus the
L,L, ,V Auger matrix elements are more difficult
to calculate accurately.

(ii) Since the L,L, .,V transitions involve only
one valence electron, the L L, .,V data are to be
compared not to a self-fold of the DOS but to the
DOS itself (weighted by matrix elements, of
course). But self-folding a DOS generally causes
whatever structure it showed to become weaker
and broader. Thus we expect sharper, more
prominent features to appear in the L,L, ,V line
shapes than in the L, ,VV, and we may anticipate
the need for accurate surface geometric models
to explain such features.

Both of these problems do turn out to affect our
comparison of theory and experiment for the
L,L, .V transitions. Although we find reasonable
agreement between the positions of the principal
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structures in the L,L, ,V data and “bulk” struc-
tures in the corresponding theoretical results,
there are numerous “surface” structures in the
theory which are absent in the data. At the same
time, the theoretical results suggest that the low-
er-energy (s-like) part of the valence band should
be more prominent in the line shapes, while the
reverse turns out to be true.

We suggest, below (Sec. IV), that the absence of
the surface structures in the L,L, ;V data may be
due to our use of “ideal” surface models to repre-
sent actual reconstructed Si surfaces. For appro-
priate surface models, that is, we believe that
there might no longer be any predicted surface
structures in the line shapes. We also suggest that
the prediction of line shapes weighted more heavily
on the lower-energy side is due to inaccuracy of
the atomic matrix elements used in our tight-
binding calculation. On the other hand the real
source of the discrepancies between the L L, ,V
data and theory may be many-electron effects of
some sort which, e.g., broaden the surface fea-
tures of the one-electron theory out of existence.
At present this is an open question.

The remainder of this paper is divided into four
parts. InSec. II we describe the linear combina-
tion of atomic orbitals (LCAO) formalism which
underlies all our calculations. In Sec. III we pre-
sent the details of our numerical work for the
valence-band spectra of Si surfaces, and in Sec.
IV we present and discuss our results in compari-
son with the data of Houston, Lagally, and Moore.?
Finally, we summarize our conclusions in Sec. V.

II. LCAO THEORY OF VALENCE-BAND AUGER
LINE SHAPES

In this section, expressions are derived for val-
ence-band Auger line shapes within a tight-binding
or LCAO picture of a solid surface. The use of a
localized representation for the valence bands of
the solid is particularly appropriate since the
Auger effect involves the decay of a well-localized
core hole, and since the largest contributions to
the Coulombic matrix elements, which enter the
Auger transition rate calculation, come from the
immediate vicinity of the decaying hole.

To begin we sketch the derivation of a general
independent-electron expression for the electron
current which arrives at a detector at R with
energy between E and E+dE, due to the Auger
decay of a core hole in an atom at ﬁo. We consider
the case of a core-valence-valence transition
first. The reduction of our result to that for a
core-core-valence transition is trivial and is
carried out at the end of this section.

The easiest way to proceed is by means of
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Fermi’s golden rule, according to which the dif-
ferential current R% (&, E) [or equivalently the
differential inverse lifetime d?(1/7)/dE d$:] may be
written in the form

A ;,izkz
RYj (R’E"= 2m>

o Rk dk
7 (2n) dE,

25(E, - E + E,).

[ mﬁls 2 C

(2.1)

Here 9N is the matrix element of the Coulomb
interaction which causes the decay and the sub-
scripts s and ¢ refer, respectively, to the two-
hole states of the solid, of energy E;, and the core
state which is decaying, of energy E..

dzk'
Hint = E Z Z (zﬂ)zsnk/ EgiL g ot iR ony Ckf.Ef.o CL

01902 N 902 k” k"CZD BZ

where the matrix element I is given by

3 3 T Yok (=
Mgy, meir ik ony By on, = fdyldrzzpf.Ef(l2)¢Li(rl) “(*

where the ¢'’s and ¢’s are creation and annihila-
tion operators, and where the abbreviation 2D BZ
means “two-dimensional Brillouin zone.” At the
same time we take the initial and final states in
the Auger decay to be of the forms, respectively,

[9 = c1,,0,0), (2.4)
and
(2.5)

Iw!ina1> Ckf .Ef,clf("k".nl,u1 kz.nz,cerO)!
where [0) is the Slater determinant corresponding
to the solid’s filled Fermi sea.

We now use Eqgs. (2.2)-(2.5) to evaluate the Au-
)

5 2Tiky 1
2; —_
R, Ep)= <2nfi2> m 2

where
mz(k;' EfyLirk"’nj.;E;"nz»
is defined by

In order to evaluate My, . explicitly we assume
that our solid has the geometry of a crystalline
film, and for simplicity we neglect all spin-orbit
coupling. Thus our valence-band states are labeled
by the momentum along the surface E", a band
index #, and the spin orientation o equal to +1.
The final (Auger) electron wave function s speci-
fied by its momentum along the surface k, , its
energy E;=%%k?/2m, and its spin orientation o;.
Finally, the core-hole wave function is assumed
to have angular momentum L;=(;,m;) and spin
orientation o;=+1. Its energy is defined to be
E,, as noted above.

