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Zero-temperature properties of matter and the quantum theorem of corresponding states.
II.The liquid-to-gas phase transition for Fermi and Bose systems*
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The zero-temperature properties of matter with an interaction pair potential of the Lennard-Jones form are
studied further within the context of the quantum theorem of corresponding states. In particular, the phase
transition between the liquid and gaseous phases is studied for systems obeying either Bose-Einstein or Fermi-
Dirac statistics. In contrast to well-known systems, the nature of this transition in these quantum systems

depends on the statistics in a fundamental way. We find that it is illuminating to extend the usual

thermodynamic variable space to include the corresponding-states quantum parameter q = 0'/me~'. It is
shown that the phase transitions occur at zero temperature as q is varied. For Bose systems it is found that a
second-order liquid-to-gas transition occurs at a value of q = 0.456. Thus, for Bose systems there is no
coexistence region. In sharp contrast, for Fermi systems, there is a range of values of g for which the liquid
and gaseous phases can coexist. This coexistence region exists in the range 0.29 & q & 0.33. The essential
features of the behavior of both Bose and Fermi systems can be understood in terms of simple models.
Detailed numerical results are presented for both cases,

I. INTRODUCTION

In a recent paper, Nosanow, Parish, and
Pinski' (hereafter referred to as NPP) studied
the liquid-to-crystal phase transition for zero-
temperature quantum systems obeying both Fermi-
Dirac and Bose-Einstein statistics. One of the
main results of their work was that the solidifica-
tion pressure P, depended significantly upon wheth-
er the system obeyed Base-Einstein or Fexmi-
Dt, rac statistics. In addition, they found that it
was illuminating to view these phase transitions
within the context of the quantum theorem of cor-
responding states (QTCS), originally proposed
and discussed by de Boer and co-workers' ' and
recently extended' to study 'He and possible "new"
quantum systems. ' NPP found it convenient to
conceptually extend the usual thermodynamic vari-
able space to include the quantum parameter rj,
where

ri =—I'/m err' = (A*/2m)',

and A* is the de Boer parameter. They calculated
the phase diagram for the liquid-to-crystal phase
transition and found it most convenient to plot it
in P-g space. This result is given in Fig. 10 of
NPP, which clearly shows the effect of the "sta-
tistics" on the liquid-to-crystal phase transition.

The present w'ork is devoted to a study of the
liquid-to-gas phase transition at zero temperature,

again within the context of the QTCS. A prelimi-
nary report of this work has already been pub-
lished. As with the liquid-to-crystal transition,
we find that the behavior of the system is profound-
ly affected by the "statistics. " That there should
be a liquid-to-gas phase transition at zero tem-
perature is not surprising. After all, from an
intuitive point of view the quantum parameter q is
approximately proportional to the ratio of the
average kinetic energy to the magnitude of the
average potential energy. Thus, it is intuitively
clear that there will be a value of q sufficiently
large to cause the ground state of the system to be
unbound; i.e. , to be a gas at zero temperature
and pressure. This state should be contrasted to
that of a liquid, which is a bound state of the many-
body system at zero temperature and pressure.
It is then to be expected that the system will be
either a liquid or a gas, depending on the value
of g and that there will be a liquid-to-gas phase
transition for a special value of g.

We find that this liquid-to-gas transition does,
in fact, exist for both Bose and Fermi quantum
systems at zero temperature. However, there is
a striking difference between the behavior of a
system of bosons and that of a system of fermions
due to the effects of quantum statistics. In Sec.
IV, we discuss the Bose system. In this case, it
turns out that there is no coexistence region at
zero temperature; i.e. , the system is either a
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liquid or a gas. Consequently, when compressed,
a Bose system, which is gaseous at T= 0 will not
exhibit a gas-to-liquid transition prior to cry-
stallization. The essential features of the behavior
of this system are shown to follow from a simple
Landau-like model.

In Sec. V, we discuss the fermion system. In
this case, we demonstrate that there does exist a
liquid-gas coexistence region for a finite range of
values of q. Thus, a system of fermions with an ap-
propriate value of g can undergo a gas-to-liquid
transition at T = 0 with an increase in pressure. The
essential features of the behavior of this system are
again shown to follow from a simple Landau-like
model. %'e wish to contrast the condensation that
occurs in this Fermi system at 7.'= 0 with the well-
known condensation observed in all other systems.
In the latter case, the essential characteristics
of the phase transition are determined by two fea-
tures of the physics. ' One of these is the attrac-
tion between the particles of the system; the other
is the exclusion in configuration space due to the
strong, short-range repulsion between these par-
ticles. In the fermion system, we shall show that
this second feature is replaced by the "repulsive'*
pressure caused by the Fermi statistics. Since
quantum effects are so important in this liquid-to-
gas transition, it seems appropriate to call it a
quantum condensation.

The ground work for discussing the Bose and
Fermi systems is laid in Secs. II and III. In the
former, we define the QTCS and introduce the sys-
tem of reduced units for the thermodynamic vari-
ables. In the latter, we give the details of the
calculation of the enexgy expectation values. In
See. VI, we discuss a number of aspects of our
results, in particular, their connection with those
of perturbation theory for the fermion liquid. In

Appendix A, the details of the calculation for the
Fermi system are given. In Appendix B, the va-
lidity of the approximations used in the calculation
of the Bose system are discussed.

II. QUANTUM THEOREM OF CORRESPONDING STATES

The QTCS'~ applies to a class of systems with
a pair potential of the form

x.e. ,
v*(x) =4(x "—x '}. (2.2)

To state the QTCS, it is convenient first to in-
troduce the quantum parameter vj defined by Eq.
(1.1). We have found it notationally more con-
venient to use q than the de Boer parameter A*;
they are related by q=(A»/2w)'. V»ues of q»ong
with values of &, 0, and other useful quantities
are given for various substances in Table I. It
is further convenient to introduce several dimen-
sionless or "reduced" variables as follows:

T*=-kaT/e,

V" =- V/No = I/p»,

P» = Po'/», -
E*= E/Nc-,

(2.3a.)

