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Optical properties of charge-density-wave ground states for inversion layers
in many-valley semiconductors
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A charge-density-wave ground state satisfactorily accounts for the experimentally observed occupied valley

degeneracy, high cyclotron mass and stress-dependent anisotropic conductivity in inversion layers at the

Si(111}-Si02interface. %e make specific predictions about anisotropic optical transitions, the observation of
which would distinguish the density-wave model from any alternative explanations of the experimental data.

I. INTRODUCTION

The observation of Shubnikov-de Haas oscilla-
tions corresponding to an occupied valley degen-
eracy of two" in the n-type inversion layers at
the Si(111)-siO, interface is to be contrasted with
the prediction of six by the self-consistent Hartree
theory of Stern and Howard. ' The cyclotron effec-
tive mass' is also 20o/o higher than the theory pre-
dicts. %'e recently observed4' that a charge-
density-wave (CDW) was the stable ground state
of a two-dimensional unrestricted Hartree-Pock
calculation for reasonable values of the important
electron-electron interactions. This CI3% accounts
for the occupied valley degeneracy and the high
cyclotron effective mass.

The C,„symmetry of the Si(111)surface is re-
duced to a mere mirror symmetry which allows
for three equivalent directions for the q vector
associated with the CDW. In a real sample, do-
mains characterized by different q vectors will be
set up. Tsui and Kaminsky' have measured the
electrical conductivity of inversion layers at the
Si(111)-siO, interface and have found it to be iso-
tropic. The application of uniaxial stress is ac-
companied by a marked anisotropy in the conduc-
tivity, Tsui and Kaminsky have interpreted this
in terms of high-random-stress domains becoming
aligned under the externally applied stress. The
internal random stresses are set up by the bond
mismatch at the interface, and they serve, via a
deformation potential, to lift the valley degen-
eracy and account for the occupied valley degen-
eracy of two. The authors note that very large
stresses must be invoked to reduce the occupied
valley degeneracy. %'e would interpret the same
data in terms of the growth of one CDW domain at
the expense of the others under the external stress.
The direction of large and small conductivity in
the stressed sample is consistent with our "CDWg'

ground state (Fig. 1) where four valleys are cou-
pled into two pairs, each pair producing one oc-
cupied bonding band and one empty antibonding
band. In this model, and using a simple inverse
effective-mass argument~ we would predict an
anzsotropxc conductxvxty ratio of about 2 1 for a
single COW domain.

The existence of the antibonding bands is a fea-
ture of our model that comes directly from the
correlation between electrons in different valleys.
In this paper we examine in some detail the ma-
trix elements and line shapes of optical transitions
from the bonding to antibonding bands. We make
specific predictions concerning the anisotropy and
frequency dependence of the optical conductivity.
Were the intervalley exchange interactions better
known, we could make precise estimates of the
threshold energies as a function of gate voltage.
We confine ourselves to a parametrized calcula-
tion, noting that the observation of these optical
transitions would serve both to distinguish our
model from the random-stress model, and to put
bounds on the various exchange interactions. In-
terband transitions have already been observed'
in the Si(100)-siO, system, but these come from
transitions to higher subbands. Our present tran-
sitions are comparable in oscillator strength, but
the dipole matrix elements have a component in the
surface plane, a feature peculiar to our model.

II. OPTICAL CONDUCTIVITY

We write' the absorbing power I' of the inversion
layer of area 8 in an electric field E as

P =8(E v(&u) E),
where &x(&u) is the long-wavelength limit of the two-
dimensional frequency-dependent conductivity ten-
sor. Using a, =e'/a' (=2.2&&10' cm sec ') as a
convenient atomic two-dimensional conductivity,
we can write
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tions: (i) V„ the intravalley direct interaction;
(ii) U„ the intervalley direct interaction; (iii) U,„,
the intervalley exchange interaction between val-
leys on the same XI'X axis of the bulk Brillouin
zone, and (iv) U, 8, the same exchange interaction
between "right-angle" valleys. With a number den-
sity of & electrons per unit area in the inversion
layer of total area 8, the energy bands are'

FIG. 1. Surface Brillouin zone for the Si(111) surface.
CD' ground state involves the q vector labeled P.