Having specified the quantum numbers of our
solid’s states explicitly, we write the Coulomb
interaction Hamiltonian in the form

+H.c., (2.2)

o "
0, C&Y ynyr0, Cif s mzpoy

T, d)kl,nl( 1)¢E'2',n2(f2)’ (2.3)

r
ger matrix element Iz . of Eq. (2.1). We obtain

mﬁ,s,c E(\z/)final [Hint l lpinit)

SIS B LRy om0 g
X 6ul,ai602,of - mz;}‘, Ef;Li ,1.4.‘2' ,nz;f’l‘,nléol, uf602,01

(2.6)

Substituting Eq. (2.6) into Eq. (2. 1) interpreting
the sum on s to be a sum on k{ ,kz,nl, and n,,
averaging on the spin orientation of the initial hole
and summing on that of the final electron, we ob-
tain the expression for sz(ﬁ,Ef),

Z <E)n2(kf ,Ef,Li,k ,nl,k'z',nz )5(Ef EP{'"J. -—EEIZ.’"2+ Ec), (2.7)

-> - -
<m2(k)"l’Ef;Li;k;,9n1;k,2' anz» =2 (1 ml'i”.Ef;Li:l?f.nl;ﬁz mzl 2+ lcm'ﬁf’ Ef;Llii'g'.nz;Ei'.nl l 2)

= Mge, 551,50, nl.kz.nzfmkf,}:,m gy om - C) -

(2.8)

The over-all factor of 3 in front of the k" and k” integrals in Eq. (2.7) takes account of the fact that the
state with holes labeled by (k" n,) and (& 7 .my) is, by virtue of the indistinguishability of electrons, identi-

cal to the state in which the holes are labeled by (k ,1,) and (k” n,).°

The reason that the cross terms in

Eq. (2.8) are not multiplied by 2 is that the exchange processes to which they correspond can only occur if

0; = 0¢.
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The final steps in calculating a general expression for an Auger line shape are to integrate on the exit
angle of the Auger electron and to average over the orientation of the orbital angular momentum of the
initial core hole. These steps lead to the expression

RzJ(E,)E< f dR jB ,Ef)>m

i

_ _7)_1* 1 Z deI'I e(kz _kIIZ
° 21+ 1 4=y, ) (2m)7 (RF - Rf*)H 2

x2 2

nysng R¢YEYC2D BZ

for R%J(E;), the total number of Auger electrons
emitted with energies between E; and E+dE;.

We now wish to evaluate Eq. (2.9) explicitly with-
in the LCAO approximation. To begin, we write
our valence—band wave functions in the LCAO form

<mt2(§j'=' ’ Ef ;Li ;E;.r)nl ;k.z"ynz»é(E/ -

iy = Eigony* Eo) (2.9)

-

where the_’atong.s of the crystal film are 1oca_..ted at
the sites R; = (R{',Z;) and where the u, (¥ -R;) are
localized orbitals centered on these sites. The

ug, ; are assumed to be normalized to 1. N is the
number of two-dimensional unit cells which com-
prise the crystal. Using Eq. (2.10), the matrix

lk"'ﬁ"
Zpkf"’; R’Z’;je "r‘f(k’ 2 )u"l(r -R % elements of Eq. (2.3) which appear in Eq. (2.8) can
(2.10) be written in the form
-

— 1 (K7 R 4} o0 RO > > T S
mi}:,Ef;Li;ii',nl;E'z',nz—Fﬁl'ﬁél'l‘ze ky - Ry +ky 2’0,,1,L1(k1,21) c,,z,,,z(kl,Zz)ﬁnfk},,EﬁL“Ll,Lz(Ro,Rl,RZ), (2.11)
where,

- - - _ - - ez - - - -

mzl?}',b}?Li,Ll,Lz(RO’ R1,R2)= fdgrl d3’}’2 ZPP’,Ef(TZ) ll)Li(rl _RO) ]-b _-le uLl(rl —Rl)uLz(rz —Rz). (2.12)

In Eq. (2.12) the wave function of the decaying core
hole has been rewritten as ¥, (T, - R,) to make
explicit the location R, of the atom in which the
hole exists.

We proceed by assuming that gbLi(Fl —ﬁo) is high-
ly localized in space. As a consequence it is im-
mediat_gly gbvious that the terms in Eq. (2.11) for
which R, # R, will be very small. These terms

N N = i (KY4EY )R
Mg, Byl ity nyskgan, =€ 12 0

We now pursue the idea that the main contributions to
the Auger matrix element come from the immediate
vicinity of the core hole. This idea implies that what-
ever the differences might be betweenthe », () which
best describe the wave functions of a solid and the
corresponding orbitals of isolated atoms, these
differences will be of minor importance in evalua-
ting the Auger matrix element. Thus the only s1§-
nificant difference between mky EgiLyjpLyyly (ﬁoaﬁo’ R,)
and an atomic Auger matrix element is that the
final electron wave function ng}.' 2 Jf(f) contains con-

1 - >,
N I:/—:JZ CnlyLl(k;’ Z,) an.Lz(kz sz

are therefore neglected in what follows It is also
easy to show® that terms with R # R are generally
small compared to those with R R0 [The leading
contributions to 9 are of O(|R, - R,|") as |R,

-R ! becomes large compared to an atomic radi-
us ] Thus to a first approximation we retam only
those terms in Eq. (2.11) for which R R Ro, and
obtain

o)m("i}!,Ef;Li,Ll,Lz(RmRo’Ro)- (2.13)

r

tributions due to the scattering of this electron
from the surrounding ions and in the ambient elec-
tron sea.

However, in the present calculation, we are
only interested in the angle-integrated Auger
current R%J(E). Thus it is reasonable to assume
that the effects of elastic scattering of the Auger
electron from ion cores will be small, i.e., that
although this scattering may have a dramatic ef-
fect on the angular distribution of Auger intensity
it will not severely affect the number of Auger
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electrons which emerge from the crystal relative
to the number of them which are trapped inside it.
Thus to calculate R%J(E,) we assume that zp~ JEy 63
may be taken to be an atomic final-state wave

l/)kf,E (r) ‘/’iﬁ?}; 7, (r—

where A is the inelastic mean free path at energy
E;,V, is our solid’s inner potential, and thus the
square-root term in the exponential is the secant
of the Auger electron escape angle inside the
crystal, zpif}:”}; *Vo(r RO) is the final electron wave
function appropriate to an atomic Auger transi-
tion. It is in general a distorted-wave wave func-
tion satisfying incoming-wave boundary conditions
asymptotically as [? - §0|~ ©,” We evaluate it at
energy E.+ V, rather than at E, to take account of
the increased kinetic energy of the Auger electron
when it is inside the solid.