(2.3b)

(2.3c)

(2.3d)

E*=E*(T*,V», q), (2.4)

where E» depends only on the form v*(x) and on
whether the particles obey Bose-Einstein n or
I'errni -Dirac statistics. A more complete dis-
cussion of the QTCS as it relates to the present
work can be found in NPP.

III. METHOD OF CALCULATION AND

NUMERICAL RESULTS

%e consider systems with a Hamiltonian of the
form

(3.1)

which is defined in Eg. (2.5)-(2.7) of NPP. Using
yarametrized trial wave functions, we minimize
the expectation value of II utilizing well-known
techniques of McMillan, ' Feenberg and co-work-
ers,"and Schiff and Verlet. " We choose our trial
wave functions in the usual product form con-
structed with the necessary symmetry require-
ments for a Bose (B) or Fermi (E) system; viz. ,

»(F(g)/ 2 (3.2)
~ ~

where T is the temperature, V is the volume,
N is the number of pa, rticles, p is the number
density, P is the pressure, and E is the Helmholtz
free energy. The QTCS states that, for a one-
component system.

v(r} = ev»(r/o), (2.1) ~h — TT e "&7'i j&~2+ TT g&&g'~i/
'Vg gJ LL (3.3)

where e is the coupling constant (with dimensions
of energy), o is a. range parameter (with dimen-
sions of length), and v*(x) is the same dimension-
less function of its a,rgument for each member of
this class of systems. In this paper, numerical
results will be given for systems where v*(x) may
be well approximated by the Lennard-Jones form;

where u(r;, ) will be chosen to be a simple, pa
rametrized function necessary to take proper ac-
count of the short-range correlations induced by
the strong short-range repulsion in u*, A. is the
antisymmetrizer and (,. are spin functions.

We choose the pair function to have the form
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u(r) = (bo/r)' = (b/x}', (3.4) the simple form"

for both the Bose and Fermi systems. For a pair
function with this simple power-law form:and a
pair potential which is just a sum of simple powers
a scaling procedure is available which greatly
simplifies the calculation of the minimized energy
expectation values. This property was first used
by McMillan' in his study of 'He and can be simply
presented by introducing lengths scaled in units of
bo; i.e. ,

E'(p*, r};b)=qb '(t/bi}, x+4b "(R "),
4b"(R ), (3.7)

(3.8}

and X stands for Bose or Fermi. The brackets
represent averages defined by

()( "),„1lfg(=R; D))( "«

R = r/bo-=xlb,

D = po'b'= p*b'.
(3 5)

(3.6) JAN 2 AN

It is straightforward to show that the averages
which one needs in order to ealeulate the reduced
energy E* are functions of D (and the particular
statistics) only. Thus the energy can be written in

(3.9)

The g„(R;D) are Bose or Fermi radial distribution
functions defined by

(3.10)

(3.11}

For the case of Bose statistics E(l. (3.9) reduces to 5(R )n s. The spin-averaged fermion radial distribu-
tion function and the fermion kinetic energy are calculated approximately using the statistical cluster ex-
pansion of Wu and Feenberg. " Thus, for gr(R;D) we have

g,(R„;D)=g,(R„;D)[1+F")(R„)+F")(R„;D)+" ],

).& &()(„;)))= ( f(;,())„;D))()(„;D))()„)z(,..a)()„)fg,()—'(„;a))())„;a))()„))()„)~„2
(3.12)

(3.13)

and we have defined the following quantities:

h(r) =—ge(R) —1,
l( F) —= 3[sin( F) —Y'cos( Y) ]/Y',

(3.14)

(3.15)

(3.16)

(tlfi), ,= 5(R-'), ,+ E„+E„+E„+~ ~ ~,

(3.19)

u, -=(3v'D)'~'. (3.17)

The nth term in (3.11) represents the contribution
to g~(R) coming from n-particle exchange in the
Slater determinant of g~. We truncate the series
after the g = 3 term in g~. In order to evaluate
E"', the Kirkwood superposition approximation
(KSA) has been used for the three-particle distri-
bution function; i.e.,

P„"(('„(1,2, 3;D) = D'ge(R„)ge(R„)ge(R,„) . (3.18)

The power form for u(R) thus allows all of the en-
ergy expectation values to be obtained from the
calculation of a single set of ge(R) 's as functions
of D only. These can then be used at any density
with a variational parameter b given by Eq. (3.6).

The fermion kinetic energy can be written

E,~=20E,~ u 2k~ 1 —px+px' x dg, 3.21

x u(x(3k')) dx~ dx2 dx3,

(3.22)

().) = 9().) —( =)) f e'"'h( )«. )) (3.23)

To evaluate the E» term, we used the convolu-
tion approximation for the three-particle distribu-
tion function; i.e. ,
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TABLE I. Quantum parameter q for various substances. Also included are the masses
(in amu, i.e., 1.66024x10 g), the coupling constants e (in K, k~=]..38054x10 i6 erg/
particle K), the "core diameters" o (in A), and the quantities e/cr (in atm) and Npa (in
cm /mole). We use 0 =1.054 50 0&10 erg sec and Np =6.022 52&&10 3 particle/mole.

