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Band-population effects have been well established as being responsible for portions of the electroreflectance
spectrum, in a metal-oxide-semiconductor configuration, of narrow-gap semiconductors. In this paper we show
both experimentally and theoretically that these effects lead to unexpectedly strong interference phenomena
and broadening under accumulation conditions at the surface. Specifically, as the gate bias is increased into
accumulation the electroreflectance signal splits into two structures one of which shifts to the blue with
increasing bias; the other is relatively insensitive to bias. The results can be directly correlated with the
amount of surface band bending, the screening length, the bulk Fermi level, and band nonparabolicity. A
simple oscillator model is used to describe the changes in the complex dielectric function. This model, when
used with the Aspnes-Frova relation for spatially varying dielectrics, shows more clearly the origin of the
observed phenomenon. This analysis facilitates the interpretation of electroreflectance data in degenerate
semiconductors and allows determination of surface-related parameters.

I. INTRODUCTION

Band population in semiconductor materials oc-
curs when, under steady-state conditions, the Fer-
mi level E, lies within the conduction- or valence-
band states. This condition can occur either in the
bulk of the material for heavy extrinsic doping or
near its surface under heavy accumulation or in-
version biasing. In either case, the band-popula-
tion phenomenon manifests itself in optical mea-
surements either as a shift in the fundamental ab-
sorption edge of the material as a function of dop-
ing (the Burstein-Moss shift!’2) or as a shift in the
spectral position of electroreflectance (ER) struc-
ture as a function of applied voltages. In the latter
case, this shift can be induced externally even in
non- or near-degenerate materials by biasing the
surface into heavy accumulation.3'*

Electroreflectance experiments indicate, how-
ever, that in addition to this spectral shift there
is considerable broadening and sometimes even
splitting (see below) in the observed structure
under increased surface accumulation. At first
this broadening and splitting was thought to reflect
the band splittings at low-symmetry points in the
Brillouin zone.® By considering the nonparabolicity
of the bands involved in the transition it was con-
cluded that these band splittings are far too small
to explain the much larger observed broadening
and splitting seen in ER of InSb and InAs.

It is the intent of this paper to focus on these

phenomena and to show that they can be directly
correlated with the amount of surface band bend-
ing, the screening length, the bulk Fermi level,
and the band nonparabolicity. Furthermore, cri-
teria are established for using ER to determine
these quantities optically.

In Sec. II we present the experimental ER re-
sults for InSb and InAs showing band-population-
induced broadening and splitting, respectively.
Using relations described in the Appendices and
the general formalism of Ref. 4 we describe the
procedure for calculating the surface potential and
the screening length for a degenerate semiconduc-
tor having a nonparabolic conduction band. Having
established the spatial dependence of the potential,
and thus the band population within the space-
charge region, we proceed to calculate the change
in the optical dielectric function using Kane’s the-
ory.® This change in the dielectric function is in-
tegrated over the space-charge region to obtain
an averaged change in the dielectric function
(A€); finally we calculate and compare the calcu-
lated change in reflectance™® with experimentally
obtained ER data in InSb and InAs.

In Sec. III a simple oscillator model is described
which leads to a more physical understanding of
the observed broadening and splitting in the ER
structure. The conclusion is contained in the
fourth section with a discussion of the most rele-
vant physical parameters in the analysis and of
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FIG. 1. Theoretical and experimental structures for
electroreflectance AR/R in InSb as a function of dc bias
and photon energy #Zw. Two transitions are shown: The
Iy — I transition at k=0 involving the initial spin-orbit-
split valence-band states and the unoccupied final states
in the conduction band, and the A;— A critical point
transition along (111). The surface potential as a func-
tion of bias and the associated photon transitions (dotted
arrows) are shown schematically. The physical parame-
ters for this material are given in Table I. The arrows
A and B designate the values of the parameters E; and
E,+V¥ as described in the third section.

what can be learned about the fundamental para-
meters of degenerate materials from such ER
experiments.

II. EXPERIMENTAL RESULTS AND COMPARISON
WITH THEORY

A. InSb

Electroreflectance experiments were made using
the metal-oxide-semiconductor (MOS) configura-
tion.® Two structures were measured as a func-
tion of dc bias: the I', - I'y transition (the spin-
orbit-split valence-band to lowest conduction-band
transition) near 1 eV and the A,-A| transition
bridging the Fermi level. The latter structure
was used primarily as a monitor of the surface
potential and to determine surface flat-band con-
dition.!®!! The modulating voltage was a 0.5-V
(peak to peak) 200-Hz square wave.

The two right-hand columns in Fig. 1 show the

ER experimental results as a function of exter-
nally applied dc bias for the I" and A transitions
mentioned above. The surface condition for a giv-

. en bias is shown schematically in the first column.