We now substitute Eq. (2.14) into Eq. (2.13), and
the latter into Eq. (2.9). This procedure yields the
expression for the Auger current emanating from

function, centered at ﬁo, times a phenomenologi-
cal attenuation factor that accounts for the loss of
Auger electrons due to inelastic scattering pro-
cesses. Specifically, we write

o) €xp{— (Z /N [(E+ V) /(E+V, - 12RE2/2m)] /%, ' (2.14)

R¥(E;,Z,)=

L].'LZ'LJ.'LZ

f doFy (B, - 0,2,)
XFp,10(E,+w,2,)

X Wy ,p1,2524(Ef:2Z0),
(2.15)
wherein the F ;.(E,Z) are local density-of -states

matrices, defined by

Fr(E,Z)s— 2. O(E - Eg e, &, 2)

N o, #C2p Bz

Xy (K", Z),

z, (2.16)
-
and the quantity Wy .. 1,,14(E,Z) is given by
_m 1 f ey e(k: - krY? <2zo> E;+V, )1/2]
WLI.Li.Lz,L'z(Ef:Zo)— 7220, + 1; (27,)2 (kf k//2)172 xp[ X (Ef+ v, —-ﬁzk;'z/Zm)
X{M'",g, 22,0, kf, f,Li,L',L' - M;(z?'ré; oy
+(L,, LI =L,, LY} (2.17)
In Eq. (2.17), the M‘AT) are given by
- - e’ - -
= 3, 3, * — -~
M;;,Ef iLjLysLy= fd 7, A7 w{i’.EﬁVo(rz)wLi(rz) T, _'leuLl(rl)uLz(rz)' (2.18)

(AT)*

We proceed to simplify somewhat further by expanding the ¥z 'z Wo(r) in partial waves. This expansion

LaTIX  (F) in the form®

permits the direct evaluation of the k}' integral in Eq. (2.17). 'fhus we write ] By,

‘PSAT,%I‘VO(I‘)’—LJ Y,m(pf)exp{ [6 ~3ml - argl"<l+ 1+pr

where
By = (K2, [2m(E+ Vo) /m2 - 2?]Y2),

)}}Fz(p,V)Y;tm(?), (2.19)

(2.20)

and where I'(z) is the gamma function (of complex argument), a, is the Bohr radius, and Z is the charge on
the atom at Z, after the Auger process has occurred. In our calculations, as is discussed below, Z was
set equal to 2. F,(p,r) in Eq. (2.20) is the /th partial-wave solution to the radial Schrédinger equation for

the Auger electron. As pr—= F,(p7) behaves according to

F,(p) o=z si I ¥ —% l+—g———
(D ,,f,_,,,sm!_pf —3T g

YA
In2p» —ar I"<Z+1+ L
Py g D7,

)m,] . (2.21)

We make use of the expansion of Eq. (2.19) by noting that
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(k2 - k22) <ZZ>< E;+V,
2L, 0 0
fd f (22 — =P} Tz exp[ X B+ V, ﬁzk"z/Zm

where Bll'lzm(Ef’ o) is defined by

2mE; (21, + 1)(21,+ 1)1, —m)! (I, — m)!
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1/2
) ] 1:m1(pf)Yl m, (pf) 6m 1M l,lz,m (Ef’ o)’ (2 22)

BBy 200 32

with

(7, +m)1 (I, +m)!

) f dx PT(y@)PE(p(x))e220m)  (2.23)

y()=[(Epx®+ Vo) /(Ep+ V)2, (2.24)
The P7(y) are of course associated Legendre polynomials.
Substituting Eq. (2.22) into Eq. (2.17), we find that
4m 1
Wi 0izm26BrrZo)= o5 5—r B (E;,Z,)
Frokie ke LETH207T 13 21,4+ 1 my mealgalf, urtgm e
x{[M’fl'”‘fwi'l‘l.Lz(M?;z”"f;Li'Li’L'z —éMi.;‘z'mf;Li'Lé'Lll)]
+L,,Li=L,, L}, (2.25)
where the atomic Auger matrix elements le'mf;Li'Ll'Lz are defined by
(s s explild, —nl/2 —argT(l+ 1+4Z /psa))l} @
le""f;Li’LpLz_ fd yld 72 pf’rz F’f(pfrz)ylf'mf(yz)
xPi, (rl) Ly (F g (F)- (2.26)

Equations (2.15)—(2.17) and (2.21)-(2.26) consti-
tute our final reduction of our LCAO expression
for the Auger CVV line shape R%J(E;,Z,). In our
calculations, discussed in the next sections of this
paper, we have taken the distribution of core holes
within a few mean free paths of the surface to be
uniform. Thus what we have actually calculated is

R2J(E;)= D R¥(E,,Z,), (2.27)
Zy

the sum of the contributions from the first several
layers of the crystal.