Substance Npo'3

3He

'He
6He

H2

D2
Ne
Ar

3.016
4.003
6.019
2.016
4.028

20.18
39.95

10.22
10.22
10.22
37.0
37.0
35.6

120

2.556
2.556
2.556
2.92
2.92
2.74
3.41

83.39
83.39
83.39

202.48
202.48
235.79
412.33

10.06
10.06
10.06
14.99
14.99
12.39
23.88

0.2409
0.1815
0.1207
0.0763
0.0382
0.0085
0.000 88

R"'(1,2, 2;D) D'(1 h(R =) ~ h(R„„)~ h(R ) ~ h(R„„)h(R„)~ h(R„)h(R„)

h(R„)h(R„) D f h(R )h(R&h„(R)d, R,j., (3.24)

(3.25)

A quadratic approzimation for 2)(k) was employed in order to evaluate the E» term. ""
The boson g(R)'s were obtained by solution of the Bogoliubov-Born Green-Kirkwood-Yvon equation"

f (')(i, 2, 3)-
Vhg(R„) = V,u(R„)g(R„)+D '2

' V,u(R, R) dR 2

t
D x = +o xD + n, xD2/3 i (3.26a)

with the KSA approximation for the three-particle
distribution function. The details of the solution
of this equation and the convergence of the sta-
tistical cluster expansion will be reported else-
where. '6

In Table II we show the Bose and Fermi aver-
ages as defined in Eqs. (3.8) and (3.9) as functions
of D. We note that they are smooth and monotonic
and relatively slowly varying over a large range in
D. We can thus fit these averages with cubic poly-
nomials in D rather accurately and obtain relative-
ly simple expressions for the Bose and Fermi en-
ergies as explicit functions of p*, g, and b. In
subsequent sections, we will obtain the equations
of state and the critical parameters by analyzing
the polynomials which have been obtained in this
way.

The polynomial coefficients are defined as fol-
lows:

(3.26c)

with

2 .7(-,'v)"', X=@
~o,x=

0
(3.27)

We have separated off the fermion independent-
particle average kinetic energy in Eq. (3.26a) be-
cause that term is independent of b. The n, P,
and y coefficients are displayed in Table III and
were obtained by means of a Chebyshev curve fit."
In Table IV we show a comparison of the calculated
and curve-fi. t energies at the arbitrary density
p*= 1.0. The root-mean-square fractional dif-
ference is 0.00119 for the bosons and 0.00829 for
the fermions. The maximum percentage error is
0.24% for the bosons at D = 0.02 and 2.15% for the
fermions at B=0.02. These curve fits thus yield
a good representation of the data and are quite
adequate for our purposes.

IV. BOSE SYSTEM

(R-&. „-=g 2, „D,
g=l

(3.26b)
In this section we shall analyze the liquid-to-gas

transition in a Bose system at zero temperature.
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TABLE II. Components of E* as functions of D for both Bose and Fermi systems. The
averages are defined in Eqs. (3.8) and(3. 9); (t/N&++ = (t/N)z —3k&.

(R-6) 12) (t/N)g (R 'gs

0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500

0.09106
0.205 03
0.336 80
0.484 42
0.646 33
0.822 90
1.013 30
1.217 27
1.434 63
1.665 29
1.972 16
2.299 57
2.647 41
3.015 61
3.404 12
3.812 84
4.241 72
4.690 66
5.159 58
5.648 39
6.156 99
6.685 25

0.025 84
0.058 57
0.095 81
0.136 78
0.180 89
0.228 23
0.278 50
0.33158
0.387 39
0.445 86
0.522 63
0.603 39
0.688 09
0.776 66
0.869 05
0.965 20
1.065 07
1.168 62
1.275 78
1.386 53
1.500 81
1.618 58

0.014 72
0.033 53
0.055 72
0.081 12
0.109 65
0.14145
0.176 54
0.215 03
0.257 00
0.302 58
0.364 78
0.433 02
0.507 50
0.588 46
0.676 11
0.770 67
0.872 34
0.981 31
1.097 78
1.221 91
1.353 89
1.493 85

0.152 43
0.317 15
0.494 23
0.683 72
0.884 28
1.098 37
1.325 02
1.56426
1.816 14
2.080 68
2.429 17
2.797 48
3.185 62
3 ~ 593 56
4.021 28
4.468 72
4.935 83
5.422 53
5.928 71
6.454 26
6.999 07
7.562 97

0.038 78
0.080 24
0.124 34
0.17107
0.220 03
0.271 83
0.326 19
0.383 06
0.442 45
0.504 32
0.585 12
0.669 72
0.758 08
0.850 17
0.945 93
1.045 33
1.148 31
1.254 84
1.364 87
1.478 34
1.595 23
1.71546

0.02472
0.052 17
0.082 47
0.11578
0.15197
0.19160
0.234 63
0.281 18
0.331 40
0.385 41
0.458 44
0.537 83
0.623 80
0.716 58
0.816 39
0.923 41
1.037 85
1.159 89
1.289 70
1.427 41
1.573 19
1.727 13

We shall begin by using the expression for the en-
ergy in terms of the cubic polynomial fits given in
Sec. III. It is particularly illuminating to view the
properties of this system as a function of g;
thus, we shall adopt the point of view of NPP and
regard g as a conceptual thermodynamic variable
and extend the space of thermodynamic variables
to include q. We shall then show that the Bose
system, viewed as a function of q, undergoes a
second-olde~ phase transition from liquid to gas
at a critical value of q= q~~ = 0.45576; whereas,
there is no liquid-to-gas transition as a function
of I'*. We analyze the system further and show
that these results are general and do not depend
on the details of our calculation. We wish to men-
tion the recent work of Bruch, "who has viewed
the transition in terms of the self-binding of the
many-body Bose system and has developed a dif-
ferential equation to obtain q~~. His results con-
firm those we have obtained.

Using the results from Sec. III and, in particu-
lar, Eqs. (3.7) and (3.26), we may write the re-
duced ground-state energy for a Bose system as

those for Bose systems. We note that (4.1) is not
a cubic polynomial in p* since b also depends on
p* (and q as well). It follows straightforwardly
that the pressure is given by

+12(n —4)b "y„]. (4.3)

TABLE III. Coefficients for the polynomial fits to the
averages given in Table II. They are defined by Eqs.
(3.26a) —(3.26c) .

Coefficient Bosons Fermions

0!g

Ckg

A3

7.304 54
15.415 06
0.488 71

4.215 92
22.343 03
—8.492 48

P*=p* gnD"(qb 'o.„—4b 'P„+4b "y„) . (4.2)
n=I.

