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In this paper we discuss in detail the nature of the spatial variation of the order parameter of the B phase of
'He. It is shown that in this phase there is a single vector component of the order parameter which undergoes
spatial variation under normal circumstances and the detailed nature of its variation is calculated for
cylindrical and parallel plate geometries. The effect of these textures on nuclear magnetic resonance is
discussed and it is shown that the textures should allow one to observe standing spin waves as well as the line-

shape effects discussed in an earlier letter.

I. INTRODUCTION

The first experimental evidence for the impor-
tance of the concept of textures for understanding
nuclear -magne tic -resonance behavior in super-
fluid 'He-B was given by Osheroff and Brinkman. '

They interpreted the observed line shape and in-
tensity of the B-phase transverse resonance as
arising from a surface-induced spatial variation
in the orientation of the magnetic anisotropy axis
n of the Balian-Werthamer state. This state is
commonly associated with the B phase. Subse-
quently, Brinkman, Smith, Osheroff, and Blount'
(hereafter referred to as I) proposed detailed
forms for the competing surface and volume con-
tributions to the free energy in the presence of an
external magnetic field. The energy was quite
complicated, but considerations of specific geo-
metries allowed definite predictions to be made
regarding the line-shape and intensity variations
of the NMR. One of the intermediate consequences
of the theory developed in I was that a magnetic
field parallel to a planar surface would tend to
orient n at the angle cos '(1(W5) relative to the
field with a consequent large shift in the trans-
verse resonance. Such behavior was observed
and further explored for a, parallel plate geometry
by Osheroff, Engelsberg, Brinkman, . and Corruc-
cini' and, more recently for general field direc-
tions relative to the surface normal, by Ahonen
et al. ' The measurements reported in Ref. 3
made it possible to extract the product of a char-
acteristic field B~ and a characteristic length R,
which compared well with Osheroff's earlier bulk
measurements of that same quantity' on the basis
of the line-shape analysis given in I. Thus, a fair
amount of evidence in favor of the texture theory

presented in I has accumulated. The present work
aims at providing a detailed derivation of the vari-
ous terms in the free energy given in I as well as
an estimate of their magnitude (Sec. II). Section
III describes the free-energy calculations of tex-
tures and singularities of the order parameter.
The parallel plate geometry is considered in the
limiting case where the plate separation is small-
er than R,Hs/H, H being the external magnetic
field, in order to exhibit the analysis of Ref. 3.
Also we derive some results for a cylindrical
geometry, which were briefly reported in I. Two
textures are found to be of particular interest
when the magnetic field is along the cylinder axis:
one in which n gradually bends away from being
parallel to the magnetic field in the center of the
cylinder, and one in which n lies in a plane per-
pendicular to the magnetic field. These two tex-
tures appear to explain the experimental data for
low-field experiments of both Osheroff' and Webb
et al. Finally, in Sec. IV we discuss the validity
of a local resonator versus a spin-wave model
for calculating the NMR line shape in the presence
of textures, and the various regimes are deline-
ated.

As a final introductory remark we stress that al-
though the derivation of the various bulk and sur-
face terms in the free energy may appear quite
complicated their presence and functional depen-
dence on n is easily understood in terms of scalar
quantities formed from the three vectors occurring
in the problem: the direction of rotation n, the
magnetic field H, and the surface normal s. (This
point was also recently emphasized by Fomin and
Vuorio. ') The form of the bulk bending energy
arising from the spatial variation of n has its
close analogy in the bend, splay, and twist terms
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of liquid-crystal theory except that here there is
a nonzero cross term between twist and splay.
The advantage of studying texture effects in the
B phase as contrasted to the A phase is that we
need consider only variations of a single (unit)
vector n and that the characteristic

lengthen,

is
much longer (a few tenths of a centimeter) than
the corresponding length that describes the varia-
tion of the vector l in the A phase, the latter be-
ing only a few micrometers. As emphasized in I
and borne out by subsequent experiments' ' the
B phase is the more attractive candidate for ex-
ploring the fascinating interplay of superfluid and
liquid-crystal behavior which makes the study of
nuclear-magnetic-resonance behavior in superfluid
'He so uniquely rewarding.

II. FREE ENERGY

In the absence of the dipolar energy the infinite
set of states described by arbitrary values of n

and 8 in (2) are degenerate in energy. However
the dipolar coupling forces the angle 8 to assume
the value cos '(--,') giving the minimum bulk di-
pole energy. As pointed out by Leggett" a bulk
magnetic field will furthermore tend to orient n

in its direction (or opposite to it) due to a combina-
tion of the depairing effects of the magnetic field
and the dipole energy which gives rise to an energy
density proportional to —(H n)'. We now turn to
the discussion of this bulk orientational effect.

A. Bulk field orientation energy

The form of the bulk field orientational energy
I„ is quadratic in magnetic field,

In deriving the free energy in the presence of
walls we take as a starting point the boundary con-
dition on the order parameter at a, specularly re-
flecting wall as derived by Ambegaokar, de Gennes,
and Rainer' for a semi-infinite half space. Our
notation for the order parameter d~; is the conven-
tional one' derived from the anomalous expectation
value of the product of two annihilation operators
for particles in states kP and -ky:

(a a )~g d;k„(io'o')8&.
ka -k'Y '

ai

Here k is the unit momentum vector in the z
direction (o. =x, y, z), o' the Pauli spin matrices
(i=x, y, z), and d„; the 3&&3 order-parameter ma-
trix, which we shall take to be the rotation matrix
characterizing the Balian-Werthamer state. We
therefore write d; as a real rotation matrix
which is proportional to the isotropic gap param-
eter 4,

d„; =(4/v3 )[5„;cos8+n n;(1 —cos6)+e„;,. n,. sin8J

= (s/v'3 )ft„, ,

where 6 is the angle of rotation and n=(n„, n„, n, )

is a unit vector in the direction of rotation. Re-
peated indices are always summed over. Note
that our overall normalization is chosen such that
d~;d~; =4'. By contrast the energy gap in the dis-
persion relation of the elementary excitations is
~/~3.

In order to obtain the various energies influenc-
ing the directions of n we use the terms that occur
in the Landau-Ginzburg expansion of the free en-
ergy and we keep only the lowest-order terms.
For example, we do not consider nonlocal aspects
of the susceptibility. This approximation should
give correctly the most important effects deter-
mining the spatial orientation of n.

(3)

(the superscripts B and 8 stand for bulk and sur-
face, respectively). The coefficient a has been
calculated by Engelsberg, Brinkman, and Ander-
son" within weak coupling theory by minimizing
the usual second- and fourth-order terms in the
free energy together with the dipolar energy and
the susceptibility anisotropy energy E~ responsi-
ble for the reduction of the susceptibility in the 8
phase. We use their notation for the susceptibility
anisotropy energy which involves the following in-
variant combination of the spin angular momentum
S; and the order parameter d;,

Fg = c)S; d~g ct~ 8

The constant c, determines the reduction in
susceptibility in the bulk of the sample,

Xx-Xa
Xaz~

'

where g„=N(0)(1+E;) '(-,'hy)' is the normal phase
susceptibility with N(0) = m*lrz/v'g' being the den-
sity of states In (5) l.Ie is the B-phase suscepti-
bility and y the gyromagnetic factor.