The last question we wish to treat in this section
is what modification of the above equations are
necessary for the case of a core-core-valence
(CCV) transition. The answer is simply that in
addition to using an appropriate u;(») for the core
wave function in Eq. (2.26), we must allow either
of the local density-of-states matrices £ ;. in
Eq. (2.15) to equal the core-level density-of-states
matrix

GL,L'GLcI,LG(E -E.), (2.28)

where L, and E, are the angular momentum and
energy of the upper core state in the CCV transi-
tion. Thus we find for R%J(E;,Z,) the expression

RYJ(E;,Z)=2 ) Fy ..(E;~E,+E,)

L,L',mcl
XWy 1o 2o (BpyZ0). (2.29)

The factor 2 comes from allowing either of the F’s
to represent the upper core level, and using the
symmetry of WL“Li,LZ,L.(E Z) under the inter-
change L,, L', = L,,L;.

III. NUMERICAL CALCULATIONS OF VALENCE-
BAND AUGER LINE SHAPES FOR Si (111), (100),
AND (110) SURFACES

In this section we present the elements of our
numerical calculations. Our results are discussed
in Sec. IV. There are two sorts of quantities that
must be calculated in order to evaluate an Auger
current via Eq. (2.15), namely local density-of -
states matrices [ the F ;.(E,Z) of Eq. (2.17)] and
atomic matrix elements [ defined in Eq. (2.27)].
The FL’L.(E,Z) are computed in our work on the
basis of the empirical tight-binding Hamiltonian
of Pandey and Phillips,® which gives an excellent
fit to bulk pseudopotential band-structure calcula-
tions for Si, as well as to surface band positions
found in the first-principles Si surface electronic
structure calculations of Appelbaum and Hamann.'®
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We replace the §-function integration in Eq. (2.17)
by a density-of-states histogram, with energy
boxes 0.3 eV wide. For the Si(111) surface we

use a k” mesh [in Eq. (2.17)] of 66 points in the
irreducible twelfth of the two-dimensional Brillouin
zone. For the (100) and (110) surfaces the k” mesh
comprises 49 points in the irreducible fourth of
the 2D BZ. In none of our calculations have we yet
included any surface reconstruction. We have,
however, included surface relaxation. In the (111)
case we take the separation of the two outermost
Si layers to be 0.58 times its bulk value, and for
the (100) surface, 0.63 times its bulk value. For
the (110) surface, of course, atoms of both sub-
lattices of the diamond structure are in the first
layer and no relaxation of this layer relative to

the second layer is considered. All of our calcu-
lations are carried out for crystal films having

_ T 1/2
M’f'”‘f;Li'leLz=ez(p_f> expyi [5,-znl—argrl+1+

LoDy (k) is the angular part of the matrix element, given by

where A, om il

~ Jaaxi

oy

Alfﬂﬂf:lethL ( ) 2K+1

and where ® (%,1;,1,,
integral given by

(R(lf’lwlnl) fd?’ld’}’z cil%f(—p)%’zl)‘
X QR 0,)R, ()R, (). (3.8)

The evaluation of the angular integrals is a
straightforward exercise in vector-coupling coef-
ficients. Results of this exercise are given in Ap-
pendix A. Here the only feature of Alf;mfiLi,Ll,Lz(K)
that we wish to discuss is that it expresses selec-
tion rules which are typically not considered in
DOS models of Auger transitions but which, as is
shown below, can play a significant role in deter-
mining an Auger line shape. The parity selection
rule, implicit in Eq. (3.5) requires

l,) is a dimensionless radial

1;+1,+ k even integer (3.7a)

and
l;+1,+x even integer. (3.7p)

At the same time angular momentum conservation
requires that

B=m, —m;=ms —Mm,, (3.8)
and also that

|1, —k|=l,=U;+«k (3.9)

20 layers of Si atoms. In the (110) case this state-
ment involves counting each actual layer as two
layers.

Our calculation of the matrix elements of Eq.
(2.26) takes full advantage of the symmetry of the
atomic orbitals involved., Thus writing

l/)Lt(-I")=(I/T)R;i(’}’)Y”mt(Q) (3.1)
and

uLj(-f)=(1/7)Rtj(y)ytjmj(9’), (3.2)

and making use of the identity

1 1 s
T, - T, | = 4 ; 2; 21+ 1 &1 Y(2,)Y 5 (22),
(3.3)
we write
pf oﬂ} Z(B.K(lf’lialulz)Azf,mf;Lt,Ll,Lz(K) (3.4)
DY 4 (@Y [ 2, ¥ ()Y, ()Y (%), (3.5)
and
-l =1y =ty .10

In Table I we show the values of L,, L,, and L;
allowed by Eqgs. (3.7)-(3.10) for a specific case,
the L, ;VV Auger line of Si. In this case of course
l,=1. The table reveals the following interesting
facts:

(i) If 7,+1,=0, i.e., if the Auger decay occurs

TABLE I. Quantum numbers for allowed Ly 3VV tran-
sitions in Si. The meaning of the punctuation in the table
is illustrated by the following example. If [;=1, 1,=0,
and I;=2, then if m+my=1, my can equal 2, 1, or 0. If
my+my=0 then my;=1, 0, or -1, ete.

No.
Ly 1y my+my I my channels
0 0 0 1 1,0,-1 3
1 0 1;0;-1 0 0;0;0 3
T 0 1;0;-1 2 2,1,0;1,0,-1;0,-1,-2 9
0 1 1;0;-1 O 0;0;0 3
0 1 1;0;-1 2 2,1,0;1,0,-1;0,-1,-2 9
11 2 1:3 1;3,2,1 4
11 1 1;3 1,0;2,1,0 10
11 0 1;3 1,0,-1;1,0, -1 18
11 -1 1;3 0,-1;0,-1,-2 10
11 -2 1;3 -1;-1,-2,-3 4
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via a pair of s electrons in the valence band, there
are just three allowed decay channels (correspon-
ding respectively to m;=1,0, and -1).