The theoretically calculated line shapes for the
normalized change in reflectance AR/R, using the
band-population mechanism outlined below, are
shown in the second column.

The procedure used in calculating AR/R (column
2 of Fig. 1) is essentially given in Ref. 4. Basically,
the application of a bias in the space-charge region
of a semiconductor and the subsequent accumula-
tion of carriers result in the lowering of the band
structure relative to the Fermi level and thus a
decrease in the availability of unoccupied final
states. The onset of absorption is therefore shifted
to higher frequencies as the bias is increased and
this is schematically indicated in column 1 of Fig.
1; in general, the light samples the entire space-
charge region. Since the band structure is sig-
nificantly nonparabolic and since the potential in
the space-charge region departs significantly from
the predictions of linear screening, we had to mod-
ify the method of Ref. 4 according to the prescrip-
tions given in the Appendices.

The determination of the bulk Fermi level E, is
the single most important parameter in determin-
ing the spectral position of the ER structure in de-
generate semiconductors. Since E, in degenerate
materials is above the minimum of the conduction
band E ( E), it is imperative to consider the non-
parabolicity of E, when calculating E,. For InSb
we used the Kane® approximation (Appendix A) to
obtain E ( K). E, was then calculated from the ex-
perimentally determined Hall carrier density »
by an iterative process [Eq. (A1)]. At 78°K,
7y =6 X 10'® cm™ which yields the value E,=0.03
eV for the InSb material used. Table I gives all
the other pertinent physical parameters for InSb
used in these calculations. In addition, the total
carrier concentration was calculated to be 4 x 10¢
cm™, considerably different from the Hall mea-
surement.

Since in ER the light probes the spatially varying
band population in the space-charge region, we
calculated the potential distribution V(z) near the
surface by solving Poisson’s relation for the de-
generate semiconductor (Appendix B). In fact, the
real parameter of interest in these calculations is
the surface potential V' because it directly relates
to the experimental gate bias voltage V in the
MOS configuration via Eq. (C8). V, is a measure
of the maximum population or rise of E, relative
to the conduction band under an accumulation con-
dition. The (Vg —~ Vyg)-vs-V relation is plotted
in Fig. 2 for various values of the oxide capaci-
tance per unit area C, for the degenerate InSb of
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TABLE I. Physical parameters of InSb used in calculating the theoretical AR/R in Fig. 1.

Parameter Value Reference
Hall-effect conc. ny 6% 10% cm™3 Hall measurement at 80°K
Fermi level Ep 0.03 eV Calculated from Eqgs. (A1-(A7)

for nonparabolic bands
Lowest energy gap E, 0.228 eV Magnetoreflectance at 80°K?
Ty—1I¢
Energy gap E; 1.0 eV Electroreflectance at 80°K,
I -I; in this paper
Spin-orbit split Ay 0.772 eV Difference (Ey —Eg)
-
Cyclotron-resonance m, 0.012m, Ref. 232
effective mass
Valence-band effec- m} 0.11m, Ref. 232
tive mass
Screening length Ag 198 A Calculated from Eq. (B6)
Refractive index n 4.15 b
Extinction coeff. k 0.3 b
Static diel. const. Kg 17.8 a

a2 M. Neuberger, Handbook of Electronic Materials: III-V Semiconducting Compounds

(Plenum, New York, 1971), Vol. 2.

bB. 0. Seraphin and H. E. Bennett, in Semiconductors and Semimetals, edited by R. K.
Willardson and A. C. Beer (Academic, New York, 1967), Vol. 3, pp. 499-543.

interest. These results were obtained numerically
from Egs. (B4) and (C8) and include the full non-
parabolic bands and nonlinear screening treatment
described in Appendix A. For comparison, the
dotted curves show the results for the linear
screening, nonparabolic bands, and nonlinear
screening, parabolic band approximations.

In Fig. 2 the experimental V is still indetermi-
nate unless the oxide capacitance and the flat-band
voltage are known. Since critical-point transitions
bridging the Fermi level (not affected by band pop-
ulation) show a null in ER for flat-band condition®
at the fundamental frequency of modulation, we
were able to determine Vg quite accurately by
monitoring the A, — A; ER transition near 2 eV.
Flat band occurred for V,=+0.23 V for the sample
of Fig. 1 (Vg is sample and temperature depen-
dent). The oxide capacitance was obtained from
the oxide thickness of the AL,O, and its value is
given in the figure caption. Using these experi-
mentally determined parameters we obtained V
=0,0.065,0.135 V for the bias voltages V;=0.23,
1.0,2.0 V, respectively. The depth of modulation
0.5 V corresponds to a AV, ~0.03 V.

