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Inf1uence of stacking disorder on the dc conductivity of layered semiconductors
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The stacking disorder present in many layer materials leads to a localization of the electronic states along the

layer normal. It is shown that the anisotropy of the dc conductivity can be calculated in terms of a one-

dimensional hopping model. Numerical results are given for the dependence of the anisotropy, both on the

concentration of the stacking faults and on the perturbation produced by a single stacking fault. The
experimental anisotropy of GaSe is discussed in terms of the presented model.

I. INTRODUCTION II. DERIVATION OF THE HOPPING RATES

Many layer materials exhibit a large amount

of stacking faults. As was shown in a recent
paper' the anisotropy of the dc transport in those
materials is mainly produced by this type of dis-
order and not by the intrinsic structural. anisotropy
of the perfect crystal. In the case of GaSe, for
example, which usually is P type, the uppermost
valence band is known to be formed mainly by the

P, orbitals on the Se atoms, with considerable
overlap both across and within the layers. ' The
resulting effective masses, therefore, cannot
explain the strong anisotropic behavior of the dc
conductivity found experimentall. y. This anisotropy
is well described by'

/c ge -~/}(r

where cr~~ and o~ are the conductivities parallel
and perpendicular to the crystallographic c axis,
respectively.

In GaSe the activation energy 4E is strongly
sample dependent and of the order of 10 to 100
meV. As was shown the disorder due to the
stacking faults is sufficient to localize the electron
states along the layer normal. If we consider only
the most probable stackings of the P, y, and e

type between adjacent layers, the total crystal.
remains still invariant under the primitive trans-
lations paral. lel to the layers. The el.ectron states,
therefore, transform like Bloch functions under
these translations and dc transport parallel. to the
layers is not affected by the presence of stacking
disorder. Perpendicular to the layers, however,
the transport is hoppinglike due to the l.ocalization
of the electronic states. The aim of the present
paper is to replace the estimate of the hopping
activation energy in Ref. 1 by a more detail. ed
model cal.culation, In particular, we discuss the
dependence of the resulting anisotropy on the
parameters describing the disorder.

As shown in Ref. 1 the single-band Hamiltonian
for the electrons can be written as a sum over
one-dimensional Ham iltonians, i.e.,

The index%% labels the different layers, ~%%k&)

are the two-dimensional Bloch functions with wave
vector k~ of an isolated layer. V(%%, n', kj ) de-
scribes the coupling between different layers.
For simplicity we shall assume that V(n, n', k )
does not depend on k~ and coupl. es only adjacent
l.ayers, i.e. , n' =8+1.

Following Ref. 1 we assume «„((%~) to be in-
dependent of the layer index %% For .V(%%, %%a 1)
we consider two values V, and V,: in the ordered
case V(%%) %% 2 1) is e((lual 'to

V&)& stacking faults are
described by the coupling V, . These stacking
faults are supposed to occur with a probability
x and to be distributed randomly. The eigen-
vatues for the resulting Hamiltonian

+F v(n, +))I % }( +(, k I)

can then be expressed as

E(i, k~) = «((%~)+6;,
where i labels the different states of the one-
dimensional. Hamiltonian

which has eigenvalues 6& independent of k~.
The eigenfunctions of the total Hamiltonian (3)
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(6)

are linear combinations of the Bloch-like eigen-
functions of the single layers. These eigenfunc-
tions are localized over some layers via the co-
efficients C„'. It should be noted that the local-
ization length is independent of e(k~), but depends
on 6& only.

In order to construct a hopping-like model we
have to consider the probability for a phonon-
assisted transition of a carrier in state

~
i k„)

to a state ( j k~). Following Ambegaokar et af.'
this can be written

max[E(i, RJ ), E(j, k~)]

(7)

where the matrix element M, ,~"~ is only weakly
temperature dependent and is proportional to the
spatial overlap between the functions

~ i%~) and

~ jk~). Integrating Eq. (7) with respect to%~ and

k~ we have studied two limiting cases:

(i) M ~ I=M'
fj 52p

i.e. , the matrix element is independent of k~

and k~.

(ii) M"'"' = M';& ~T~k~ ~

i.e. , only direct transitions are allowed. In both
cases we obtain

P]'K~ jk

k~, kj'

(8)

where A(T) is a polynomialof second order in

temperature. This temperature dependence may
be neglected with respect to the temperature de-
pendence of the activation term.

The integration over k~ and k~ has thus reduced
our three-dimensional conductivity problem to
a one-dimensional hopping problem. An explicit
solution requires the knowledge of the distribution
of the disorder energies D, and of the matrix ele-
ments M', ;.

III. ONE-DIMENSIONAL HOPPING MODEL

The disorder energies D, are given by the eigen-
values of the Hamiltonian Eq. (5). The matrix
elements M', , are set proportional to the mutual
overlap squared of the corresponding eigenfunc-
tions. Following Ref. 1 we studied a finite chain
of 1001 sites, which in our model means a stack
of 1001 layers. At the band edges the eigenfunc-
tions turn out to be strongly localized. The square

of the eigenfunctions is approximately constant
over a certain length, but decreases rapidly out-
side of this region. We, therefore, can define
the extent of the wave function by the length in
which most of the corresponding charge (80% in
this calculation) is confined. We have calculated
these eigenvalues and corresponding localization
lengths for several values of the disorder param-
eter
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FIG. 1. One-dimensional densities of states n and
localization lengths L (given in number of layers) for
different h. .

and of the disorder concentration x. The cor-
responding density of states and the average extent
of the wave functions are shown in Fig. 1 for some
examples with different disorder parameter b,

and a fixed concentration (@=0.5). In these and
the following figures we have assumed a total
bandwidth of 1 eV as is appropriate for the upper-
most valence band in GaSe.' The singularity in
the density of states at the band edge disappears
due to the disorder. The states near the band
edge become more and more l.ocalized with in-
creasing disorder.