(i) If I, +1,=1, i.e., if the decay occurs via an
s-p configuration, there are now 24 allowed decay
channels, or 4 channels per s-p configuration,

(iii) Finally, if 7, +1,=2, so that the decay occurs
via a p-p valence configuration, there are 46
allowed decay modes, or 5.1 per p-p configura-
tion.

These facts show that kinematics (i.e., conser-
vation laws) favor the decay of the L, , hole via
p-p configurations, an effect which goes in the
direction of resolving the discrepancy between
Houston, Lagally, and Moore’s data and the DOS
model (cf. Figs. 1 and 2). In Fig. 3 we illustrate
the quantitative significance of this kinematic ef-
fect. The “kinematics” curve of Fig. 3 is obtained
[for the Si(111) surface] by setting all the allowed
matrix elements in Eq. (2.25) equal to 1 and all the
forbidden ones equal to 0, and then by calculating
R2J(E,) via Eq. (2.16). Note that this calculation
leads to a curve which is in much better agree-
ment with the data than the corresponding DOS
model curve of Fig. 1. The improved agreement
stems, of course, from the enhanced contributions
of the p-like (upper) part of the Si valence band
when selection rules are considered.

We conclude this section with a brief discussion
of the radial matrix elements of Eq. (3.6). These
elements were calculated using Herman-Skillman
wave functions for Si.}* The final electron wave
function Fi.(p) was calculated assuming that the
outgoing electron sees a doubly charged Si ion as
it leaves the crystal. While we believe that this
assumption is not of significant quantitative im-
portance (particularly for the higher energy LVV
Auger lines), we think it is reasonable because of
the following argument: The characteristic time
for the neutralization of valence band holes in Si
is of the order of %Z/W, where W is the valence-
‘band width (~12.5 eV). In this time an Auger elec-
tron travels a distance greater than (Z/W)(2E/m)! /2.
For a 100-eV Auger electron, this distance is!'?
d=a,(E/R)/2(®/W)~1.56 A which is about § the
Si -Si nearest-neighbor distance in bulk Si, and
which is thus far enough from a Si nucleus that the
behavior of the final-electron wave function no
longer affects the Auger matrix element signifi-
cantly. Therefore, by the time any neutralization
of the Si** can occur the Auger electron is outside
the region where the nature of the ionic potential
is important. For an L,L, ;V Auger electron this
argument also applies although d is now only = 0.5
the Si-Si bond length. Consequently, we have cal-
culated our Auger electron wave functions using
the potential due to a Si**.
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SI(111)
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1
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FIG. 3. Comparison of L, V'V Auger line shape for
Si(111) (solid line) with “kinematic” line shape obtained
by setting all allowed matrix elements in Eq. (2.15)
equal to 1 and all forbidden ones equal to zero. A was
taken to equal 74.

Values of the &,(l;,1;,1,,1,) are tabulated in
Tables II and III, along with values of the phase
shifts 5, [cf. Eq. (2.21)] which one also needs to
evaluate the total atomic matrix elements
[le’mf“.‘i’Ll’l.d2 of Eq. (2.26)] [cf. also Eq. (3.4)].

IV. L, 3VV AND L, L, 3 V'V AUGER LINE SHAPES
FOR UNRECONSTRUCTED Si (111), (100),
AND (110) SURFACES

In this section we present and discuss the re-
sults of our calculations for both the L, ,VV and
L,L, .V (“Coster-Kronig”) Auger transitions for
unreconstructed models of the (111), (100), and
(110) surfaces of Si. We compare our results to
data from annealed Si (111) and (100) crystal sur-
faces, taken recently by Houston, Lagally, and
Moore.?

In Figs. 4—6 we show calculated and experimen-
tal L, ,VV spectra for the (111), (100), and (110)
surfaces of Si. The most important result shown
in the figures is the generally excellent agree-
ment in overall line shape between theory and
experiment for the two surfaces for which ade-
quate data exist. The reason that the theoretical
points agree so much more closely with experi-
ment than did the weighted self-folds of the den-
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TABLE II. (a) Magnitudes of dimensionless radial matrix elements for Si L, V'V Auger transitions. (b) Sines and
cosines of §,, the phase shift which appears in the asymptotic form of the final electron wave function [see Eq. (2.21)].

(a) Matrix elements for L2,3VV transitions

E (eV) R;(1,1,0,0) Ry(0,1,1,0) R(0,1,0,1) Ry(2,1,0,1) R,(2,1,1,0) R,(3,1,1,1) Ry(1,1,1,1) R,(1,1,1,1)
85  0.581x107% —0.739x10"%2 ~0.579x10"2 0.070x10% 0.233 x10™% 1.045x10% 0.816x10% 0.417 x107?
95  0.624 ~0.723 —0.596 0.035 0.151 0.948 0.802 0.458

105  0.659 -0.711 —-0.611 0.013 0.087 0.848 0.786 0.493
115  0.683 —0.696 —-0.621 0.003 0.042 0.761 0.771 0.519
(b) Phase shifts for L, ;VV transitions
E (eV) cosd, sing, cosdy sindy cosd, sind, cosds sindy
85 --0.6932 —0.7210 —-0.9123 0.4095 0.2640 0.9645 0.8459 0.5334
95 ~0.7201 —0.6939 --0.8976 0.4408 0.2634 0.9646 0.8372 0.5469
105 —0.7397 —0.6729 —0.8801 0.4747 0.2601 0.9656 0.8246 0.5657
115 —0.7635 —0.6458 —0.8648 0.5021 0.2621 0.9650 0.8189 0.5739

sities of states (WSFDOS’s®) for Si (111) and (100),
cf, Figs. 1 and 2, is that Auger decays involving
two p-like valence electrons have large matrix
elements compared to those involving either one
or two s electrons. This fact is confirmed by the
very close agreement, surface by surface, of cal-
culated Auger line shapes and weighted self-folds
of the p-like part of the DOS (the latter are not
shown in Fig. 3 precisely because the agreement
is so close). Incidentally the fact that Auger de-
cays involving two p electrons have the largest
matrix elements is not evident in Table II. It is
the large angular matrix element associated with
Ry(1,1,1,1) that establishes the p electrons as
most important.