The final step in our calculation was the deter-
mination of the change in the complex dielectric
function Ae(w, z), its average (Ae¢(w)), and the
relative change in the reflectivity AR/R by the
procedure outlined in Appendix C. The only ad-
justable parameter in this calculation was the spin-
orbit-split energy A,.
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FIG. 2. Difference between the gate (V) and the flat-
band (V) voltage as a function of surface potential (V)
as calculated from (B1), (B4), and (C8) using the non-
parabolic band structure of InSb. The results for non-
linear screening, parabolic bands, and for nonparabolic
bands, linear screening are shown by the dotted lines.
C, is the experimentally measured oxide capacitance per
unit area having the value 8.5x 10% statfarad/cm?. The
X marks are experimentally intuited values of Vi vs Vg
as determined from the A,B arrows of Fig. 1 (experi-
mental) by the method described in Sec. III.
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At this point we would like to emphasize that the
nonparabolicity of the conduction band manifests
itself essentially only through the calculated value
of the surface potential as a function of gate bias,
where it is a big effect (Fig. 2); the use of the
nonparabolic band structure in the joint density
of states [Eq. (C6)] or in the variation of the ma-
trix element (C7) has little effect on our calculated
AR/R although Kane® demonstrated that its use is
necessary for both in the analysis of the fundamen-
tal absorption edge. In addition, the calculated
AR/R was also relatively insensitive to the value
of the (linear) screening length used in V(z); the
latter quantity is itself extremely insensitive to
carrier concentration (x;cn/® for parabolic
bands). As has been observed previously,'? it is
only necessary to accurately describe the field
near the surface and approximately describe its
decay into the bulk. We, therefore, feel justified
in using linear screening to describe the decay of
the potential into the bulk, V(z)=V.e™*/*, although
we must use nonlinear screening to determine an
accurate value of V, (as can also be seen from Fig.
2). We did not have to perform a self-consistent
calculation’® because of the relatively high carrier
density (»,<0.2).

From Fig. 1 the following observations emerge:
For increasing positive bias (accumulation condi-
tion), and thus increasing band population within
the space-charge region, the spectral positions of
AR/R (theory) and AR/R (experiment) are in good
agreement. This agreement is good only if E, and
V, are properly determined. Indeed, the agree-
ment deteriorates for larger biases if the para-
bolic band approximation is assumed in the cal-
culation. The inflection point of the AR/R struc-
ture on the low-energy “trailing” side is relatively
insensitive to dc bias whereas that on the high-
energy “leading” side of this structure is very
bias dependent. Calculations show that this
“trailing” edge is dependent on the bulk Fermi
level and represents the onset of transitions
from the valence band to the lowest unpopulated
states in the conduction band (see the schematic
band picture in Fig. 1.).

We find both experimentally and theoretically
that there is a substantial broadening of the AR/R
structure with increasing positive bias. This
broadening represents the convoluted nature of
AR/R. That is, the structure in Ae¢,(%w, z) is pro-
duced by the derivative of the Fermi-Dirac factor
in Eq. (C2). Therefore, at very low temperatures
this structure corresponds to a superposition of
6 functions with a range of center frequencies.
The range of these center frequencies represents
the span of band population from minimum (bulk)
to maximum (surface). The center frequency in

each case corresponds to the energy separation
between valence band and Fermi level at a specific
point within the space-charge region. Since light
probes all of these levels we obtain the convoluted
structure seen in A R/R. The half width of the

A R/R structure for the 2-V bias case is 0.23 eV
for both theory and experiment. A good agree-
ment is also seen for the 1-V bias case.

The nature of the splitting in the A R/R structure
for biases larger than 1 V will become apparent in
Sec. III. For now it is worth noting that this peak
separation is about 0.12 eV in the experiment and
about 0.15 eV in the theory. The size-ratio be-
tween these two peaks is the same for both theory
and experiment.

For flat-band bias the A transition reaches a
null, but the structure due to the T" transition is
unaffected. This is to be expected since the form-
er transition has a critical-point origin whereas
the latter is a result of band population and even
at the flat-band position the relative separation
between the Fermi level and the valence band is
still being monitored. As the bias becomes more
and more negative (see Fig. 1), the Fermi level
with respect to the conduction band will move into
the forbidden band near the surface. Now the con-
duction band states near k=0 (the critical point)
will start contributing to the transition. The net
result is a mixture of critical-point transition
(near the surface) and band-population associated
transitions? (in the bulk). Of course, a pure band-
population model is then no longer valid in repre-
senting this case.

B. InAs

The experimental conditions for measuring ER
in InAs were similar to those of InSb. We were
unable, however, to obtain good nonconducting
MOS devices with InAs and, in addition, our de-
vices exhibited a certain hysteresis in that the
spectra obtained depended somewhat on the past
history of biasing, presumably because of the pop-
ulation and depopulation of “slow” surface states.
Of necessity, then, our analysis of InAs ER spec-
tra should be considered semiquantitative at best.