E'„„=n8(gU +', V, ——', U, „——,'U 8)+ (e +e „)

—[4 (e,„-e~„) + (U~ +2~ Uns~) n 8 x ]

and E„„is obtained with a plus sign before the
square root. The x is a fraction of the form'

(3)

where S(d is the photon energy and the summation
is over all bands of energies &„„, e„,within the
first two-dimensional Brillouin zone, The Fermi
occupation function f (x) limits the contributions
to the real excitations. In our present problem,
g„, is a wave function of energy e„, in the occupied
bonding band, while g„„is a corresponding anti-
bonding wave function of energy &„i,. We confine our-

selvess

to the study of the absorption l.ine caused by the
CDW ground-state to excited-state transition. Other
transitions have comparable energies, but differ-
ent physics governs both the oscillator strength
and threshold as a function of gate voltage.

We obtained our CI3Wp ground state' in terms of
the effective-mass expansion c,„, &b„of the two
valleys which are coupled by the density wave,
and the following four electron-electron interac-

6 = (U + 2
~
U z ~) ng x,

and solving the secular equation explicitly

(6)

(4)

where the second term is a correction of order
(e„/U, )'. Equation (4) is derived from the self-
consistent total energy minimization and, in the
regions where CDWP is the stable ground state,
x -0.10- 0.12. These bands are both doubly de-
generate (see Fig. 1 for the two pairs of valleys),
and there are two further empty nonbonding bands
not involved in the density wave: these have an

energy

e „=n8 (U, ——,Uz 8) +e,„.
The wave functions are obtained as linear combina-
tions of the valley wave functions. By defining

(2A+'/v8)ze "'e"' [ ~n,
~ p, (r)e' ~'+ (e,„—e„„)Q,(r)e' &']

nK [(e e )a +gz] z/2 (7)

while g„i „ is the identical expression but with e„.„
instead of &„„ in the mixing coefficients. As in the
Luttinger-Kohn9 approach, Q, is the full Bloch
function of the ath conduction-band minimum at
k„and ~ ' is the profile constant giving the over-
all width of the smooth envelope function. ' ' Here
K = (K„K,) is a two-dimensional wave vector in the
surface Brillouin zone, P, and Pb are transverse
longitudinal mass-mixing' terms of the form
[-(HqqKq + 02qKz)/Hq3] fOr three-dimenSiOnal inVerae
effective mass tensor 6},',. for valley a.

With Eqs. (3) and (7), it is a straightforward
exercise to evaluate Eq. (2). Before we do, we
make a correction to the Luttinger-Kohn' theory
by amalgamating the two contributions e"' and

P, (r) in Eq. (7) and replacing this by the full Bloch

function evaluated at (k, +K). Such a substitution
is the first approximation to the interband contri-
butions to the inversion layer wave function (omit-
ted in the Luttinger-Kohn theory) and becomes
more important as n increases. If we write the
two-dimensional

k2~~ Q]g Kt Kg
2

with the mass-mixing corrections' ' incorporated
into the 0, and if we note that

6 =6 0 =8 6' =-6a b a b
11 119 22 22% 12 12

for the valleys in Fig. 1, we find
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ih
Kl Iknw& =

2(1(e e )2+pe]y/2

x (2me; z„2me', z„p, —p,), (10)

where the z axis is normal to the surface. The
Fermi occupation functions restrict the range of
summation over ~, or the integration via the stan-
dard

1.0—

b

—0.5—3
b

The upper band is always empty, and the lower is
full for w within the Fermi distribution. Thus we
have 15.0 15.5