We shall quote the value of the parameter a ob-
tained from the simultaneous minimization of these
three energies. Provided that AH« ~ and that we
are close enough to T, so that the sixth-order
terms in the free energy can be ignored, one finds
the value for T close to T, of

35](3} 1 fi(yo
193 2 (1 ~a)2 ~ T Xn ~

where the frequency a, is related to the longitudin-
al resonance frequency Q~ of the B phase through
the relation
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Note that (6) contains three Fermi-liquid enhance-
ment factors (1+F',) ', one being implicit in y„.
Although (3) with (6) represents a tiny orientation-
al energy (about 10 " K/atom in a magnetic field
of 1 kG) this energy is responsible for the absence
of a shift in the transverse resonance in the bulk
of 'He-(B), since when n is parallel to H there is
no transverse shift away from yH, but only a lon-
gitudinal resonance at Q~.

The assumptions under which the expression (6)
w'as derived were, however, too restrictive to be
very useful in providing a quantitatively reliable
expression for a. Since a enters the characteristic
field B~ to be introduced below and is an important
quantity in the application of the theory to experi-
ments which may be done well below T, (typically
in the range 0.45& T/T, &0.75 at the melting curve)
we shall take a slightly different point of view in
the following by treating a as a parameter, which
can be obtained from experiment. As Leggett first
suggested" the form of the energy (3) produces a
small, but observable shift in the transverse reso-
nance away from the Larmor frequency yH. The
shift 5+ is calculated in the Appendix by determin-
ing the change in energy of the transverse reso-
nance mode in the presence of this anisotropy en-
ergy. It may be thought of in terms of a small
change in the g factor of the nucleus:

&A /g -=5(u/yH = —', all
' (7)

provided the equilibrium direction of n is along
the magnetic field H (an incorrect value for this
coefficient was quoted in Ref. 3). Note that the
susceptibility g~ is the temperature-dependent B-
phase susceptibility which occurs in the resonance
equation. Since 5+/yH has been measured by
QsherofP and by Osheroff and Brinkman" in a
geometry in which n was parallel to H over most
of the sample, we can use the experimental re-
sults for the relative shift 5u/yH (-10 ') and the
measured B-phase susceptibility g~ to obtain the
quantity a at temperatures well below the transi-
tion temperature. Typical values of a derived in
this manner are (a/ll„) x10' =0.54, 0.41, and 0.32
at T/T, =0.7, 0.6, and 0.5, respectively. Recent-

ly the full temperature dependence of a has been
calculated in the weak coupling theory" and the
temperature dependence is qualitatively the same
as observed, but the theoretical values are -3
the measured results. This is undoubtedly due to
strong coupling corrections.

s„d; =0 (8)

at the boundary. As a trial function satisfying this
condition we shall use the form

d~;(r) = (A/W3)(5» —s~ ssf )Rs&(r), (9)

where the function f varies from being unity at
the wall to being zero well inside the sample, that
is, at distances more than a coherence length E

( 200 A) from the wall. Rs;(r) is the rotation ma-
trix specified by n(r) and 6. Since f =1 at the sur-
face, the trial function (9) is seen to satisfy the
boundary condition (8). Note that, in general, the
other components of this order parameter are
also reduced near the surface. They will, how-
ever, not be zero and the results discussed below
will hold generally.

To see what surface dipole energies arise as a
consequence of the boundary condition (8) we in-
sert (9) in the general expression for the dipole
energy ID, '"

FD = I"(d;; d, , +d;,. d„.;)d'r, (10)

where I' is related to the longitudinal resonance
frequency H~ through 0~= 5I'bPy'/its. We expect
the surface terms to involve invariants like (n ~ s)'
and (n ~ s)4. By insertion of (9) into (10) we get

B. Surface dipole energy

Since the presence of a wall forces the m~ =0
component of the triplet order parameter along
the surface normal s to be depressed quite inde-
pendently of the nature of the state, we shall now

explore the consequences of this depairing effect
for the dipolar energy. The boundary condition of
Ref. 9 is expressed in terms of the surface normal
s by

A+2
FD = ((4 cos'6+ 2 cos6)2+ 2f'[cos'6+2 cos6(1 —cos6)(n ~ s}'+(1—cos6)'(n s)']

—2f I4 cos'6+ cos 6 —1+(n s)'(-4 cos'6+ cos6+ 3}])d'r .

We separate out the bulk contribution E~ not in-
volving f by writing

(12)

and noting that I'I, is minimized in the usual man-

ner by choosing cos8=- —,'. The surface term will
not be minimized by this value of 0. However,
surface energies of order FD)/V'~', where V is
the volume, cannot cause 0 to appreciably deviate
from its value in the bulk. This is due to the fact
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that a deviation at the surface can be corrected
only on a scale of (4E/F~)'~'g which is much long-
er than E since &E=E„—E~, the free energy
gained when the system becomes superfluid. The
energy of the deviation is therefore much larger
than any possible energy gain of the surface. The
sole influence of the wall becomes therefore one
of orienting n in a direction such that the surface
term becomes as small a,s possible. We then ob-
tain

d'r[(s ~ n)' ——,', (s ~ n)'J . (14)

Here the integration d2z is extended over the sur-
face. The constant, n-independent term in (13)
has been discarded. The expression (14) allows us
to identify the coefficient b introduced in I as the
factor in front of the integral, but we stress that
the numerical coefficient should not be taken seri-
ously. Note that a possible small change of (9 in
the boundary region would only have the effect of
slightly changing the numerical coefficients, leav-
ing the form (14) unaltered. For the purpose of
calculating free energies of textures and NMR
resonance frequencies we shall frequently ignore
the second term involving (s ~ n)4 in (14), thus writ-
ing

with

++2
E~ =

3
d'r [2f + ,' f' —(—n ~ s)'(5f + ,'f')—

+(n s)"—' f'] (13)

Since f is only nonzero at distances of the order of
or less than a coherence length, (13) is really a
surface energy. To obtain explicit values of the
coefficients of (n ~ s)' and (n s)' we must specify
f and integrate over the volume. We take f
= e "-L '-, where r~ is the perpendicular distance
from the surface to be a reasonable guess. The
details of' the functional dependence of f on r mill
of couxse affect the precise value of the coefficient
in this surface energy as well as the surface field
energy E~ introduced below. However, we are not
able to calculate these coefficients accurately any-
way, since we do not know the additional depairing
effects due to nonspecular reflection from the walls
and wall curvature, which would modify the start-
ing boundary condition (S). In the same spirit we

write the volume element d'x in the approximate
form de dr~ for the surface region of interest and
obtain upon completion of the integral over y, the
surface dipole energy

It is seen that the effect of this surface term,
whether we use (14) or the simplified form (15) is
to orient n perpendicular to the wall surface. But
this surface energy is not the only one present as
we shall see below (Sec. IID}. In the presence of
a magnetic field the "susceptibility anisotropy en-
ergy" E~ as given in (4) introduces a surface term
giving a much more complicated orientational ef-
fect, which depends on the angle between the mag-
netic field and the surface normal. Before we
derive this surface energy, homever, we turn to
consider the bulk bending energy which arises
when the vector n is forced to vary in space as a
result of the competition between the bulk align-
ment effect of a magnetic field and the surface
effects just mentioned.