Our best measured sample was degenerate due to
the large Hall concentration (r, = 1.3 X 10'® ¢cm™)
and the Fermi level is expected to be high in the
conduction band (see last paragraph, this section).
As expected, no structure was observed at 0.4 eV,
the 78 °K absorption edge of an intrinsic InAs. In
the 0.6-1.2-eV spectral range two structures ap-
pear as shown in Fig. 3. The peak separation be-
tween these two structures was 0.38 eV regardless
of dc bias. This splitting corresponds very closely
to the spin-orbit-split energy of InAs, thus we as-
sign these two structures to the E(I'; - T';) and the
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FIG. 3. Experimentally observed electroreflectance
structure AR/R in InAs for the following two transitions:
The Iy — I, transition (Ey) at k=0 involving the top-most
degenerate valence-band and the conduction-band states
near the Fermi level, and the I'; — I} transition (E; —A4,)
involving the spin-orbit-split valence band below it.
These structures were measured at 78°K for various
dc biases on a sample having the transparent metal-
oxide-semiconductor configuration. Column 1 indicates
the theoretically calculated AR /R curves as a function
of surface potential V. The parabolic band approxi-
mation was used in determining the (Vi -V ) vs V, rela-
tion.

E,+ AT, - T,) structures in InAs, respectively.
From this we conclude that the fundamental ab-
sorption edge was shifted to the blue 0.3 eV due
to the Burstein-Moss shift. We were unable to
bias the sample into depletion and thus we were
unable to measure the flat-band voltage, as we
did for InAs.

For InAs we make the following observations:
The larger 0.7-eV peak in Fig. 3 shows the char-
acteristic broadenings due to increased band popu-
lation near the surface. The low-energy “trailing”
edge is relatively insensitive to bias, whereas the
high-energy “leading” edge shifts to the blue with
increasing positive bias. Even for biases near
MOS breakdown we were unable to achieve split-
ting in this structure. The I', - T, structure also
shows the broadening with bias, but the ER signal
is too small to discern further details.

Theoretical calculations for A R/R were made to
show the qualitative agreement between theory and

experiment. Since the approximation A,> E, does
not apply for InAs and since we were unable to
unambiguously identify the flat-band bias, we have
analyzed the spectra in terms of an assumed para-
bolic conduction band. All parameters used are
given in Table II. The Fermi level corresponding
to a carrier density 1.3 X 10*® ¢m™ in a parabolic
band of mass m*=0.023 m, is E;=0.19 eV. We
have used the value 0.24 eV to bring our spectra
into line with that observed. The discrepancy in
Fermi levels is merely a reflection of probable
error in the Hall measurement. As indicated pre-
viously, transitions to the bulk Fermi level occur
at the low-energy side of our spectra. Notwith-
standing the above comments, it is clear that the
broadening-splitting effect observed in InSb is also
observed here in InAs.

III. SIMPLE OSCILLATOR MODEL FOR Ae

In order to gain a better understanding of the
unusual peak splitting and broadening behavior of
our theoretical and experimental results, we wish
to consider a simplified model based on Eq. (C2).

Because the derivative of the Fermi-Dirac factor
in (C2) has a form very much like the imaginary
part of a simple oscillator whose center frequency
is shifted by bias (see, in particular, Fig. 2 of
Ref. 4), we can approximately represent Eq. (C2)
as (z negative in the material)

Ae(iw, z)=fqe**/ s /(w = Ey - V¥e**/*s+4T) (1)

[the real and imaginary parts of Eq. (1) automati-
cally obey the Kramers-Kronig relationships].
The oscillator strength f, is a smoothly varying
function of Zw and is proportional to M2 (Zw)p(7iw)
(see Appendix C for definition). We will neglect
its dependence on 7w although this is not neces-
sary. The exponential decay in the numerator
arises from the decay of the ac modulation AV(z)
=AV.e*/*s. Near the surface, the oscillator is
centered about E + V¥, and this center frequency
decays to E, deep in the bulk. If we assume para-
bolic bands, then V¥ and E, are related to pre-
viously defined quantities by E,= E,+ (m*/u)E,
and V*=(m*/u)V,, where m* is the conduction-
band mass and u is the reduced mass. The broad-
ening parameter T is proportional to temperature
and represents the half width in the derivative of
the Fermi-Dirac function (I'=1.76%T).

Within this model, the convolution relation (C3)
takes the form

dzre-2i1{z’+z’/ Ag
[Zw— Ey— V*e*® *s+4T]
(2)

Letting x=e¢**/* and £=- 2iK),, the above relation
can be rewritten

0
-co

(Ae(fiw)) = —2iKF, J
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TABLE II. Physical parameters of InAs used in calculating the theoretical AR/R in Fig. 3.