Further, the variational parameter b is deter-
mined by

(
8E+ 3

=0 = p* Q D" 'L(3n —2)go.„—12(n —2)b 'P„

E*(p* 7) b) = g D"(qb 'o.„—4b 'P„+ 4b "y„),

(4.1)

where in this section o.„, P„, and y„will only be

p(
Pg

P3

Vf
'y2

73

1.874 17
3.317 25

—0.408 45

1.166 10
3.304 76
2.554 91

1.221 60
5.844 36

-3.806 37

0.672 01
3.977 93
1.243 57
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TABLE IV. Comparison of the fitted and calculated energies at p*=1.0. At this density,
D = 0 . Further Agz) =—100[Egg) (calc)-E~~z) (fit)]/E~(z) (calc).

EI3 (calc) Ez (fit) Ep. (calc) EJ (fit)

0.2714
0.3420
0 ~ 3915
0.4309
0.4642
0.4932
0.5192
0.5429
0.5646
0.5848
0.6082
0.6300
0.6503
0.6694
0.6875
0.7047
0.7211
0.7368
0.7518
0.7663
0.7802
0.7937

617695
81 315;8
25 320.2
11203.3
5994.95
3624.98
2381.35
1661.66
1213.85
919.182
675.844
514.925
403.727
324.102
265.384
221.005
186.757
159.851
138.384
121.028
106.829
95.0945

616 223
81 200.8
25 301.8
11200.2
6004.54
3631.43
2385.62
1664.46
1215.64
920.285
676.380
515.106
403.694
323.947
265.170
220.776
186.543
159.675
138.263
120.972
106.849
95.1973

0.238
0.141
0.072
0.027

-0.159
-0.177
-0.179
-0.168
-0.147
-0.120
-0.079
-0.035

0.008
0.047
0.080
0.103
0.114
0.109
0.087
0.045

-0.018
-0.108

367 861
52 244.7
17 095.1
7842.12
4319.43
2671.39
1788.03
1267.62
938.834
719.604
536.242
413.458
327.686
265.681
219.570
184.458
157.182:
135.626
118.338
104.295
92.7597
83.1923

375 768
51 929.3
16 848.5
7720.63
4264.05
2645.95
1777.40
1264.40
939.230
721.654
538.962
416.113
329.974
267.505
220.934
185.409
157.782
135.942
118.436
104.233
92.5902
82.9612

2.149
-0.603
-1.442
-1.549
-1.282
-0.952
-0.594
-0.254

0.042
0.284
0.507
0.642
0.698
0.686
0.621
0.515
0.381
0.233
0.082

-0.059
-0.182
-0.277

qcanib —4Pxb, + 4 yxb, = 0, (4.4)

Substitution of the solution of (4.3) and (4.1) and
(4.2) yields the plots of E~ vs p~, P* vs p*, and
p* vs g shown, respectively, on Figs. 1-3.

We note that for q & q~~, there will exist a density

p~~at which the system is self-bound (negative en-
ergy at zero pressure). As q is increased p~ de-
creases until pc~ is reached at which point p~
= p~~~ = 0.0. This behavior is clearly shown in Fig.
3 by following the P*=0.0 isobar. For those q& q~~
there are no zero-pressure solutions (with nonzero
density); thus, the system is a gas since it is un-
bound at every density. Thus, when viewed as a
function of q, a liquid-to-gas transition occurs at

On Fig. 4, the reduced ground-state energy
is given as a function of q (this graph should be
compared with Fig. 5 of NPP) and clearly shows
the liqud-to-crystal and liquid-to-gas transitions
for both Bose and Fermi systems. This behavior
is further illuminated on the P*-q phase diagram
given in Fig. 5 (this figure should be compared
with Fig. 10 of NPP).

The equations for the pressure (4.2) and the
optimal variational parameter (4.3) can be used
to determine pc~. Below g~~ there are three solu-
tions for P*=0.0; there is a trivial double root at
p*= 0.0 and a simple root at p~~. The confluence
of these three roots determines pc~. Then, since
pots =0.0, Eqs. (4.2) and (4.3) yield

0.30

0.20

U~ 0.10

Q

D
O

0.0

-0.10

0.0
I

0.10
I

0.20
I

0.30

REDUCED DENSITY p"

FIG. 1. Reduced energy E* as a function of the re-
duced density p* for systems obeying Bose-Einstein
statistics. The arrows locate the positions of the energy
minima.
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0.3

0.30

0.35

I-
0.20

Z
0
0
D
O
K

0.10

0.0
0.0 0.10 0.20

REDUCED DENSITY p"
0.30

FIG. 2. Reduced pressure I'* as a function of the re-
duced density p* for systems obeying Bose-Einstein
s tatis ties.

0.0
0.25 0.30 0.35 0.40 0.45. 0.50

QUANTUM PARAMETER q

0.55

ca n, b, + 12P,b,' —36 y, b, ' = 0 . (4.5)

Solving Eqs. (4.4) and (4.5) simultaneously, we
obtain the critical quantities

FIG. 3. Reduced density p* as a function of the quan-
tum parameter p for Bose-Einstein systems. The ar-
rows locate the points at which &*=0.0. Only the zero-
press'ure curve has a zero density intercept at q&a.

(4.6)
/can + Ei2 —E6 = 0, (4.13)

(4.7)

Instead of immediately substituting the curve-fit
coefficients from Table III into Eqs. (4.6) and (4.7),
we note that in the zero-density limit, we can cal-
culate n„P„and y, exactly using the pair function
of Eq. (3.4). We find

e R 'dR = 2@I' —,
' =7.31507, 4.8

p, =2 e R 'dR = —'7tI" —,
' =1.87137, 4.9

where e»(e, ) is the repulsive (attractive) part of
the potential energy. Following NPP, we write

(8E*) (tc) (4.14)

ca'qt + 6&i2 —366 = 0. (4.15)

where P is the "thermodynamic" variable conju-
gate to g, and K is the kinetic-energy part of the
Hamiltonian. Using (4.14), we obtain a second
relationship from the virial theorem" at zero
pressure; i.e. ,

y, =- e 'R "dR =-mI' —' =1.17041,

(4.10)

Combining Eqs. (4.13) and (4.15), we find the
equations corresponding to (4.6) and (4.7); i.e. ,

where these follow from Eqs. (3.8) and (3.9) in
the low-density limit, in which case g(r) - e "(~'.
The coefficients of Eqs. (4.8) (4.10) yield

b, = 1.077 34 (4.11)

ca ——0.455 76 . (4.12)

The coefficients Q.„P„and y, given above are in
extremely good agreement with the curve-fit re-
sults of Table III. Equations (4.6) and (4.7) are
special cases of a pair of equations valid for the
exact eigenfunction.