C. Bulk bending energy

When the order parameter d; becomes spatially
varying a "kinetic" or bending energy results just
as in the Ginzbur g-Landau theory of an s-wave
superconductor. The form of this bending energy
is naturally more complicated due to the large
number of degrees of freedom of a 3&&3 complex
matrix "wave function" as compared to the scalar
complex wave function introduced in ordinary
Ginzburg-Landau theory. The general, invariant
form of this bulk bending energy was first written
domn by de Gennes for an I = 1 superfluid. " It is

where the derivative 8 denotes differentiation with
respect to the spatial variable o. (o, = x, y, z).

The constant in front of the integral in (17) is
fixed in the Ginzburg-Landau regime by consider-
ing a state corresponding to a uniform-mass flow.

p, is the superfluid density, which in the Ginzburg-
Landau region close to T, is given in terms of the
particle number density p as p, =2p(l —T/T, )
&& (m/m*).

In deriving the expression for the bending energy
in the bu)R we follow the same procedure as in Sec.
II 8, taking 8 to be fixed in the bulk by the dipole
interaction and assuming it to be essentially un-
changed by the boundaries to avoid an increased
bending energy. We write as before

with Z~s =(&/V3 }(5„s—s„ssf). The result of insert-
ing the derivatives of d„; in (17) is to produce
terms of different categories, depending upon
which of the matrices d and A is being differenti-
ated. The easiest ones to deal with are of the
form
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(B dE), }R„;(BdB~}R~; =(B dB )B d B;

upon use of the orthogonality properties of rota-
tion matrices, These terms are seen only to in-
volve f and not the bulk state at all, which is
sufficient reason for discarding them. Next we
consider the bulk terms of the form

(B R~;)dB~(B,Rg;)dBg.

Here we may replace the d matrices with the
Kronecker delta, since by so doing we change the
bending energy only by a negligible amount cor-
responding to the volume extending a coherence
length away from the surface. The evaluation of
(B~R»)B~RB; and the similar terms arising from
the second and third terms of (17) is straightfor-
ward, though tedious. Since 6 is assumed not to
vary in space the resulting bending energy contains
terms involving only spatial derivatives of the n

vector. Specifically we obtain terms involving
(V ~ n)' (in liquid crystal terminology "splay"
terms), (n curl n)' ("twist" terms) and (nx curl n)'
("bendix terms) as well as terms involving the
cross product (V ~ n)(n ~ curl n). In addition there
are terms which may be written as a divergence
of a vector A, where A=(n ~ V)n —(V ~ n)n. Such
divergence terms, which are generally nonzero,
are contributed by the first and third term in the
bending energy (17), but not by the second, as
long as we restrict ourselves to considering these
bulk terms.

Apart from such a divergence term whose ex-
plicit form is (82p, /20m)(1 —cos8)divA, the sec-
ond and third terms in (17) give otherwise identi-
cal contributions. Now, since we can always add
to the free energy (17) a divergence term of the

form B„(d;BBdB;—dB;BB(f„;)which is identical to the
difference between the second and third terms of
(17), we must clearly make use of our boundary
condition (8) to make the free energy unique in the
sense that the second and third terms give identi-
cal contributions. In other words, we must con-
sider the "mixed" derivatives of the form
(B„d(}„}d&qR;B„R(;; and analogous expressions
coming from the second and third terms of (17)
which arise when (18) is inserted in the expres-
sion for the bending energy (17). A careful ex-
amination of all these "mixed" terms combined
with extensive use of the properties of rotation
matrices (which cause the tensor R&,B Rz; to be
antisymmetric with respect to the interchange of
y and B) leads to the desired uniqueness of the
free energy, since the mixed" terms coming
from the second term in (17) conspire to produce
exactly the term (8'p, /20m}(1 —cos8) div A, which
previously arose from the bulk contribution to the
third term in (17). Thus the free energy is ex-
plicitly unique, as we would expect, since our
trial function (18) can be seen to satisfy the con-
dition

S(2 ( (23 B B3 B) }} (23) (19)

apart from a constant state-independent contribu-
tion proportional to divs, which vanishes in a
parallel plate geometry and in general only adds
a trivial constant to the total energy. It should be
noted that to obtain the desired uniqueness we have
as before discarded terms which were smaller
than those we kept by a factor of the coherence
length divided by a linear dimension of the sample.
The resulting bending energy then becomes

E~= ' d2r 2(1 —cos8) ((3 —cos8)(div n)'+ (3+cos8)(n ~ curl n)'+4(n&&curl n)''=
4Om

—2 sin8(div n)(n curl n)+4 div[(n ~ V) n —(div n) n]), (20)

where the integration extends over the sample volume. The bending energy becomes identical to that of I,
once cos8= —~ and sin8 =3)15/4 is inserted in this expression and use is made of the identity (curl n)
=(n ~ curln)'+(n&curln)'. We write it here as

5 —f 6' (ll( X(Vxn)}' ~=13(V )'+ll( VX }' —2~15(V ~ )( ~ 1'X ) ~ 16V (( V) — (V )}},
(21)

where we have introduced in (12) the Ginzburg-
Landau value of p„which makes the constant
c in (21) equal to

mass current associated with it, but there may
be spin currents flowing. The spin current j' is
in general given by an expression of the for m

c = (Pi /4m2*) p(1 —T/T, }-'~a . (22)
g~ ~ 68~6 f'~g~f)(68P+g~ f q~g88dgg+ d8)6 BfggCf~g (23)

In conclusion, we investigate the spin currents
associated with our trial solution. Since our
trial function (18) is real, there is obviously no

which satisfies a continuity equation involving the
magnetization in the usual manner. This form of
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the spin-current reduces to the special case stud-
ied by Brinkman and Smith" in the appropriate
limit. It was recently discussed by Fomin and
Vuorio. ' Since s„d~; =0, the second term in (23)
is seen to give zero contribution to s j~ at the
surface. The other two terms are in general non-
zero. This fact does not mean that real spin cur-
rents will flow through the surface. As discussed
by Fomin and Vuorio' the surface boundary con-
dition is obtained from the extremum principle
for the free energy and it is not equivalent to the

spin current being zero. This is presumably be-
cause in the region within a coherence length from
the surface the trail solution f may be modified in
such a way as to divert the spin currents from
flowing through the surface.

EH=cd ——,d t[R(,+,If»R;».XN 3

y

—(2f f')(s, R;,B,)']I. -
(24)

Here c, is given in Eq. (5). To extract the surface
term involving f we again assume f to be of the
form f = e "~~'-, and integrate over z~ to get the
surface field energy

F„=—c, —— —( d r(s;ff;, H,)..
S

(25)

so that the coefficient 0 in the surface field energy

E„'=- —d d'r(s R ~ H)' (26)

D, Surface field energy

The susceptibility anisotropy energy (4) leads
in the bulk of the sample to the (isotropic) re-
duction in the 8-phase susceptibility X~ relative
to its normal state value XN. When considered in
connection with a surface, however, it leads to
an important and unusual surface orientational ef-
fect. To derive a surface energy from (4) we

proceed in analogy with the treatment of the sur-
face dipole energy in Sec. II 8 and insert the trial
function (18) into (4) after replacing the (spin)
magnetization y5 with its equilibrium value pro-
portional to the magnetic field, yS, =XNH;. We
then obtain

precise variation of d;. An alternative form of
(26) is obtained upon insertion of the rotation ma. —

trix 8;,. with the angle 6 =cos '(- »):

F„'= —»~ed d'~[(s ~ n)(n H)

+ Wn (s&H) ——,'s ~ H]'. (28)

Note that the anisotropy energy depends on the
angle between the surface normal s and the mag-
netic field H. In the particular case when s ~ H

=+~ H) the energy I„is minimized when n is
parallel (or antiparallel) to s. In this case the
surface field energy has the same orientational
effect as the surface dipole energy. When the
magnetic field is perpendicular to the surface
normal the energy E„ is minimized when (n H)»

This angle between the rotation vector n and
magnetic field H was clearly seen in the recent
NMR exper iments reported in Refs. 3-5. The
demonstration in Refs. 4 and 5 of the existence of
two relative free-energy minima, when the angle
between H and s was between 90 and 76' provided
further confirmation of the present theory.