Parameter Value Reference
Hall-effect concentration ny 1.3%x 1018 em™3 Supplied by manufacturer 2
Fermi level Ep 0.24 eV Chosen for agreement with

experiment, present work
Lowest energy gap Ig— I} E, 041eV Magnetoreflectance b
Spin-orbit split I — I} A 0.38 eV Magnetoreflectance °
Energy gap I} - I; E, 0.79 eV E, + A,
Cyclotron-resonance m 0.023m, b
effective mass
Valence-band effective m, 0.41m, b
mass
Screening length Ag 100 A Calculated from Eq. (B7)
for a parabolic band
Refractive index n 3.51 c
Extinction coeff. k 0.05 c
Static diel. const. Kg 14.5 b

2 Metal specialties, Fairfield, Conn. 06430.
b See Table I, footnote a.
¢ See Table I, footnote b.

(Ac(iw)) =t f t dx x* . 3) Gauss’s hypergeometric function,'* given below,
0 w—E - V¥x+ill but it has a more elegant representation in terms
of R_,, Carlson’s Dirichlet average.'® The follow-
The integral above can be expressed in terms of ing, then, are equivalent representations of {Ae):
{(Ae(w))= ?f-l foR (L, 1+ & 7w — Eg+iT; iw — Ey = V¥+4T), (4a)
£fo 1 144
A = . . s
(@c(w) £+1 fiw-Ey+iT il 1+ 52+ 5 Fw— E,+il')’ (4b)

= 3 fo . . _V:
@)= 557F, s vrar o <1’1’2+5’ iw—E,— V¥+il )’ (4c)

In addition, the function R, has the interesting symmetry relation
Ry(a,b;x,9)=Ry(b,a;y,x). (5)

Equations (4a)-(4c) are suggestive that A R/R will show structure at the two frequencies 7w~ E,, which
does not change with bias, and Zw= E,+ V¥ which shifts monotonically to the blue with increasing accumu-
lation bias. Both statements are true for V, =0 (flat band) which gives simply

= 5% 1 -
(Ae(ﬁw))- E:-—l m (Vs_o) . (6)

For V #0, consider the identity* !¢

Fila,b5¢;2)= ;%;%'E%(—z)-a2F1<a»1+a"C;l"'a"b;%) +¥%§§‘E%§—Z%(—Z)-b2F1<b,1+b—C;1+b—-a;—i-> .

(7
Substituting (4b) into (7), we find the new identity
_ -5 < ., Hw=-Ey+il 78fy  [Fw—Ey+il \¢
{Ae(fiw)) -—-—-V: JFi(1,- &1 & V¥ Sin(E) v —VF > . (8)
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For very low temperatures (I' << V¥, as occurs in
the two larger biases of Fig. 1), we find

lim (A€(fw)) —~
hw—Eq

because ,F,(a, b; c; 0)=1 and Re(£)>0. Further-
more, because ,F, is a holomorphic function of z
(cut from +1 to ©), we see from Eq. (8) that some
nth-order derivative of (A€) with respect to w will
tend to diverge as 7w —~ E, (if << V¥). In our par-
ticular case of InSb, the parameters of Table I give
£~0.1-14; Eq. (8) predicts that the first derivative
of AR/R vs w will tend to diverge at E,. Although
our calculated A R/R vs %w depends strongly on the
nonparabolicity of the band structure through

fo (9)

J

Vs vs V. (Fig. 2), the nonparabolicity is otherwise
relatively unimportant in Eq. (C2) because the T,
band is relatively flat. Accordingly, we make the
parabolic approximation for E, (see above), and
this value is indicated by the arrow A in the theo-
retical curves of Fig. 1. As predicted, the (low
frequency) inflection point for all curves with Vs
> kT lies very near E,, independent of bias. We
therefore deduce the value E; from the experimen-
tal curves of Fig. 1; this coincides well with E,
calculated from Table I because we had adjusted
A, to bring the theory into agreement with experi-
ment.