At gca the energy is zero; thus, we may write

5
E6/ei2 = 2 i (4.16)

(4.17)

E~ =A, (q)p*+A,(q)p*', (4.18)

It is convenient to discuss the nature of the
phase transition in terms of P. In particular,
we shall show that p is continuous at gca; whereas
Sp/Sq is not. This behavior is the signature of a
second-order phase transition in the traditional
Ehrenfest sense. " The transition is most simply
analyzed by writing the energy in the usual Landau
form for a second-order phase transition with the
square root of the density as the order parameter.
Thus, from Eq. (4.1),
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FIG. 5. P~-g phase diagram at T*=0. The coexist-
ence curves for the liquid-to-crystal transition are
taken from NPP.

FIG. 4. Reduced energy E* at zero pressure as a
function of the quantum parameter q. The zero-energy
intercepts /zan for the Fermi Quid and pcs for the Bose
fluid, are shown. These Quid branches meet the crystal-
line curve t'from NPP) with a definite change in slope
indicating a first-order phase transition at a critical
value of q which depends upon statistics.

A,.(q)=qbo, —4b 'P, +4. b 'y, . (4.19)

For q(pc~, A,(q) &0 since we have a bound state
at pf and A, (q) &0 for a positive density. For q

ca the only solution to P~ = 0.0 is pc~a.
From the definition of P given by (4.14) and

(4.18), we have (the primes denote derivitives
with resPect io 'g) for 'll & tJcs

(4.22a)

Now fo 'g~'g, p = 0 and

(4.22b)

Since A, vanishes at the critical point, it follows
that p is continuous at pc~. By further differen
tiation

] gr2
llm

&"&ca Bq 2 A.
(4.23a)

j = 1, 2 and b is calculated by minimizing the energy
at a given g and p*. Since pc~ = 0.0, we can neglect
the cubic term in Eq. (4.1). At zero pressure we
find

(4.20)

Therefore the second derivative of the energy
with respect to q has a discontinuity of magnitude
6, given by

n =- i(A,')'/2A,
i

= 6.547, (4.24)

which implies

~~ca ~'tc 3

The ratio of the kinetic and potential energies, of
course, goes to unity as q-pc~, and it is interest-
ing to note that the curve is linear near pc~. This
is due to the fact that, in the range of q shown in
Fig. 6, the equilibrium density p~ is relatively
small (as seen in Fig. 3). Thus, b is only weakly
dependent on q and the only important dependence
is the explicit q dependence in (Ã). This behavior
changes somewhat as q gets smaller (disregarding
for the moment the solid phase) since the kinetic
energy vanishes as q-0.

where the coefficients from Table III have been
used. In Fig. 6 we show E, BE/sq, and O'E/srp
as functions of q. In Fig. 7 we show the average
kinetic energy, the magnitude of the average po-
tential energy and their ratio at P*=0.0. We see
that the slopes of the kinetic and potential energies
change discontinuously at pc~ but in an equal and
opposite manner to insure that the slope of the total
energy p is continuous. This is immediately evi-
dent by noting that, since P(pcs) = 0
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FIG, 6. Reduced energy E* at zero pressure as a func-
tion of g together with its first and second derivatives.
At ~z the second derivative is discontinuous, signalling
a second-order phase transition,

V. FERMI SYSTEM

In this section, we analyze the results for sys-
tems which obey Eexmi statistics in a manner
analogous to the analysis of the Bose systems in
Sec. IV. Once more we treat q as a conceptual
thermodynamic parameter and find a liquid-gas
transition as q is varied. For Fermi particles,
however, we find a first-order transition with co-
existing liquid and gas phases and a critical point
at a value of g=q~~~ This is illustrated on the
E*-vs-q and P*-vs-g diagrams plotted on Figs.
4 and 5, respectively.

In terms of the cubic polynomials of Etl. (3.2),
the reduced energy and pressure can be written

E*(p* t) b) = E* + Q D"(qb 'o. —4b~P + 4b ' y )
n=l

p+ = p+ ~ p* g D"(t)b 'n„—4b 'p„+ 4b "o.„),

(5.3)

I t I t I t I t I t I t I t I

0.30 0.34 0.38 0.42 0.46

QUANTUM PARAMETER q

FIG. 7. Heduced kinetic and potential energies at zero
pressure as a function of g. At g~z, although differing
in sign, each has an equal magnitude and the same dis-
continuity in its slope; thus, Q is continuous at g~z
(cf., Fig. 6).

E,*~= qE, rlb', —

+gy = 3p Eyy p

(5.3)

(5.4)

and E» is defined in Etl. (3.20). The coefficients
used in this section will refer to the Fermi sys-
tem. The minimization of E~ with respect to b

once more yields Etl. (4.3) since E,*z is independent
of b. For each choice of p~ and g there are two
real positive roots to Etl. (4.3). That is, in addi
tion to a local minimum, there is a maximum as-
sociated with the minus sign of n, . The energy
and pressure as functions of density and volume
obtained from solving Eels. (5.1)-(5.4) are shown
in Figs. 8-11.