Put in simple terms the peculiar orientation of
n for H perpendicular to s arises as the direction
about which a rotation of cos '(- —,) makes the sur-
face normal s go into the direction of a H. Such a
rotation of the spin variables relative to the orbital
variables gives the minimum energy, because the
depairing of the my 0 component along the surface
normal then corresponds to a depairing of the m,
=0 component along the magnetic field with a con-
sequent minimum susceptibility anisotropy energy.

E. Characteristic lengths and fields

Sections IIA-IID complete the discussion of the
theory of textures proposed in I as far as the
identification of the important terms in the free
energy is concerned. Before we turn to the de-
tailed applications of the theory in the following
sections, we shall introduce the characteristic
length&, and the two characteristic fields H~ and
II~, which arise naturally upon combination of the
coefficients in front of the four terms in the free
energy. The four coefficients a, b, c, and d as
given by (6) or (7), (16), (22), and (27) define an
important characteristic length

is found to be

d= 5(X» Xs) . (27)

ft, = c/b

as well as two characteristic fields

(29)

That is d is proportional to the coherence length
times the difference in susceptibility between the
normal state and the Balian-Wertharner state. As
before we drop any numerical factor of order
unity due to the uncertainty in our knowledge of the

ff = (5/d)'&'

(Q2/+c)1/2

(30)

(31)

Both H& and H~ are of order 20-50 Qe and within
Landau-Ginzburg theory temperature-independent
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H8 ( XB/2(XN XB)J (Qz/y) (33)

H =0 23((I+E:)(x~/x )(1 T/T. )(W4)]-
x (8Q~/E~)(k~))(Q~/y), (34)

R, = 5.8(l + FD)(k~)) '(E~/hQ~)'

x (1 —T/T~) (Xg/Xs)k~' (35)

HsR. =1 32HI+&o)(X~/Xs)1"(W/Z) "'
x (1 —T/'T, )'~'k~'(E~/Ky) . (36)

In the formulas (33)-(36), kz is the Fermi wave
vector and E~ = k'k2~/2m* the Fermi energy.

At T =0.7T, and with a coherence length $-200
A these estimates become H~- 50 Oe, R, -0.5 cm,
and H& R, 13 Oe cm, when the experimental val-

quantities; i.e., they have the form of a constant
plus corrections of order (1 —T/T, ). As demon-
strated in I and experimentally verified in Ref. 6
the line shape of the transverse resonance is de-
termined by the parameter R,H~, where

R,Hs =(c/a)' '~(1 —T/T, )" '. (32)

The temperature dependence (1 —T/T, )'~' is ob-
tained by using the theoretical temperature-inde-
pendent value of a, as given in (5). If one uses
the "experimental" value of a obtained from (7)
in terms of the measured shift 5& and the B-phase
susceptibility X~ the product R,H~ becomes nearly
linearly dependent on (1 —T/T, ) due to the rapid
drop of g~ with decreasing temperature and the
additional temperature dependence of bg/g. " The
product A,H~ may in this way be estimated to be
14 cm Oe at T/T, =0.7 and 23 cmOe at T/T, =0.5,
somewhat larger than the experimentally observed
values in Refs. 3 and 6. Given sufficiently accurate
measurements of R,Hs and bg/g one may use
these to determine the temperature dependence of
(spin) superfluid density p, in (20), since p, in (22)
replaces the combination 2p(m/m~)(1 —T/T, ) away
from the Landau-Ginzburg regime. We remark in
passing that such an experimental determination of

p, would in principle allow one to extract the value
of the Fermi liquid parameter F,', which affects

outside the Ginzburg-Landau reg'io
The estimates of the magnitudes of R„H&, and

H& are obtained using measured values of the lon-
gitudinal resonance frequency QI„Xs, and ~/g.
The characteristic lengths and fields may be ex-
pressed in these quantities as follows, after the
numerical constants left out in (16) and (27) have
been restored:

ues Xs/X„=0.47 (from Corruccini and Osheroff"),
Ag/g =0.93x10 ' (from Ref. 13), and Q~ =2wx 2.3
x10' sec ' (from Ref. 3) are used in (33)-(36).
Note that the estimates of H» H~, andR, could
easily be off by (50-100)%%up since the surface bound-
ary condition is not known in detail. The charac-
teristic field H~ is seen not to depend on the co-
herence length (, it being a ratio of two surface
quantities. The product A,H~ depends only on
bulk quantities since R,HB = (c/a)'~'. Its theoreti-
cal value is therefore by far the most reliable ~

III. TEXTURES IN SIMPLE GEOMETRIES

The vector n is very similar to the director of
a nematic liquid crystal except that —n is not
equivalent to n (i.e., represents a rotation of —8

instead of 6). The point singularities allowed
are in this respect somewhat more restricted
than in liquid crystals. There are many
point singularities, but the most simple are (a)
the point singularity with n pointing radially in-
ward or outward and (b) those with the tangential
lines flowing toward the point along one axis and
out in the plane perpendicular to that axis. The
experimental evidence for these singularities is
limited and we now discuss the effect of bound-
aries where experimental evidence is quite con-
vincing.

A. Parallel plates —small-bending limit

Since the terms in the free energy given by Eqs.
(3), (14), (21), and (18) cause considerable com-
plexity even in the simple one-dimensional geo-
metry of parallel plates, we shall use a variation-
al method to obtain an expression for the change
in direction of n as one moves from one side of
the plate to the other. The basic point to note is
that the surface field energy F„dominates the

problem for the small plate separations and the
relatively large magnetic fields employed in Ref.
3. The bulk field energy and bending energy as
well as the surface dipole energy may therefore
be treated as perturbations on the surface field
energy as we shall see in the following.

To specify the geometry we take the x axis to
be along the magnetic field H, the y axis along
s&& H and the z axis along s. The vector n there-
fore depends on the single variable z. Also we

consider always the free energy per unit surface
area. The plate separation is denoted by l, and
the sample volume of interest is thus the region
——,'l&z&-,'l.