The agreement between theory and experiment
in Figs. 4 and 5 extends not only to the L, ;VV line
shapes but also their positions. The energy scale

in the theoretical calculations was fixed by assum-
ing the L, ; level to lie 99.5 eV below the valence-
band maximum, which is the energy of the L, ,
x-ray emission edge. Since this experimental
threshold energy presumably includes effects due
to relaxation of valence electrons about a Si 2p
hole, it is fair to say that we have phenomenologi-
cally included this many-electron relaxation effect
in our independent-electron calculation. But it is
also worthwhile noting that scarcely any (i.e.,

=1 eV) relaxation effect (e.g., due to two-hole re-
pulsion) had to be assumed to give agreement be-
tween the theoretical and experimental L, ;VV line
positions.!?

In detail, of course, the agreement between the
theoretical and experimental curves of Figs. 4 and
5 is not perfect. To begin a detailed comparison,
note that the theoretical curves for the (111) and

TABLE III. (a) Magnitudes of dimensionless radial matrix elements for Si LiLy 3 VV Auger transitions. The notation
Ry(4,0,1;,1)) means that /;=1 and is an L-shell (core) state while /=1 and is an M-shell (valence) state. (b) Sines
and cosines of §;, the phase shift which appears in the final state wave function [cf. Eq. (2.21)].

(a) Matrix elements for LyL, 3V transitions

E (eV) Ry(1,0,0,1) Ry(1,0,1,0) R1(0,0,17,1,) R;(0,0,1,,1;) R{(2,0,1;,1,) R((2,0,14,17)
46 2.10 x 1072 6.04 x 107 4.29 x 107 1.86 x 1072 1.27 x 1072 —0.693 x 1072
51 2.07 5.75 4.16 1.84 0.818 —0.749
56 2.04 5.47 4.03 1.81 0.401 —~0.797
61 1.99 5.20 3.95 1.82 0.030 —0.852
66 1.97 4.98 3.85 1.80 —0.320 —~0.898

(b) Phase shifts for L{L, ;V transitions
E (eV) cosd, sind, cosdy sind, cos0, sind,
40 —0.5251 —0.8510 —0.9845 0.1756 0.2843 0.9587
51 —0.5483 -0.8363 —0.9791 0.2036 0.2801 0.9600
56 —0.5685 -0.8227 —0.9730 0.2307 0.2775 0.9607
61 —0.5984 -0.8012 —0.9638 0.2667 0.2694 0.9630
66 —-0.6130 —0.7901 —0.9561 0.2929 0.2657 0.9640
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Si(100)
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FIG. 4. Comparison of the L, ;VV Auger line shape
for Si(111) (solid line) measured by Houston, Lagally,
and Moore (Ref. 2) with that calculated using Eq. (2.15)
together with actual atomic Auger matrix elements. A
was set equal to 7 A in the calculation. The theoretical

curve is shifted upward by 1 eV from that which would
be obtained using the core-hole energy of —99.5 eV

given by the L, 3 x-ray emission threshold (see also
Ref. 13). Units for the theory curve are 47 x 10~ -1,

(100) surfaces show fairly sharp structure while
the experimental curves do not. The most promi-
nent structures in the theoretical curves are the
narrow peaks on their high-energy sides (at about
95 eV). These peaks are due to Auger decays in
which both the electron which falls into the core
hole, and that which is detected, were originally
located in a dangling-bond surface state. Thus,
one obvious explanation of why these peaks are
not present in the data is that Coulomb repulsion
makes it very unlikely that two electrons will re-
side in a single dangling bond.'* The absence of
these peaks may therefore be a true many-elec-
tron or correlation effect, which is not taken into
account in our independent-electron model. For
the Si(100) surface there is another reason why
we might expect the dangling-bond peak to be ab-
sent experimentally, namely that the experimental
surface is 2X 1 reconstructed. There is reason
to believe that this reconstruction of the (100) sur-
face results in a surface density of states with no
sharp dangling-bond peak!®—an idea which is in
agreement with photoemission data also showing

E(eV)

FIG. 5. Comparison of data (solid line) and full theory

(dashed line) for the L, 3V'V transition on Si(100). A
was taken to be 7 A in the calculation. The theory curve
is shifted downward by 0.7 eV relative to that which
would be obtained using E, =—99.5 eV (see also Ref. 13)
Units for the theory curve are 4w x 10 =41,

Si(110)

2.4

L6

0.8~

69

79 89 E(eV)

FIG. 6. Calculated L, vV Auger line shape for an
ideal Si(110) surface with A=7 A and E, =—99.5 eV.
Units for the ordinate are 4 x 104,
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no such peak.'®

The structure found in the theoretical curves at
~ 85 eV does seem to correspond to weak struc-
ture in the data. However the splitting of the theo-
retical peak at ~ 89 eV for the (100) surface has no
counterpart in the data. The absence of this split-
ting may be due to the same broadening effect
which is responsible for the difference between the
fairly sharp structure in the theory curves at
~85 eV and the broad corresponding structure in
the data.