If we examine the fermion energy curves, Figs.
8 and 10, we see that for small enough q there
exists a density p~ for which the system is self-
bound. If we increase q, we find that p~ increases,
as shown in Fig. 12. At q= q» there are two zero-
energy, zero-pressure solutions. One at p~ = 0.0
may be interpreted as a gas phase, a,s in the Boson
case, the other at p~~WO is novel to the fermion
system and represents the liquid phase. Thus q~~
is the lowest value of q for which there are co-
existing liquid and gas phases. We note that Eqs.
(4.16) and (4.17) are also valid at this point. If
we denote the fermion critical q by q~~, then we
find typical van der Waals loops in the pressure
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FIG. 12. Reduced density as a function of the quantum
parameter p for a Fermi-Dirac system. The arrows
locate the points where E*=0.0.

fairly complicated and are, therefore, given in
Appendix A. The essential features of the "phys-
ics" can be obtained from a simple model as in
the Bose case. In this simple model the reduced
energy is taken to be

0.0 0.1 0.2
REDUCED DENSITY p"

0.3

FIG. 13. Reduced Fermion energy, the reduced boson
energy, and the fermion energy minus the E~ part as a
function of the reduced density at an arbitrary p (= 0.30)
in the coexistence region. This illustrates that the loop-
ing is due entirely to the &~ contribution to the energy.

E~~ = C.OF27p~ ~ '+A, (27)p*+A 2(I})p*

where

A,.(2})= I)A, , -A„,

(5.5)

(5.6)

we note that this point is determined by the condi-
tions

where i, j= 1, 2 and A,.&&0. Since the critical
density turns out to be finite in this case, unlike
the Bose case, this model can not lead to quanti-
tative results. Nevertheless, it does exhibit all
of the essential physical features of the system.

By definition along g» we have

(5.12)

which with (5.5) yield

2 0 }CFPCF 1(CCF)PCF A2( 7CF)PCF

(5.13}

Ee 0

which with (5.5} yields

0 7LEPLF 1( }LF}PI.F 2( 7LF}PCF
2
2+071,FPLF + 1( }LF}PLF+ 2( }LF)PLF

(5.7)

(5.9)

00CFPCF + 1("7CE}PCF+ ~2( 7CE}PCF

Solving these equations we find

PCF Al( 7CF)/ ~2( 7CF)

l
18A,(27 ) l'~2= 80c2,2}c A,'12(27 ) .

(5.14)

(5.15}

(5.16)
Solving these equations, we find

PIE Al( 7)L/F~ (}2IF}t

3lA, I"'=4"'~o~LF 2"(~LF),

(5.10)

(5.11)

where (5.11) determines I)LF, which with (5.10)
determines p~~. We note that A, &0.

To calculate the properties at the critical point, and

Ec~F = 13A2(17cF)/360A2(I}cF),

II~~F = -A2(I}cF)/2160A22(I)cF) & 0,
(5.17)

(5.18)

where (5.16) determines I}cF, whence (5.15) deter-
mines pc~F. Again A, (27cF) &0. Furthermore
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The detailed numerical results yield approxi-
mately 0.2 for the ratio P~~~/Ec*„pc+, which is in
semilluantitative agreement with (5.19). The anal-
ysis about the critical point proceeds exactly as
in classical mean-field theories. The transition
along the critical isoehore is of second order, the
coexistence curve is characterized by a critical
exponent P = &, and there is a jump discontinuity
in SE*/Sl) (analogous to that in |:„)as one passes
through the critical point. In Figs. 14 and 15, we
plot the reduced energy E~ and SE*/81) at fixed
pressure as functions of q, respectively. The dis-
continuity in SE*/Sl) in the coexistence region is
analogous to the latent heat in ordinary liquid-gas
transitions at finite temperature.

The numerical procedures described in Appendix
A yield the following values;

g~~= 0.290 + 0.005,

p~~=. 0.19+0.02,

5~~ = 1.100+ 0.005;

and the following values at the critical point".

Ec~g = 0 075 + 0 007

q„=0.33 ~0.01,

Pc*~=0.074 + 0.004,

Pc*~=(1.3+0.3) x 10 ',
~ca= 1.085+0.001

The uncertainties shown in the above numbers
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FIG. 15. Slope of the energy as a function of g. This
figure illustrates the discontinuity in the slope as the
energy passes into the coexistence region.

have no physical significance. They are purely
numerical and only reflect the extent to which
these quantities are susceptible to small adjust-
ments in the input data fed to the Chebyshev curve
fit.

VI. DISCUSSION

The main result of this paper has been to show
that, at zero temperature, quantum systems can
exhibit liquid-to-gas phase transitions and that the
nature of these transitions depends in a striking
way on whether the systems obey Bose-Einstein
or Eermi -Dirac statistics. In this discussion, we
wish to emphasize that this behavior is a general
qualitative property of these systems and will be
true for all such systems that interact via a pair
potential with a strong short-range repulsion and a
finite-range attraction bounded from below. In
addition, we shall briefly discuss an important
theoretical consequence of these results; namely,
that it is possible to construct zero-temperature
perturbation theory for a Fermi liquid starting
with the gas as the unperturbed state even though
this is certainly not possible at any finite tempera-
ture.

The discussion of the boson case is really a dis-
cllssloll of two cjuestlons: (i) Has tile secollli-ol'del'
nature of the transition been imposed by our par-
ticular analysis? (ii) How accurate a calculation
have we performed'P If the bosons were to undergo
a first-order transition like the fermions do, then
there should be some density-dependent, manifest-



226 M. D. MILLER, L. H. NOSANOW, AND L. J. PARISH

ly positive contribution to the energy which at low
densities is proportional to the density raised to
a power less than one. We were able to find only
one possible candidate, namely the zero-point
phonons. In Appendix B, we argue that their pres-
ence should not affect the low-density equation of
state. Thus the transition for bosons is second or-
der. We could improve on our choice of a varia-
tional wave function in two ways: (i) by generaliz
ing the wave function to include three-body forms;
and (ii) by using a multiphonon basis for a pertur-
bation-theoretic improvement of the ground-state
energy. In Appendix B, we show further that in a
density (cluster) expansion of the energy neither
improvement will affect the leading O(p) term.
Thus, it appears that an optimized product of
pair functions should yield the critical q exactly.
The form we have used, Eq. (3.4), has the basic
exponential form of the WKB two-body solution at
small distances; therefore, we expect that it
should yield very good results. In fact q~~ = 0.456
differs by only i%%up i'rom the critical q calculated
by Bruch" using a different criterion.