We are now in the position to set up a classical
conductance network appropriate to calculate the
resulting conductivity. The centers of the local-
ized eigenfunctions are connected by conductances
proportional to P, , [Eq. (8)]. This leaves us
with an intricate network of interconnected con-
ductors. The conductivity of this network is cal-
culated numerically with the aid of Kirchhoff's
equations. Since for low temperatures only states
close to the band edge contribute to the current
we can reduce the computational effort drastically
including the 100 states with lowest energies only.

In Fig. 2 we show the temperature dependence
of the calculated resulting conductivity for a typ-
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ical. exampl. e. The Fermi energy is placed at the
band edge. The data points in this figure are
averaged over 20 different calculations. The
activation energy apparent from Fig. 2 may be
explained by a simple percolation model (Fig. 3):
We construct a sequence of states with lowest
energies such that these states cover the entire
chain. The maximum energy, E„„„,occurring
in this sequence will be the maximum activation
energy of the corresponding conductance and
hence, at low temperatures, determine the sample
conductivity. The results of this calculation are
also plotted in Fig. 2. The activation energy
E„„,is very close to that derived from the net-
work calculation.

It should be borne in mind that this construction
is valid for finite chains only. There is an ex-
tremely small but finite probabil. ity that the chain
has an interruption at a given site. This finite
probability causes with certainty an interruption
for chains with an infinite number of sites. How-
ever, in order to describe the experiment, we
have to deal with systems containing 10' to 10'
sites onl. y. These are relatively small numbers,
so that interruptions can be negl. ected. This is
also ascertained by numerical calculations where
the number of sites was changed over a wide range
(10' to 2x10'). In these calculations the impedance
per unit length was virtually independent of the
number of sites.
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FIG. 3. Percolation model for the transport across
the layers. The distribution and extension of the elec-
tronic states are represented by the horizontal lines.

In order to compare our results with the ex-
perimental situation, we shall now discuss the
resulting anisotropy of the dc conductivity: Since
the states behave l.ike ordinary Bloch functions
al.ong the layers, the conductivity perpendicular
to the c axis will be proportional to e ~/~~ with
E~ =E, E~ (Fig. 3).—Eo, E~ describe the position
of the band edge and the position of the Fermi
level. , respectively. dc transport parallel to the
c axis has to pass through a region where the
local. band edge is at E„,„, The conductivity 0~)

is therefore proportional to e ~~ ", with E~~

=E„„, Ez (Fig. 3-). By comparison of the two
results we obtain in agreement with the experi-
ment [Eq. (I)] an anisotropy behaving as e
where the activation energy ~E is given by 4E

pere 0

In the following we shall discuss the dependence
of this activation energy on the concentration of
stacking faults x as well. as the disorder parameter

We have scaled our results for the ease of
GaSe, i.e. , we supposed an unperturbed band-
width of 1 eV. ' In Fig. 4, the results for different
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FIG. 2. Calculated conductivity as a function of tem-

peraturee.
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FIG. 4. x dependence of DE.
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50

hE (leeV) the different stackings found in GaSe can be de-
scribed by couplings fluctuating in the range of
(4—20)%. Relative deviations of more than 10 /q,

however, cannot be explained by a mixture of P-,
y-, and &-type stackings alone. ' Activation ener-
gies of more than 50 meV therefore indicate the
presence of more serious stacking faults as, e.g. ,
P' stackings. ~

0
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FIG. 5. 4 dependence otEE.

concentrations x are given. It is seen that the
activation energy is essentially constant for x
& 0.1. Unfortunately, the statistical. noise pre-
vents an extension of our numerical study to con-
centrations below x =0.1. However, since in a
one-dimensional. resistor network the largest
resistance governs the sample resistivity, we
believe that the weak dependence of 4E on the
concentration x remains valid even in the l.imit
of very small. stacking fault concentrations.

The dependence on the disorder parameter b
is shown in Fig. 5. The activation energy in-
creases approximatel. y linearl. y with &. In the
case of GaSe the experimental. values for ~ vary
from 10 to 100 meV. ' As according to the pre-
vious results the concentration of the stacking
faults is not important, at least for concentrations
larger than 0.1, we therefore may conct.ude that

Iv. CONCLUSION

We have shown that the influence of stacking
faults on the conductivity along the layer normal
can be described in terms of a one-dimensional.
model. In particular we have discussed the spe-
cial case of a considerable density of stacking
faults. In this case, the electron states extend
over a considerable length with nearly constant
amplitude. Hopping, therefore, is not governed
by the exponential tails of the states as usually
assumed. Consequently our model does not lead
to variable range hopping at lower temperatures.
In this paper we have considered the case of a
high concentration of stacking faults with a rather
smal. l. variation of the interaction between adjacent
layers. The opposite limiting case of a small
concentration of stacking faults could not be treat-
ed numerically because of the statistical noise
which accompanies the numerical treatment of
this problem. Experimental. ly the concentration
of stacking faults is not yet known. The compar-
ison with the anisotropy of the thermopower might
be helpful to distinguish between both cases (see
for instance the similar problems for Se).'
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