In order to show that there is structure at 7Zw
=E,+ V¥, we consider the identity'* !¢

JF(a,bya+b;z)= FIQE:;IJ:(I;))) Z (@), (b ')2 [2¥(n+1) - ¥(a+n) - L(b+n)]|(1-2)"
b
1001 -2) FE 3 G - 1)
For Ziw= E,+ V¥, Eq. (4b) substituted in (10) gives
(Ae(fiw)) ~ iff’ [\If(l+ £)— ¥(1)+1n <@;§1—;Z§ﬂz>] , (11)

and we see that there is predicted to be a weak,
logarithmic divergence in AR/R as fiw—~ E,+ V*
(at low temperatures) with a stronger divergence
in the slope. Accordingly, we have calculated the
values of E + V¥ for each bias, using Fig. 2 and
Table I, with E,+ V¥ indicated by arrow B in the
second column of Fig. 1. Note that V*=0 at flat
band. As expected, the positions of E,+ V¥ corre-
late well with the positions of the inflection points
of the split-off peak. Once again we deduce the
approximate values of E,+ V¥ in our experimental

curves.
At this point we have deduced experimental val-

ues of V¥ for each value of the bias V. V¥ is re-
lated to V, the surface potential, through a know-
ledge of the band structure. In particular V*

= (m;“/u)Vs for parabolic bands; if the initial state
is essentially flat, V¥=V,, independent of the con-
duction-band structure. In Fig. 2, the X marks in-
dicate the values of V, that we have deduced from
the position of the arrows in the experimental
curves of Fig. 1, plotted as a function of gate bias.
We see that agreement with the calculated curve
Vs vs V for nonlinear screening due to nonpara-
bolic bands is excellent. Indeed, when we either
used linear screening or made the approximation
of parabolic bands in Fig. 2, our theoretical re-
sults for Fig. 1 were found to shift much more
strongly to the blue as the bias was increased. We

conclude that this method provides a relatively
simple optical means of monitoring the surface
potential of an accumulation-biased degenerate
semiconductor in an MOS configuration.

Physically, structure occurs at E, + V¥ since the
ac modulation is strongest at the surface. Struc-
ture occurs at E, because this is the frequency at
which the bulk contributes. The total width of the
observed structure increases with V*. For large
values of V¥ there will be sufficient spectral reso-
lution in the experiment to observe the above de-
scribed divergences at Zw=E, and E,+ V¥. Con-
tributions from oscillators centered at interme-
diate frequencies [see Eq. (3)] integrate out in a
manner reminiscent of the theory of the de Haas—
van Alphen effect'” wherein only extremal orbits
contribute to the magnetization, although the ma-
thematics are quite different in the two cases.

The relative strengths of the structures at E,
and E,+ V¥ are governed by the parameter

£=— 20K =2(w/c)(k
=20,(1/6 - 27i/2p),

where 6 and A, are, respectively, the penetration
depth and wavelength of the light in the dielectric
(semiconductor). This parameter determines
whether the decay of the bias e?/*s occurs over a
shorter or longer distance than the variation of the

—in)X,
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photon field e"2¢¥%, (The factor of 2 arises because
the light penetrates a distance z, is partially re-
flected, and must propagate back out.) The limit-
ing cases are

Metallic: §=0. This implies A<} 5 and
A < Ap/47. Equation (3) yields

lim (Ae(w)y= &( £,/ V¥ In(fiw - E,+iT)
e —-In(fw - E,- V¥+iT)] (12)

[the convergence x* -1 is not uniform, but Eq. (12)
is true nonetheless]. In this case the potential de-
cays within a distance over which the photon field
varies hardly at all. Although there is structure
of equal strength at E, and at E,+ V¥, both are
weak because of the prefactor. In addition, V it-
self is small, as can be seen from the linearized
version of Eq. (C8) given in Ref. 4.

Vo= Vep=[1+ (Ks/Kox)(tox/)\s)] Vs (13)

These considerations merely point up the obvious:
It is difficult (but not impossible’®) to do ER on
ordinary metals.

Weakly metallic: l&[-—w. This can occur either
if ;>3 6 or if A;> A,/47. In either case the prob-
ing photon sees an effectively constant Ae(z). Sub-

. stituting the series expansion'* for ,F, into Eq. (4c)
we obtain

. i fi
Jim (Ac(w)) = 5o E,- VF+iF (14)

In Eq. (14) although the structure at E + V¥ is
“large,” the structure at Zw = E, is negligible be-
cause the photon is not able to effectively sample
the bulk of the dielectric. This is obvious if
X >> % 6; it is also true if A;>> X,/47 even if A <36.

The optimal condition for seeing appreciable
structure both at E, and at E,+ V¥ is evidently
| €| # 1. The parameters for InSb listed in Table I
give £(InSb) = 0.1 - 1.0{ and, as seen in Fig. 1, the
two structures are of comparable and appreciable
strength. On the other hand, the InAs parameters
give £(InAs) ~ 0.1-0.2{; as discussed above, it is
difficult to get a large value of the potential at the
surface; consequently there is little of the splitting
effect in InAs. Finally, in Ref. 4 the parameters
used for PbSe give £(PbSe) = 0.8 — 2.4, and we may
expect Eq. (14) to be approximately correct. In-
deed, each value of E,+ V¥ occurs exactly at the
(single) maximum in the calculated AR/R vs w of
Fig. 5, Ref. 4. In addition, there is very weak
structure at Zw = E, for all values of the bias which
did not show on the scale of Fig. 5, Ref. 4.