We have argued that the transition for Bose sys-
tem is second-order. But are there Bose systems
which do not undergo a phase transition at allY
Clearly a system with a purely repulsive interac-
tion will not. Also, if the boson system has only
a weak short-range repulsion relative to the long-
er-range attraction it will probably not undergo
a transition since it is unlikely that there will be
a point of zero pressure. That is, the question of
the existence of pc~ and whether the potential-en-
ergy function is capable of saturation at some
density are closely related.

Since the fermion critical density is finite, the
associated critical q is far more complicated to
obtain. The main reason for this is that the cal-
culation of the (normal) ground state of the fermion
system is not as refined as is the boson system.
For example, there is no systematic way to obtain
the optimum distribution function at a given density
for a given potential. Nevertheless, it is clear
that the critical behavior we have found is quite
general. It depends really on two features of the
Fermi system. The first is E,*z, the contribution
to E~ due to the "effective repulsion" between
fermions. This term is proportional to qp*'~3

and will clearly be present no matter how one
chooses to write the leading term in a density ex-
pansion and renormalize it. Thus, E,*~ will domi-
nate the energy at sufficiently low densityt The
second feature is that the next term in E~ must
be proportional to p*. The reasons for this be-
havior are the same as those for a Bose gas and
are clearly quite general. Thus, we can conclude
that the behavior we have found is general for a

fermion system of sufficiently low mass with an
interaction characterized by a strong short-range
repulsion and a finite-range attraction bounded
from below'.

We also wish to discuss a theoretical point
which we believe is a direct consequence of our
results. Ever since the early work of Brueckner
and co-workers" treating the ground state of a
Fermi system by means of systematic perturba-
tion theory, there has been a question of whether it
is possible to calculate the properties of a liquid
using perturbation theory with a gas as the un-
perturbed state. This question has been considered
by Ramirez and de Llano. " After all, it has been
known for many years, that such an approach is
impossible in classical statistical mechanics. "
However, there is an enormous difference between
the liquid-to-gas transition that takes place at fi-
nite temperatures and the one discussed in the
present work. In the former case, the critical re-
gion exists because of the exclusion in phase space
owing to the strong short-range repulsion. ' In our
case, it exists because of the long-range nature
of the "effective repulsion" due to the Fermi sta-
tistics. Thus, at zero temperature, it is possible
to get botk the liquid and gas phases from a. sys-
tematic density expansion using only a finite num-
ber of terms. In the finite temperature case, an
infinite number of terms is alsvays needed. Thus,
we believe that perturbation theoretical treatments
of a Fermi liquid at zero temperature rest on a
secure theoretical base.

There is one last comment we wish to make. It
is clear that we find regions where BP/s V& 0,
which is in violation of van Hove's theorem. " This
problem results only from the fact that we have
chosen a translationally invariant trial wave func-
tion. If we had chosen a wave function sufficiently
general to allow for spatial inhomogeneity, we would
undoubtedly have found no region where sP/8 p'& 0.
We believe that this point is, in essence, the same
as that discussed elegantly by van Kampen. '
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APPENDIX A: CALCULATIONAL DETAILS

FOR THE FERMI SYSTEM

We first calculate the quantities q» and pLF.
These are determined by the simultaneous solution
of Eqs. (5.6); i.e. ,

P = -4P, —16/, D+ 4P D

P, = 4y,D+4y+'+4y, D',

P8: t10D + cR1D+ (x2D + &3D

P, = -4P, D- 4P, D' - 4P, D'.

LF

PLF =0

BE+
Bb

Writing Eqs. (Al)-(A3) explicitly, we have

3

Plr =Pu*, + p* Q nx„D"= 0,

,„=P y„D"=o.

where

b 2n 4b P&+4b-i2y

y, = (-2+ 3i)b ')n), "

~12(2-i)b 'P, +12(-4+i)b "y, ,

(Al)

(A2)

(A3)

(A4}

(A5)

(A6}

(A7)

(A8)

BP* B P* BE*
B ++2

=0= =0= (A16)

Now we may eliminate q between, say, Eqs.
(A11}and (A12); i.e. ,

b' = —(3P,/P, + P,/P, )/(3P, /P, + P,/P, ) . (A15)

Equation (A15) yields b as a function of D and it
completes the algorithm. The solution proceeds
iteratively as follows: we insert some initial
guess for D(~0+) in Eq. (A15) which yields as initial
b~~) . Then Eq. (A13) gives the ))(g~) concomitant to
(b~'~~, D~('z~). Finally Eq. (A10} is used to find a
new DL(iE) from b(LOP) and ))(OE) and the cycle is re-
peated until the input D~(z is the same as the out-
put DLF" . Numerically, we required DLF to con-
verge to one part in 10'.

The critical-point parameters are calculated
by the same general technique. From Eq. (5.10)
qcF and pcF are determined by

and E,*~ and P~ are defined in Eqs. (3.60) and

(5.3), respectively. We eliminate the Fermi
energy terms from Eqs. (A4) and (A5) by multiply-
ing Eqs. (A4) by —', and subtracting from Eq. (A5);
whence

We can equivalently (and much more conveniently)
solve the set of equations

BP4 B2P+

BD BD2 Bb
=0=, =0=

From Eqs. (A4)-(A6) we have

x, +4xf7+ 7x3D'= 0. (A9) ~ nogp*' + 2x, D+6x, D +12x,D3= 0, (A18)

Then Eqs. (A6) and (A9) give D as a function of 0
and b

q 1.e. y

v7- o'0))p*' ' + 2x, D+12x2D'+ 36x~D3= 0, (A19)

D = (y, /y, —x,/7x, )/(4x, /7x~ —y, /y, ) . (A10)
and as before

Equations (A4), (A6}, and (A9) are each linear in
These yield three equations for g in terms of

b and D; i.e. ,

p jD + p2 D + p3 D (A20)

Eliminating the p
'~' term between Eqs. (A18) and

(A19), we find

)7 = -(P, +P,/b')/P, b',

)) = 3(Ps+ P,/b')/P, b

)) = -(P,+P,/b')/P, b',

(A11)