We introduce 8 and (II) as the polar and azimuth-
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al angles of n with respect to axes along s and H

(see Fig. 1). In these coordinates the unit vector
n is

X (H)

n = (sine cos P, sine sing, cos8), (37)

where 8 = 6(z) and P = p(z) describe the spatial
variation of n. Upon insertion of (37) in the en-
ergies (28), (14), (3), and (21) we obtain for each
of these energies per unit surface area

F„=—'—„' dH'(cos 8~ sine~ cos P~

+W sine~ sing~)',

Fn = —b[(coses)' ——„', (cose~)4I,
S/2

F~= —aH' dz sin'0 cos'P,
-r /2

&/2

Es = — dr[6" (16 —3 sin'8)
13

(36)

(39)

(40)

tang~ = v-,' /'cos6~ (42 )

which upon insertion in (38) yields a quadratic
form in the variable cos'0s. The minimum occurs
at

+ P "(16sin'8 —5 sin'8)

—2P' V81s5i ne] . (41)

The values of 0 and 4) at the surfaces are denoted
by 0s and Qs and O', Q' denote derivatives with re-
spect to z. Due to the symmetry in the problem
we consider only even trial functions. Thus Ps
=y(+-,'t), e, =(+,'t)-

Consider the surface field energy E„by itself.
It is minimized when

= Z (s)

Y(s X H)

FIG. 1. Coordinate system used in thegarallel plate
geometry with s the surface normal and H the magnetic
field. In addition to the polar angles 9 and ftft that specify
the orientation of n the physically important angle n be-
tween n and the magnetic field is indicated.

the form

8(z) = 8, + 58(z),

0(&) = A. +54(z), (46)

where 50 and 6Q are much less than one in
small bending limit. . The constant angles 0, and

p, are those angles which minimize the energy in
the infinite stiffness limit (c- ~). With a finite
stiffness present the n vector tries to take more
advantage of the bulk magnetic field at the expense
of bending. The infinite stiffness solution is ob-
tained by minimizing Fs+2F„and leads to

cos 0s=5 (43) cos'o. , = sin'6, cos'P, = —,'(1+4at/5d) . (47)

tangs =*v3 (44)

by Eq. (42).
Note that the angle o. between n and H, which

determines the observed resonance behavior, is
obtained from

cos'u = sin'0 cos'P

as discussed in Sec. IID. This value corresponds
in turn to the azimuthal angle

The correction to (45), 4at/5d, differs by a factor
of 2 from the result given in Ref. 3, Eq. (3). The
factor of 2 accounts for the presence of two sur-
faces in the parallel plate geometry. In accord
with the smallness of the correction term 4at/5d
for the experiments of Ref. 3, we will neglect it
when solving for 50 and 5P in the finite stiffness
problem.

The energy to be minimized may be written in
the form

and hence

cos as= 5
P (45)

+l/2
F = dz[A(9)8" +H(6)P"

-r /2

when 8=6&,
We next investigate the influence of the bulk mag-

netic field energy E~ and the bending energy E&
(leaving the surface dipole energy ED for later
consideration, since it is by far the weakest per-
turbation under the experimental conditions of Ref.
3).

To do this we choose a variational solution of

where

A(8) =
3 c(16 —3 sin'8),

H(8) = —', c(16sin'6 —5 sin'6),

D(8, P) = —aH' sin'8 cos'P,

Z(e) = —c,—', ~15 sin'6.

+D(6, P)+E(6)8'P'J+2F„(8, Q), (48)
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The infinite stiffness solutions 6, and (I)o satisfy
the equations

and

BD B2+8
+

B6 g ~ B6 9o @o

=0

D B2E~s

sA e, , e, 84 e, , e,
(49)

be"= E —-2a — (Z'-4Am),BD BD

B B6
(5o)

Minimizing I" with respect to 56 and 5Q we obtain

66

65—
LLJ

UJ~ 64—
C9
UJ
C3

63

62-

6I—

60

2

Rc "B2= 0.5

DI STANCE Z

ag,
d

O6" =0

5(p" = —,", W3 H'/(HsItc)'.
(51)

Thus corresponding to the even solutions for
8(z) and y(z), the spatial variation of n is such as
to keep its angle with s fixed at 6„however, the
azimuthal angle changes slightly so that at the
center n is a bit closer to being parallel to H, y
then swings back symmetrically at the walls. The
solutions for 6 and y as functions of z are

6= 6p,

rp = y, +-', bq "[z' —(-,'I)'] .

The corresponding solution for cos'o. = (n H)'/H'
ls

cos'n = — 1+ ——+ — 1—

(53)

In Fig. 2 we show this variation of the angle
n across the plate for typical values of the param-
eters in the expression.

In conclusion we remark that the dipole surface
energy ED gives a negligible contribution to the
total free energy for fields greater than 300 Oe
as in Ref. 3, since it introduces corrections of

5$"= E ——2A —(E' —4AB) .BD BD

B6 By

The terms on the right-hand side are evaluated at
6, and yo. In deriving these equations we have
neglected terms that are of higher order in the
small parameter H'I2/Hs2Rc2, since we shall only
consider corrections to the observed NMR fre-
quency shift (see Sec. IV) that are linear in this.
The differential Eqs. (50) are completely consis-
tent with the vanishing of the surface terms ob-
tained by minimizing (48) and using conditions
(49). Thus no additional boundary conditions need
be imposed on the surfaces. Using 6p 6g po
(we take the positive solutions) as given in (43) and

(44) together with (48) and (50) we obtain

FIG. 2. Variation of the angle & between n and the
magnetic field as a function of distance according to
formula (53). The plate separation l was chosen to
equal 0.5 R~H&/H, whereas al/d was set equal to zero,
resulting in n =cos '(1/ 5) =63.4 at the surfaces
Z =+2'&.

order b/dH'—= (Hz/H)'= 10 ' according to the esti-
mate below Eg. (36). At lower fields it may be
included in the calculation as a perturbation. The
result is [to lowest order in (H~/H)' when only the
dominant first term in (39) is considered] to add
the term ~5(II~/H)' to the right-hand side of the
expression (53) for cos'o. . Note that the surface
dipole energy tends to align n with the magnetic
field contrary to what might intuitively be ex-
pected. At lower fields however the effect of the
surface dipole energy is to pull n away from H.

B. Textures in a cylinder

The minimization of the total free energy and
the consequent determination of the texture is a
nontrivial problem even in a one-dimensional
geometry like the parallel plates considered above.
Clearly, the extension to the dimensions of a
cylinder with a magnetic field along its axis makes
the minimization far more complex. The tendency
for the surface field energy I"& to orient n in a
direction which is neither parallel nor perpen-
dicular to the surface is a particularly complicat-
ing feature. At low values of the magnetic field,
however, the surface field energy may be treated
as a perturbation on the appropriate zero field
texture. We shall therefore restrict the explicit
calculation of texture free energies to the low-
field limit and discuss initially the case of zero
magnetic field.

In the absence of a magnetic field the texture
is determined by a competition of the bulk bending
energy and the surface dipolar energy, the latter
seeking to orient n parallel to the cylinder surface
normal s. For values of the cylinder radius A
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smaller than or comparable to the characteristic
length R, = c/5 one expects an "in-plane" struc-
ture like the one shown in Fig. 3(a) to be ener-
getically favored. (This texture is more stable
than one with a singular line down the center be-
cause of the lack of rigidity of the boundary con-
ditions. ) As R grows the bending energy in-
creases like ln(R/R, ) and eventually one finds a
lower free energy for a "flare-out" configuration
like the one of Fig. 3(b) in which n flares out of
the plane. Below we detail the calculation of
energies for these two textures and determine the
critical cylinder radius for which their energies
become equal. The calculation we perform em-
ploys trial functions for the variation of the order
parameter vector n. It gives therefore only upper
bounds to the free energies and an approximate
determination of the crossover between the two
textures.