This discussion makes clear that one of the
fundamental features of the Si (as well as other)
Auger line shape data which remains to be under-
stood is the broadness of the structures which are
observed. We may surmise that it is the thermal-
ization of the holes left behind in the Auger decay
which smears the structure in the line shape, and
moreover that this thermalization involves elec-
tron-hole pair excitation (i.e., further Auger pro-
cesses). This guess does account for the fact that
the leading (high energy) edges of the theoretical
and experimental L, ;VV line shapes agree quite
well—since one would expect the lifetime of a hole
near the valence-band maximum to be quite long.

S
Si (100)
75f— 1
i b sb b s
o~ i
pr| -
% 3 5 FleV)

FIG. 7. Comparison of experimental (solid curve) and
theoretical (dashed curve) L L, ¥ Auger line shapes for
Si(100). The features labeled s and b in the theoretical
curves correspond, respectively, to peaks in the first
layer and bulk Si density of states. The theoretical curve
is shifted upward by 2.5 eV relative to where it would be
if we used x-ray level positions for the L, and L, 4 en-
ergies. Units for the theory curve are 47 x 1041,

However, it leaves open the question of why struc-
tures in Auger spectra typically seem more
smeared out than those which are seen in photo-
emission from the same material.

In conclusion it should be noted that the experi-
mental L, ,VV curves for the (111) and (100) sur-
faces are virtually indistinguishable. This fact
might be due to the smearing out of surface-re-
lated structures, as just discussed. It might indi-
cate that there is a similarity between the recon-
structed (111) and (100) surfaces.!” Or it might
indicate that at ~90 eV the Si inelastic mean free
path is sufficiently large (we used A="7 A inall of
our calculations) that the data are dominated by
the bulk properties of Si. We hope soon to be able
to analyze data for Auger emission from atoms
absorbed on Si. In this case we will be able to
identify the region of space from which the data
come with more confidence.

We turn our attention now to the L,L, .V “Cos-
ter-Kronig” transition for the (111), (100), and
(110) surfaces. Theoretical points are compared
to experimental data® in Figs. 7-10. The theoreti-
cal points here have been obtained by folding the
R?J(E;) curve obtained via the method of Secs. II

Si (100)
22,5
S b sb b S
15,0 3
1.5
25 35 45 E(eV)

FIG. 8. Comparison of experimental (solid line) and
theoretical (dashed line) LyL, 3V Auger line shapes for
Si(100) where the atomic matrix elements for transitions
involving s -like valence electrons have been scaled down
by a factor of 2.5. The theory curve is shifted upward
by 2.5 eV relative to its position using x-ray energy
levels. Units for this curve are 47 x10~4% -1,
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and III with a Lorentzian of full width 0.5 eV,
which accounts roughly for the lifetime broadening
of a 2s hole in Si.!* The agreement between theory
and experiment [for Si(100)] in Fig. 7 is quite
poor by contrast to that found in Fig. 5 for the

L, ,VV line shape. We do find that the three peaks
in the data agree in relative position with the
“bulk” peaks in the theory [i.e., with those peaks
which are attributable to the bulk Si DOS rather
than to the DOS of the (100) surface]. However,
there are obviously large discrepancies between
the theoretical and experimental curves; notably:

(i) The theoretical curve shows considerably
more structure than the experimental one. The
dangling-bond peaks of the theory (at ~45 eV) are
absent in the data. The same is true of the back-
bond peaks [e.g., the peak at ~ 32 eV for the (100)
surface].

(ii) The s-like (low energy) peaks are much
weaker relative to the p-like peaks than they are
in the theory.

Regarding the first discrepancy, it is clear at
the outset that since we are here considering Auger
transitions which involve only one valence elec-
tron, the Coulomb repulsion argument which was
used to explain the absence of the dangling-bond
peak in the L, ,VV spectrum is not relevant. Thus
there remain two possible explanations of this dis-
crepancy:

(a) The experimental line shape represents a

Si (111

15.0—

1.5

25 35 45 E(eV)

FIG. 9. Same as Fig. 8 for the (111) surface and with
a shift upward in the theory curve of 3.2 eV.
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broadened version of the one-electron theory re-
sult. Thus the uppermost peak in the data is as
broad as it is because it corresponds not just to
the highest-energy bulk peak in the theory but to
both this bulk peak and that associated with the
dangling bonds. A similar argument applies for
the back-bond peaks. Alternatively,

(b) The dangling-bond peak should be absent for
the reconstructed surface. This argument finds
some support in theory'® (to the extent that one
has faith in the model used for the geometry of
the reconstructed surface) and in photoemission
data.'® And it also applies for the back-bond
peaks.

Turning to the second discrepancy between the
L,L, ,V data for the (100) surface and the theory,
we believe that the reason that the theoretical s-
like peaks are too large is that the approxima-
tions used to calculate the atomic matrix elements
for L,L, ;M, transitions result in a considerable
overestimate of their magnitudes. Evidence sup-
porting this belief may be found in comparison of
theory and experiment for the Auger spectrum of
gas phase Ar.'*?° In that case, as here, the
L,L, .M, matrix elements are considerably larger
relative to the L,L, M, ; matrix elements than
they should be to explain the data.!®

In Fig. 8 we show the comparison of theory and
experiment for the L L, ,V data from $i(100)
when the calculated atomic matrix element

Si(110)

T

] 1
25 35 45 EleV

FIG. 10. Same as the theory curve of Fig. 8 for the
(110) surface.
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R,(0,1,1,0) is reduced by a factor 3*z. Note that
the agreement between theory and experiment is
considerably improved in comparison to that in
Fig. 7. Improved calculations of the L L, .M,
matrix elements are therefore being undertaken,*
with the hope of explaining this factor of 55z. In
Figs. 9 and 10 for the Si (111) and (110) surfaces
we have included this factor at the outset.