(A12)

(A13)

+12x2D+42x3D = 0 . (A21)

Equations (A20} and (A21) yield D as a function of
b andy

where we have defined the following convenient set
of polynomials:

D = (y, /y3 —x,/42x, )/(2x, /7x~ —y2/y3) . (A22)

We may now write Eqs. (A18), (A20), and (A21) as
P, = 12y, + Sy, D+ 4y, D',

P, = ~, +4~,D+7~, D',

P, = -4P, +4P, D',

P, = 4y, + 16y++ 28y, D',

P, = u, + 4n2D+ 7u3D',

(A14)

q = —(P, +P,/b')/P, b',

)) = 3(P, + P,/b')/P, b',

)) = (P,+ P,/b')/P, b', -

(A23)

(A24)

(A25)

where we have defined the following polynomials,
which are functions of b and D:
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P, = 12y, + 8y@+4y, D',

P, = o., +4@,D+7o.@',
P, = -4P, +4P, D',

P, = 4y, + 48y, D+168y, D',

P5 = Q1+ 12Q2D+ 42Q3D

Pg = ~1 48P2D —168PqD

Pp = 4yyD+ 12y, D'+ 24y, D'

P8= e Q0D + QiD+ 3Q2D'+ 6Q3D

P, = -4P, D —12/, D' - 24P, D'.

(A26)

-10-'4

8 2 -10-'
g yg2 (A28)

10-8
86

APPENDIX B: VARIOUS APPROXIMATIONS FOR

THE BOSE SYSTEM

In this appendix we shall discuss in detail the
approximations which have been made in this
calculation in order to better ascertain the ac-
curacy of the computed critical numbers. It is
clear that in both the Bose and Fermi cases, the
most important approximation is the particular
choice of wave function given in Eqs. (3.2)-(3.4).
We shall first discuss the Bose case and consider
the following effects: (i) the inclusion of phonons
in the trial wave function; (ii) three-body factors
in the trial wave function; and (ii) three-phonon
effects. Then we shall discuss the Fermi case
and consider the statistical cluster expansion and
possible perturbative corrections.

As first noted by Feynman'~ the low-lying exci-
tations in a strongly interacting Bose system are
phonons. One manifestation of these phonons is
to alter the long-wavelength behavior of the liquid
structure factor such that

lim S(k*)- (q/2c*)k*.
04~0

(Bl)

We have introduced a dimensionless speed of
sound c*

c*=(k/eo)c. (B2)

We may eliminate g between Eqs. (A23) and (A24)
and solve for b as a function of D; whence

5' = (3P,/P,-+ P,/P, )/(3P, /P, + P,/P, ) . (A27)

The iterative solution for Dc+ using Eqs. (A27),
(A25), and (A22) is identical to that described for
D». We required D~„ to converge to one part
in 10', in terms of Eqs. (A16) this meant

Chester and Reatto" showed that one could obtain
the behavior of Eq. (Bl) by inclusion of the zero-
point phonons as part of the pair function. The
logarithm of their long-ranged wave function is

u~~ (R) = —(c*/v'p*q) (1/x'+ X'), (B3)

where X is a momentum cutoff left arbitrary in
the theory. Because c* is a function of p* and g,
it is uncertain exactly what effect u» has on the
energy in the limit as q -q~~. Owing to the ex-
plicit density dependence in the u» the simple
cluster expansion of Eq. (4.13) is not applicable.
However, we believe that, in the light of exact
solutions of model boson systems, the character
of the equation of state at low density is uncha~ged
by the inclusion of the phonon modes. Specifically,
Huang" has shown that, for an imperfect hard-
sphere Bose gas with attractive interactions, the
leading term in a density expansion is linear in
the density. Moreover for a "critical" value of
the ratio of the total potential scattering length
to the hard-sphere scattering length, the energy
vanishes in lowest order. We note that Huang
specifically excludes the possibility of a two-body
bound statet

We shall now discuss possible refinements of the
Boson calculation and argue that they will not
effect the energy to O(p). First there is the in-
clusion of three-body factors in the wave function.
This possibility has been discussed by Campbell"
and Coldwell and Woo." It is clear, though, that
in a cluster decomposition of the energy they can
only first appear in the O(p') term. For example,
this is illustrated by the energy series for the
weakly interacting Bose gas where to O(p) the
optimized pair function yields the exact results.

Using a multiphonon basis constructed of density
fluctuation operators p~ operating on the ground
state, one can obtain the optimum pair function
by partially diagonalizing the .Hamiltonian matrix
with respect to paired-phonon elements: (0 ~~, —R ~),
as was shown by Campbell and Feenberg. " The
effect of the next contribution, the three-phonon
element, ~k, r, —R —I), is then obtained by second-
order perturbation theory. " Sim, Woo, and
Buchler" showed that, for the weakly interacting
Bose case, this term first contributes at O(p')
indeed the same contribution as the three-body
wave function. We conclude that from a variational
point of view g~~ can be calculated exactly by the
optimum pair function.

The path to optimizing the calculation in the
Fermi case is not as clear as the boson case,
since the (normal) ground state for a finite-
density Fermi system is not understood as well
as the low-density Boson system. The statistical
cluster expansion used in this paper to calculate
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the energy expectation value suffers from the
drawback that its rate of convergence is not at all
a settled issue. In addition, there appear to be
important perturbative corrections"" which are
difficult to calculate because of the nonorthogonal-
ity of the natural basis set. We believe that a
Brueckner-Goldstone approach to the problem
might be very useful because of the (relatively)
low density at which the phenomena occur.

For a given set of data, extracting the critical

eta represents a whole new level of problems
as this point requires the second and third deriva-
tives of the energy-versus-volume curves. For
example, there is some small difference between
the Fermion results quoted in Ref. 7 and those
given above. This difference is attributed basically
to the different algorithms used to calculate the
critical quantities. We believe that the results
presented in the present work are the more ac-
curate of the two.
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