In both textures we shall choose trial functions
that are sufficiently simple that n curln is zero.
This means that the third and the fourth term in
(21) vanish. Though it is clear from (21) that a
lowering of the bending energy could be obtained
by keeping (V ~ n) and n ~ curl n finite, thus taking
advantage of the cross term (V n)n ~ curln, our
estimates indicate this to have rather a small
effect on the texture. For the in-plane structure
its effect would be to tilt n out of the plane, since
n. curln is zero for n lying in the plane perpen-
dicular to the cylinder axis. We shall return to
the question regarding the influence of this cross
term after the calculation of texture energies
below.

Taking the z axis along the axis of the cylinder

the "in-plane" texture in Fig. 3(a) is defined by
the following components of the n vector,

Ro+x —y
[(R 2 y / ~ y~ P+ 4y2 / 2] &@

2xp
y X [(R2 ~~2 y2)3+4y2 2]1/2

(54)

(54')

n, =O, (54")

where R, is a length (R, &R) that acts as a varia-
tional parameter. The longer Rp is compared to
R the less curvature (and hence bending energy)
in the texture. On the other hand, when R, is
close to R one gains considerable surface dipole
energy, since n is then nearly everywhere per-
pendicular to the cylinder surface. The value of
R/R, which minimizes the energy depends on the
ratio p of the cylinder radius R to the character-
istic length R„p=R/R, When .p» 1, it is ener-
getically favorable to take nearly full advantage
of the surface dipole energy, hence R, -R. In the
opposite limit p«1 the balancing of surface di-
pole and bending energy results in R, »R.

It may be readily shown that the last term in the
bending energy (21) is zero, when the trial func-
tion (54) is inserted. [This holds irrespective of
the functional dependence of n„and n, on x and y.
The term also vanishes for a texture n(z) that de-
pends on a single Cartesian coordinate z-like in
the parallel plate situation considered above.
However, the term is nonzero if n is tilted away
from the x-y plane as in the "flare-out" texture,
as we shall see below. ]

When (54) is inserted in the bending energy (21)
and the surface dipole energy (15) one gets the
following results for the free energy,

CYLINDER
A X IS

C Y L INDER

AX IS
F~~/2nc =--,'(1+ y')p (55)

B 2F~ 4 3 2 3

.mc
= ——ln(1-y ) ——y + ~ ln13 2 y2

(56)

where we have introduced the dimensionless quan-
tities

p =R/R, (57)

"IN- PLANE

(a)

FLARE - OUT

(b)
y=R/R, (&1). (56)

FIG. 3. Schematic drawings of the orientation of the
n-vector in the (a) "in-plane" texture and (b) the "flare-
out" texture in the cylindrical geometry. The direction
of the cylinder axis is indicated in each case.

The minimization of the total free energy
F =F~+ F~ is readily performed for general values
of p. Here we shall only exhibit the result for
p«1 and p»1. For small cylinder radii R«R,
one gets
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3 13
'Ymin 58 ps p (59) F/2vc = —p+2.038 . (67)

and a total minimum free energy given by

F/2vc = ——,'p ——"p'.
In the opposite limit p»1 one has

r'i. =I-', (Ilp), p" 1

(60)

(61)

It follows from the comparison of (62) and (67)
that the in-plane texture is energetically favored
as long as

lnp& 2.307

and a corresponding minimum free energy given
by

R (10.0R, . (69)

F/2sc = —p+,'-,'ln p —0.8018 . (62)

n„= cos ss in(Pr/R ),
n, = sin&sin(Pr/R),

n, = c os(Pr /R),

(63)

(63')

(63")

where P((-', x) is a variational parameter, and we

have introduced cylindrical coordinates (r, 8).
When P =0, n points everywhere along the cylinder
axis. When P = —,'m the in-plane radial component of
n varies from being zero at the cylinder axis to
unity at the surface. Clearly we must have P= m

when R»R, while one expects P=O in the limit
R «R, as confirmed by the explicit calculation
below. When (63) is inserted in (15) the surface
dipole energy becomes

Note that the bending energy introduces a logar-
ithmic increase with p in addition to the term
linear in p originating in the surface dipole energy.

Turning now to the calculation of the free energy
of the flare-out texture we shall take as a trial
function

To investigate the influence of a magnetic field
on the crossover between these two textures we
shall work in the limit R»R, and treat the mag-
netic field terms F„and F~ as perturbations.
Using as zeroth-order solutions the variational
functions obtained from (63) and (66) one obtains
in the flare-out texture a bulk field energy

F„/2vc =-0.1487(H/Hs)'p', (7o)

F'„/2vc = —';,'(H/H, )' . (71)

With the assumption He -H~ [see (33), (34), and
below], we may obtain an explicit value for the
critical radius in a field. Let

p=p, (1+5), (72)

but no contribution from F~H because n is pointing
radially outward from the surface. On the other
hand for the in-plane texture the bulk field energy
F„does not contribute to the energy because n is
always perpendicular to H. The surface field
energy F~ does, however, because of the singu-
larities near the surface and is

FD/2wc = —psin'P

and the bending energy

F~ 8 ]
2mc

dQ —(sing+ PcosP)'+Plein'P

—'-' sin'P .

(64)

(65)

where p, is the previously determined zero-field
value, po

= 10.0. Then it follows that the texture
energies are equal when

5 = —13.7 (H/Hs)' . (73)

Thus we have an estimate of the field dependence
of the critical radius for small values of the mag-
'netic field,

1
Pmin 2~ (66)

The last term in this expression originates in the
last term of (21) which has been discussed above.

In the limit of small cylinder radii, R«R„ the
value of P which minimizes the total free energy
is zero until the radius becomes bigger than
JR 13 R„as se en by performing a s mal l p expan-
sion.

The corresponding total free energy is therefore
likewise zero when P =0. It turns negative when

R,'-,' R, and it becomes energetically favorable to
bend the n vector slightly away from being parallel
to the cylinder axis.

In the opposite limit R»R, one has

R =10.0R, —137(H/Hs) R, . (74)

We briefly comment on the effect of the cross term
(divn)(n curl n) in the bending energy (21). For the
in-plane texture we have considered small devia-
tions 5n, away from the previously considered
orientation of n in the plane perpendicular to the
z axis. One finds that 5n, satisfies an inhomo-
geneous differential equation for which the solu-
tions in the limit of large R(R»R, ) must vanish
at the cylinder surface as well as on the lines
x=0 and y =0. This implies that 5n, may contri-
bute at most a p-independent constant to the free
energy of the texture and we expect the value of
this constant to be rather small due to the con-
straints on the variation of n, . The effect of a
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IV. SPIN RESONANCE IN THE PRESENCE OF TEXTURES

In this concluding section we discuss the calcu-
lation of the nuclear-magnetic-resonance spectrum
in the presence of textures. The procedure for

80—

LLI
ILL~ 60-
C9
LLI
O

40—

C9
Z.' 20—

0-
RADI AL DISTANCE r

FIG. 4. Qualitative illustration of the behavior of
the angle & between n and the magnetic field in the high-
field (H»H~R, /R) and low-field (H «H&R~/R) regimes
for the "flare-out" texture discussed in the text.

nonvanishing n, is of course to lower the free
energy, but the consequent change in the value of
the critical radius depends on how much the cross
term may lower the energy of the flare-out tex-
ture as well. In this case it is clear that the cross
term can at most contribute a constant for large
R/R, since there are no logarithmic terms in the
bending energy.