The three materials InAs, InSb, and PbSe seem,
then, to more or less span the range from small
| £| to large | £|. The parameter £ does depend on
the doping through A, but only weakly.

IV. SUMMARY AND CONCLUSIONS

Spatially varying band population within the
space-charge region of a semiconductor gives
rise to unusual ER structure which broadens,
shifts, and in some cases splits as a function of -
increased surface charge accumulation. In an ef-
fort to explain these phenomena in terms of a band-
population model, we have considered explicitly the
band nonparabolicity and nonlinear screening in the
calculation of A R/R. These calculations not only
helped to explain the observed broadening and
splitting of the I', - I'; ER structure in InSb, but
also pointed the way towards a more intuitive ap-
proach to the problem. By representing A€ by a
simple oscillator model whose center frequency
shifts with local bias, we were able to explain the
salient features in the experimental ER results
without recourse to sophisticated numerical calcu-
lations. By considering the limiting cases in this
model, we were able to establish criteria in de-
termining the presence or absence of strong
broadening and splitting in terms of the screening
length, the wavelength, and penetration depth of
light in the medium. Furthermore, these criteria
enabled us to deduce from the ER measurements
the position of the Fermi level in the bulk and the
effective surface potential as a function of external
gate bias.
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APPENDIX A: FERMI LEVEL AND CARRIER DENSITY
IN DEGENERATE SEMICONDUCTORS WITH
NONPARABOLIC BANDS

For highly doped narrow-gap semiconductors it
is reasonable to assume that all localized impurity
levels are screened out; i.e., we are on the me-
tallic side of the Mott transition. Under this as-
sumption, the electronic band structure for the
doped material is the same as that for the intrinsic
material except that the excess carriers reside
solely in the conduction or valence band (as the
case may be).

In principle, the knowledge of the nonparabolic
band structure enables one to calculate the total
electron or hole concentration from a known Fermi
level and vice versa. Unfortunately, however, we
do not a priovi know either.

The most direct method of obtaining the bulk
Fermi level (E;) of a degenerate semiconductor
is to measure the Hall coefficient. At sufficiently
low temperatures (EF/kT > 1) the Hall carrier
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density n, is given by'®
nH(EF)=%7’”*(EF)UZ(EF)P(EF) ) (A1)

where the effective mass m*, the Fermi velocity
v, and the density of states p can be obtained from
the usual energy-band relations

1 d2E
1/m*= h,—z— -27;2— , (AZa)
1 dE
v= % ar 5 (A2b)
k% dk
p= .7_r~2 a5 (AZC)

For a simple parabolic band (m* const), the Hall
carrier density reduces to the well-known relation

ny=(1/372)2m*E o/l 2=n,,,. (A3)

In general, however, the total number of carriers,
given by

Ep
nai= [ p(EVAE (A4)

is not equal to (A1).

Hence, knowing the band relation E(E) of a ma-
terial, E, can be calculated from (A1)-(A2) by
using an iterative process. For example, for
semiconductors having spherical nonparabolic
bands and large spin-orbit splitting (spin-orbit
splitting A, much greater than lowest gap energy
Eg) the conduction-band relation can be written
with the aid of Kane’s approximation® as

E, (k)= (?k?/2m )+ 30/ ? = E,, (A5)
n=E%+% P°k*, (A6)
where m, is the electron mass and P the matrix

element which is related to the experimental cy-
clotron resonance mass m, by*°

P2=%(m,—m,)E 1% /mm, (A7)

In summary, we then use Eqs. (A1)—(A7) and the
values in Table I to determine E iteratively from
a knowledge of the Hall carrier density.

APPENDIX B: SCREENING-LENGTH AND SURFACE-CHARGE
RELATIONS IN A DEGENERATE SEMICONDUCTOR

In deriving the screening length for a degenerate
semiconductor it is convenient to use Ehrenreich’s
expression®® for the carrier density » in the con-
duction band
n=(1/72)(2m, kT /T2 3 F, (%) + B*(3 = Bu)Fy, 5(x)
+p¥(1- 2 “)Fslz(x)

- 4“,3*3F7/2(x)]

=N, C,F()=N,p(x), j=4,%,3,%,  (BI)
J

where x=E,/kT, g* =kT/E,, p=m,/m,, and

F,(x) is the Fermi-Dirac integral

dtt
x) f exp(i—x)+1° (B2)
Equation (B1) is valid under Kane’s approximation
(A> E,) and the assumption that p << 1.
The surface charge @, can be obtained by inte-
grating the Poisson relation®!

d? V 47Te
dz

where k, is the static dielectric constant, V the
potential, and z the distance into the material.