Let us turn finally to the comparison of theory
and experiment for the L L, ,V line on the (111)
surface, shown in Fig. 9. Here we note again a
rough agreement in position of the three features
in the data with the “bulk” features in the theory.
However, again the dangling-bond peak of the
theory is absent in the data. And additionally, the
experimental curve seems too broad compared to
the theoretical. Again, it may be that the high
energy feature in the data includes contributions
from both the leading bulk peak and the dangling
bond (which might explain its breadth). Or it may
be that on the reconstructed (111) surface there is
no dangling-bond peak. For the (111) surface this
latter hypothesis contradicts photoemission data'®
in which a dangling-bond peak has been reported.

The feature of the (111) data which is harder to
explain is why the line extends to an energy sever-
al volts lower than the theoretical prediction.
Again, this result may be a consequence of sur-
face reconstruction, which could pull a back-bond-
ing peak out of the bottom of the Si valence band.
But it may also be a consequence of a many-elec-

J

Alfv’"f”{vmi”lvmplzmtz

L, ¢ 1
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000

Iy k1, L o L

000

tron effect such as the excitation of electron-hole
pairs at the same time as the Auger decay occurs.

V. SUMMARY AND CONCLUSIONS

We have shown that the independent electron pic-
ture explains the discrepancy between the DOS
model and experiment for the L, ,VV Auger lines
of the Si (100) and (111) surfaces. For the L,L, ,V
transitions one-electron theory and experiment
are not in very good agreement. Part of the prob-
lem, we believe, stems from the difficulty of cal-
culating accurate atomic Auger matrix elements
for low-energy transitions.'®?° However, it also
appears that to explain the discrepancy between
L,L,,V data and theory, either improved surface
models must be found, that show little structure
due to surface states, or else many-electron ef-
fects must be invoked which smear the surface
state peaks out of existence.
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APPENDIX A

In this Appendix we present the results of evalua-
ting the angular matrix element Az, ms;z;,2,,55(K)
of Eq. (3.5). Interms of 3-j symbols this matrix
element may be written in the form

(k)= 4m[(21;+ 1)(2L + 1)(21, + 1)(21,+ )]t

I, k 1
x ’ ), @y
==k \m; B —my, my, B —m;

TABLE IV. Results for 7;=0.

A/4n

-0(0,1)8

- = o o
H o = o

'”f’mlz
01,15
$0(1,0) (_1)'"115m11,_m12+ &)o(@,2) x{P©,1)

0(0,0)P(0,0)Q(0,0)

x[Q(2,1)/V5 + Q(1,0)/VI0 + Q(0,-1)/30 |
+P(0,0)[Q(1,1)/¥10 + Q(~1,-1)/V10 + 2Q(0,0)/V30 ]
+P(0,-1)[Q(-2,-1)/V5 + Q(~1,0)/vI0 + Q(0,1)/V30 |}
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TABLE V. Results for /;=1.

I 1, A/4m
0 0 -0Q, 1)/3(—1)"’i6mi'_mf
0 1 oQ, o)/sa,,,i,,,,lz+ (vVZ)0@,2K-P(1,0)[Q(0,1)/V30
+Q(=1,0)/V10 + Q(-2,-1)/V5 1+ P(0,0)[Q(1,1)/VI0 + s
Q(0,0)+ Q(-1,-1)/v10 ] - P(-1,0)[Q(0, -1)/v30 + Q(1,0)/v10
+Q(2,1)/V5 1}
1 0 00,0, oy $+(¥6)0(2,2¢{-Q(2,0)P(-1,1)/v5
+Q(1,0)/(VI0)[P(0,1) - P(~1,0)]+ Q(0, 0)/(v30)[2P(0,0) — P(1,1)
- P(~1,-1)]+ Q(~1,0)/ (V10 )[P(0,-1) = P(1,0)] — Q(-2,0)/(V5)P(1, -1)}
1 1 -0(0,1)8 ) $0(2,1)[-Q(1,1)/30B; - Q(1,0)/10B,

mf,m,2 mi,m“_

+Q(1,-1)/5B5+ Q(0,1)/10B,+ Q(0,0)/15B5+ Q(0,—~1)/10B,
—Q(-1,-1)/30B; — Q(-1,0)/10B,+ Q(-1,1)/5B,]

+ €)(/6)0(2,3)[Q(3,1)/(v35 )B;+ Q(2,0)/(V105)B;
+Q(2,1)/(V105)B, — Q(1,1)/(5v21 )By+2/(5v21)Q(1, 0)B,
+Q(1,-1)/(5v21 )Bs+ Q(0,1)/(5vV14 )B, — Q(0,0)/(5v14 ) By
+Q(0,-1)/(5v14 )B, — @(~1,-1)/(5v21 )By+ 2/(5v21 )Q(~1,0)B,
+Q(=1,1)/(5v21 )By + Q(-2, 0)/ (VI05)By + Q(-2,-1)/ (VI05)B,

+Q(-3,-1)/(v35)B,]

which can be straightforwardly calculated. In
Tables IV and V we present results for /;=0 and
1, respectively, and /, and 7,=0 and/or 1. Values
for I, or I,=2 are available from one of the auth-
ors.?? As these other tables are lengthy, and not
relevant to Si, we do not include them here.

We use the following notations in the tables:

0(a,b)=8,,:8,,,5, (A2)

P(a,b)=0, ,0n, b (A3)
i 1
Q(a,b)Eamﬂaéml 20 (A4)
2
B,=P(1, -1), B,=P(1,0)-P(0, -1),

BSEZP(OyO)—P(I’I)"P(—I,_1)’ (A5)
B,=P(-1,0)-P(0,1); B,=P(-1,1).

*Research prepared for the U. S. Energy Research and
Development Administration under Contract No. AT (29~
1)-789.
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