To extend the previous calculations to larger
field is complicated, but the qualitative answers
are clear. As the field increases the field de-
pendent surface term becomes larger than the
dipolar term and n orients itself at the peculiar
direction discussed earlier. The characteristic
length at which a textural transition qualitatively
similar to the one calculated above occurs then
becomes R, H~z/H2= c/dH2. Note however that n

never lies in the plane perpendicular to the axis
because of the effect of the field dependent sur-
face term. The characteristic length is very
small, at fields of -1 kG it is R, H~/H'-I p, m.
Undoubtedly a transition between two textures with
topological differences similar to those at low
fields still occurs, but the details are quite dif-
ferent since there must be a sizable nonzero z
component of n in both textures.

A continuous change always occurs at larger
radii in the flare-out texture from atexture whose
characteristic bending is determined by the walls
as in the zero-field calculation to one where the
effects of walls are "healed" in a coherence length
R„=R,He/H. This changeover is pictured quali-
tatively in Fig. 4.

performing such a calculation can be formulated
using a Qinzburg-Landau approach similar to that
discussed by Brinkman and Smith" to obtain spin
waves in a uniform medium. However, actual
calculations can only be performed in certain
limiting cases and the results used for the closely
placed parallel plates' and the large radius cy-
linder will be shown to be two opposite extremes
of a relatively simple equation. In the general
formulation of the calculation of spin-wave spec-
tra one first calculates the change in free energy
when the spin coordinates of the order parameter
d, are rotated by small rotation 8(r)
=(8„(r), 8~ (r), 8, (r)). This can be done by insert-
ing into all the various expressions used in Sec. II
the form

8„,(r) = d„8(r)RS;(8), (75)

where d„&(r) is the matrix given in Eq. (9) and

Re, (5) is the rotation matrix of the small rotations,
8,

R„,(8) =5,e+e„8,8y --,'(5„88'-8„88) (76)

The result of this calculation is a total free en-
ergy density F(8) which in equilibrium satisfies
the equation

5F/68~(P) = 0 (77)

which has been attained by a previous variational
calculation with respect to n. The simplest ex-
ample of the terms that occur in E is the bulk
dipole energy, Eq (10).

Ff&
———

6
I'6' 2+1'6'(n ~ 8)' . (78)

(We have assumed 8=104' in d;.) Other bulk
terms arise from the variations of Eq. (3) and

from variations of the bending energy.
In addition there are the terms coming from the

variation of the surface energies. The expres-
sions for these terms are all complicated and
will not be written down explicitly, rather, we
will attempt to concentrate only on the largest
energies and argue that the other smaller ener-
gies have a negligible effect on the spin-wave spec-
trum. For example, any contributions to the spin-
wave frequencies arising from the variation of the
bulk anisotropy energy Eq. (3) would be of order
(dg/g)(yH) = 10 '(yH). This shift is to be compared
to that which will arise from Eq. (76) which is of
order Q~~/yH, which is a hundred to a thousand
times larger than the above estimate in a field of
1 kG. The surface anisotropy energies may also
be neglected. The surface dipolar energy gives
a correction of order ((/l)Q~ which is negligible.
The susceptibility anisotropy is rotationally in-
variant and consequently does not enter the spin
wave equations just as the bulk susceptibility
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anisotropy does not effect the resonance equa-
tions. "

In the bending energy there are three classes of
terms depending on where the differential opera-
tors are acting:

(i) 8, 8, B n„ B,n, ,

(ii) 8; B„g, n~ BB n, ,

(iii) B„g;B &8& .
One can show that terms of the first class add to
zero using the properties of the rotation matrices.
Using Eq. (17) the second class of terms can be
shown to be of the form

F"g0 By08,

In (82) the gradient V operates only on 8, not on
n. Note that when n is spatially uniform the equa-
tions become identical to those of Brinkman and
Smith. " Equations (82) are complicated and we
only discuss them in the high-field limit which
applies to many of the experiments performed to
date.

In this limit, the transverse resonance is an
oscillation of $,= $, +iS„where the field is along
the x axis. If we in addition assume that the tex-
ture is varying only in the z direction then we need
only consider uniform waves in the x and y direc-
tions so that we arrive at the equation

[u' —cur H —,'O~ n—' (z )]S,

where F& 8 is symmetric in nP. In the equation of
motion for the spin angular momentum, this term
will contribute a term of the form

2

(63+10n', —25n ~n,'
65Xa

+1(hl15 n, n, n, —15n'„)B,S, . (83)

F =y S'/2yz —yS H+F(8)

and the equations of motion are

dS i—=--PS F}dt A-

(80)

(81)

d8—=--'Pe F}dt
(81')

where (8;, S,}=iM„, [8;, 8&}=0, (S&, S,}=ibad;„S, .
The resulting equations are

B,S =ys xH —(1/y')yzQz2n(n 8)

+,{64V'8 —2[V- 5n(n V) -~15 nx V]

x[V ~ 8 —5n(n ~ V)g -M15 n (V xe)J},

(B,F„',)gz .

However B&F&~B must be of order c(H/R, Hz)z-aH'.
Therefore, the class-(ii) terms will contribute
terms of the same order as those coming from the
g-shift term Eq. (3). Therefore, of the bending
terms we must consider only terms of class (iii).
These can be reduced to the following contribution
to the bending energy density F~:

Fez=& (32B 8BB 8& —[V 8 —5n (n V)8

—v 15 n (V x 8)]'}. (79)

This expression plus Eq. (78) constitute the
largest terms in F(8) and we propose to use the
sum of these two expressions as a lowest-order
approximation for F(8).

The total free energy determining the spin dy-
namics is obtained by adding the terms involving
S to the free energy F(8).

We are left with a relatively simple equation to
solve for the possible spin waves. It is not dif-
ficult to show that in this approximation the
boundary condition is that the spin current into
the wall is zero and this condition reduces to
B,S, ~b,„„d„„=0.For any given eigenfunction S, of
this equation the contribution to the absorption of
a uniform field oscillating at its eigenfrequency
v is given by

$ md+ $m + 2d+ (84)

where we have normalized the contributions so
that the total Z I = 1. In practice the normaliza-
tion would be given by the usual sum rule. " The
possible regimes in the parallel plate problem can
be characterized by two lengths, R, = (2cy'/gz0~2)'~'
which is the characteristic length in the above
equation and R„=R,Hz/H the characteristic length
for the texture itself. The experimental situation
is always such that 8, & RH, since R, is typically
10 p. m whereas R„ is typically 100 p, m or larger.
Therefore, we only need to worry about the plate
separation / relative to R„. Simple regimes that
can be analyzed are as follows:

(i) l»Rz and R„»R, . Under these circum-
stances the "local oscillator" approximation which
is simply a classical approximation whereby the
energy distribution is given by the potential en-
ergy should be correct. This is the regime in
which the original experiments by Osheroff and
Brinkman in the cylindrical geometry were per-
formed. The spectral distribution is given by

(82)
0

P((u) = 5 td ——~ n', (z)- yH dz .
2yH

(85)

B 8 = r(rs/x, -H). (82') This result was used by Brinkman, Smith, Osher-
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off, and Blount to calculate the spectrum of a
cylinder whose radius is large compared to RH.
It should be noted that this approximation is
equivalent to assuming that the eigenvalues are
so close together that they can be averaged over.
If n is parallel to H in the center of the sample
the linewidth of each mode may be such that the
eigenvalues are still separated and this approxi-
mation is not valid.