In terms of the density of states and the unitless
potential #= eV /T within the space charge region,
Q, takes the form

kT (du
Q= 4qe (dz)

(M)’( [ aulotrrm-pwal). (34

[n(z) n,) (B3)

T

Equation (B4) can be solved analytically if x>20
(very heavy doping) by using the Sommerfeld ap-
proximation®® F,(x)=(j+1)"x %' Also, for small
u, we can expand in # and keep linear terms. In
the latter case Eq. (B3) reduces to the form

d?u 1
bkl (B3)

where now by using Eq. (B1) a screening length A,
can be defined by

_1__ 47re2N d (x)
N T kAT ax’
B 47e? N, .
= ~HT ZJ: JC,F;,(x) . (B6)

For #T/E,< 1 the above relation reduces to the
usual Thomas-Fermi screening length'® A,

1/X2p=4ne’p(EL) . (B7)

APPENDIX C: PROCEDURE FOR CALCULATING
THE RELATIVE CHANGE IN THE REFLECTIVITY
AR/R IN DEGENERATE SEMICONDUCTORS

For an n-type degenerate semiconductor, the
contribution to the imaginary part of the dielectric
function ¢, for the electronic transitions under
study will have the form

&(Hw)=M2,p,, (Fw)(1-f,), (Cy)
where p,, is the interband density of state, M, the

matrix element for the transition, Zw the photon
energy, and f, the Fermi-Dirac distribution func-
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tion.

In modulation experiments (e.g., electroreflec-
tance) of heavily doped semiconductors, the quasi-
equilibrium position of the Fermi level relative to

d
A€2(hw? Z) =+Mivpcv _-‘fi'

and Ae,(%w,z) is calculated from the Kramers-
Kronig integration® of (C2). The convoluted form
of this change (Ae(%Zw)) can be calculated from the
Aspnes-Frova relation”

(4]
(Ae(fiw) =-2in dz' e~ pe(Tiw,z’), (C3)
2> =0

where K is the complex refractive index (w/c) (n
+ik). Finally, AR/R is determined from?

AR/R =Re[~(2n,n,D)"*A¢€)], (c4)

where n, and ng are refractive indices of the am-
bient and substrate material; the parameter D
completely describes the effect of surface layers
on the substrate (the metal electrode and the oxide)
and is related to the generalized Seraphin coef-
ficients o and 8 by?®

a~if=~(2n,n,D)"*. (C5)
We calculated the interband density of states

(k%/1?) (dk /dTiw) using the Kane theory.® For each
7w the value of % is obtained from (A5) and
Fw =Ec(k) "'Ev(k)

=B+ 0K 2m, 4 50*2/2 =SB, 4 PRY/2 my ]

(ce)
E; above represents the energy difference between
the conduction band and some valence band with
effective mass mf at k=0 other than the uppermost
valence band. Equation (C6) can be inverted ana-
lytically for (w).
The matrix element for the transition is cal-

culated using the expression

MZ, =(2m2P?/3%%)[(a, c, +coa, )2+ (agh, —boa,)?],
(cm

the conduction band near the surface can be shifted
by an external bias potential Vi;. The induced
change in €, by V, within the space charge region
is .

e AV(E)= 10) =2 (exp = [E,(1w) - Ep - eV(2)]/bT}+ 1A T(z) | (c2)

r

where the coefficients a, b, and ¢ as a function
of £ are given in Ref. 6.

The remaining task is to calculate the potential
distribution within the space charge region of the
degenerate material for a given external bias.
This will allow the determination of band popula~
tion at each point z within the surface region. The
form V(z) =Vse'z/ s is a very good approximation
for the potential distribution provided V, and X,
can be determined accurately.!? The linear
screening length is calculated from (B6) once Ep
is known. The surface potential V, follows from
the experimental sample configuration. In electro-
reflectance experiments using the metal-oxide-~
semiconductor configuration, V, can be obtained
from?

VG—VFB=VS_QS/C07 (C8)

where C, is the oxide capacitance and @, is given
by Eq. (B4). Vgp is that gate voltage which pro-
duces a vanishing electric field throughout the
semiconductor up to the interface; it depends on
the true surface charge density and the metal-
semiconductor work-function difference.?* Vyg

is determined experimentally from the so-called
“flatband” condition'® where the A,—A, electro-
reflectance signal disappears. Figure 2 shows
the (V,, V,) relation for near-degenerate InSh for
various oxide capacitances. These results include
the full nonparabolic treatment as described in
Appendix B. The parabolic-band-approximation
curve is shown for comparison. Aey(%Zw,z) and
A€ (%w,z) can now be calculated numerically and
AR /R determined from (C4).
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