(ii) l«Rs and l/2v«(R, R„)' '. This is the
small bending limit discussed in Ref. 3 and Sec.
IIIA. Under these conditions the spins precess in
a uniform mode at a single shifted frequency
which may be obtained by taking the spatial av-
erage (n'j ) =1 —(cos a) in the notation of Sec.
III A. The shift in the parallel plate geometry is
thus given by

(cos'a) =-', ( 1 +4al/5d +,'-,'l'/R'„), (86)

That l should be much less than (R,R„)' ' can be
obtained by fact that the variation of the potential
energy in Eq. (83) is of order (—,'Q~)(l /Rz)2 where-
as the separation of the spin-wave modes is
(c/Z~)(2&y/l )'. Therefore, for perturbation theory
in the potential to be valid we must have

corrections E' and F2 to the unperturbed energies

E'„=',-,' (2v)'m'(1/n')+n', (-,'1) (91)
is standard and we shall simply state the results
obtained for the spatial variation of n given by
Eq. (53). With V=n', (z) —n', (-,'f) acting as the per-
turbation we get

E = ——~1 13 2
0 480

in accordance with (86) above and

(92)

(93)

so the change in the dimensionless energy (88) is
to second order

E, —E,'= E'(1+a'e'x3 x10 ').
It is obvious that the expansion parameter is not
o. 'e2 but more nearly o'e'/(2v)' in accordance with
the criterion given above.

Similarly we may find the intensities I to lowest
order in o. e, From the admixture of the m=0 un-
perturbed wave function in the mth excited state
we obtain

Q2 $
2 Cy 2 27t 2

or l«(2wR, R„)'
2 R„y~ l

f.=
I (0I Vlm) I'/(E'. —E',)'

=(1/m')o. e x8.97x10 ' (95)

6 5[E —n', (z)] S,= -R,'f (n) —;, (87)

where

E = (u —yff) 2yH/Q~ (88)

and f depends on the direction of n. For the di-
rection of n which minimizes the surface field
energy f=6-, [we may safely neglect any spatial
variation of f (n)]. The even eigenfunctions u

obeying the boundary condition u (+—', l ) =0 for the
differential equation (87) with n', = const are

The criterion for the perturbation expansion to be
valid may be explored by calculating the second-
order correction arising from the mixing-in of
higher spin-wave modes. To do this one writes
(83) in dim ens ionles s form as

The m ' dependence is due to the energy differ-
ences going as m~ and the matrix element (0~ V~m)
going as m '. Therefore the intensity falls off
very rapidly in the modes above m=1. Note also
that I is proportional to c4 and hence to the fourth
power of magnetic field for fixed energy separa-
tion.

(iii) l&R„and l/2v~(R, R„)' '. Here explicit
calculations must be carried out for the individual
modes. This is currently being investigated and
will be reported later. It is in this intermediate
regime that the full effects of textures and spin-
wave velocities are expected. Experimentally,
this regime shows a diverse behavior which is not
at present understood.
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The solution for a spatially varying n 2~ may be
characterized by the two dimensionless quantities

o =l/R, and e = l/R„.
The calculation of the first- and second-order

APPENDIX

In order to obtain the relation between a in Eq.
(3) and the g shift we calculate the time-averaged
change in free energy under resonance conditions.
Since only terms that are first order in a and
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zeroth order in the dipole interaction are of inter-
est we need only study the motion of S and n under
the influence of the external field. The equations
of motion are in the form given by Brinkman, "

—= ygxH
dt

&8=-(sy'/X,')0 n)'.

The free energy must be calculated as a function
of

&H = (s—y'/X,') (S —[(&S)'/&S](1+f '))'

= —(uy'/Xs)S'+ (~y'/4X')(&S)'(1+ f ') .

dn, yX yg—=(-2)y nx —-H +f nx nx ——H
B XB

where

f= sin8, /(1 —eos8, ) .

The rotation angle 8, can be considered a constant
for transverse resonance when n, is parallel to
H.

The motion of 5 is given by the usual expres-
sion

5 = (5Seoset, 5S sin&et, S[1 —(5S/S)']"')

and solving for n to second order in 5S we find

n(t) = —,'(5S/S)(eos&ut+ f sin&et, sin&et —f cos&ut, 0)

+(0, 0, [1-(OS/2S)'(1+ f')]"') .
The change in energy can be obtained by substitu-
ting these results into FH written as

Substituting in f=v-, we get

»g = (2oy'/5X,')(~S)'.

This is to be compared with

5(s'y'/2Xs —y5 H) =+ [(5S)'/2S]yH .

The total energy change 5I"~ is therefore

5Fr = [(5S)'/2S]yH(1+ z a/Xs)

and the relative shift in g value consequently

~z/g= r &/x, .

This result for the shift in the transverse reso-
nance frequency may also be derived directly
from the full equations of motion for 5 and d;
after taking into account the combined effects of
the dipolar interaction and the susceptibility an-
isotropy energy. We use the above approach be-
cause of its simplicity.

*Work supported in part by the Danish National Science
Research C ouncil.

)Work supported in part by National Science Foundation,
Grant No. NSF DMR 74-18030.

'D. D. Osheroff and W. F. Brinkman, Phys. Rev. Lett.
32, 584 (1974).

2W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I.
Blount, Phys. Rev. Lett. 33, 624 (1974), referred to as
I.

3D. D. Osheroff, S. Englesberg, W. F. Brinkman, and
L. R. Corruccini, Phys. Rev. Lett. 34, 190 (1975) .

4A. I. Ahonen, T. A. Alvesalo, M. T. Haikala, M. Krus-
ius, and M. A. Paalanen, Phys. Lett. A 51, 279 (1975).

5A. I. Ahonen, M. Krusius, and M. A. Paalanen, J.
Lcnv Temp. Phys. (to be published).

6D. D. Osheroff, Phys. Rev. Lett. 33, 1009 (1S75).
'R. A. Webb, R. C. Kleinberg, and J. C. Wheatley,

Phys. Rev. Lett. 33, 145 (1975).
I. A. Fomin and M. Vuorio, J. Low Temp. Phys. 21,

271 (1975).
V. Ambegaokar, P. G. de Gennes, and D. Rainer, Phys.
Rev. A 9, 2676 (1974).
See, for instance, P. W. Anderson and W. F. Brinkman,
in The Helium. Liquids, edited by J. G. M. Armitage
and I. E. Farguhar (Academic, New York, 1975), p.
315.

~~A. J. Leggett, Ann. Phys. (N.Y.) 85, 11 (1974).
' S. Engelsberg, W. F. Brinkman, and P. W. Anderson,

Phys. Rev. A 9, 2592 (1974).
D. D. Osheroff and W. F. Brinkman (unpublished) .
P. G. de Gennes, Phys. Lett. A 44, 271 (1S73).
W. F. Brinkman and H. Smith, Phys. Rev. A 10, 2325
(1974).

'6M. C. Cross, J. Low Temp. Pgys. 21, 525 (1975).
"L.R. Corruccini and D. D. Osheroff, Phys. Rev. Lett.

34, 695 (1975).
W. F. Brinkman, Phys. Lett. A 49, 411 (1974).