%~ (meVj

dmin 2 ea, ZZ +6'~ -5 )

o'((u) = cr((u) 0
le'„I le;, I

mo' 0'

me, , 0;,
which in our case reduces to

1 ga 2
13

m'o,', I e,', I e;,

00.377 0

v(&u) = v(u&) ' 0 0.671 0.18

0.18 0.049

where

2 Q2
'

w (K(u)'[(-,'K(u)' —b '] '~'

nx -I+I y +&ff(dvm*

a a - u'2
elle22 [(~II~)R +2]

ei2
(12)

In this last expression we have assumed that v

identical valleys of effective mass m* are occu-
pied, so that the Fermi level is at

z~ =na(aU, +sv, —sU, „-sU, 8)- l~l +I s/~m*.

(12)
Equation (12) is our main result. c(e) is a two-
dimensional conductivity of dimensions cm sec '

x (y„,„lvltj'„,&(g„„l~lq„,„&.

The integration is over the occupied part of the
bonding band. Since 0» = 82', in our effective mass
expansion, P, —P, is proportional to &„and after
some straightforward manipulation we obtain

le„l 0a
822

FIG. 2. Dimensionless optical absorption ro.(co)/0, from
Eq. (12)] for a typical set of parameters (the point
marked * in Fig. 3) for n =4x10+ cm . Results are in-
dependent of U&~.

sothat the computation of the dielectric constants
requires an extra factor, being a typical inverse
length in the third dimension, e.g. , ~ '.

III. DISCUSSION

(i) The optical absorption tensor [Eq. (12)] is
valid for energies K&u &2I&l, at which energy there
is a singular (inverse square root) threshold. The
optical absorption vanishes for lower energies and

also for energies greater than @~„determined by
the condition that the last factor in Eq. (12) van-
ishes. This latter condition describes the situa-
tion where the energy-conserving & function [Eq.
(2)] just fails to be satisfied for an occupied band
state at the Fermi level.

(ii) The threshold at 2lb.
l

increases with gate
voltage because n increases linearly with Vg Uy and

U2& also increase but more slowly with V,. The
cutoff at @co, exhibits a slower dependence on. V,
than does 2I&l. This is because the bonding-anti-
bonding bands tend to get more parallel as the
interaction term I&l increases. Although the
Fermi distribution encompasses a greater area
of k space, the energy conserving & function sweeps
out the occupied portions of the bonding band even
more rapidly. Qf course, in the limit of n

the bands are parallel, and in our present model
a. &(8'~ —2lb, l) conductivity results. We thus expect
to see an asymmetric line shape that narrows with
increasing voltage.

(iii) In Fig. 2 we plot the line shape for a typical
set of interaction values. Because of the uncertain-
ties in the values of U„we include in Fig. 3 the
contours of threshold energy for the optical ab-
sorption on the assumptions that n =4x10" cm ',
and that the electron-electron interactions are
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free parameters. These contours are independent
of U,„, although the latter plays an important role
in determining the phase diagram. " The contours
scale almost linearly with both (U, —2U, &) and &

[to the extent that the corrections in Eq. (4) can be
neglected].

(iv) From typical calculations we have performed,
the linewidth decreases from -0.8 to -0.4 meV as
(U, +2~ U, 8~) increases from -0.5X10 ' to 1.5 X10 '
eV for a normalizing area 6 =10 "cm' and with
m=4&10" cm

(v) The theory could be generalized to include a
relaxation time whose effect is to further broaden
the line shape and mask the singularities in Eq.
(12). The relaxation time should, however, be
quite long at the cryogenic temperatures at which
experiments are carried out.

(vi) We have calculated the integrated strength of
the absorption line given by Eq. (12). We obtain

2AI= 8 0) d(d=Vq Q~ (14)

where Q is a dimensionless number which depends
on the parameters of the system. For the case
discussed in Fig. 2,

Q =0.02.
For the sake of comparison, we have calculated
the integrated strength for transitions in the para-
magnetic phase between the first subband and the
first excited subband, with an envelope function
which contains one nodal plane parallel to the sur-

0
0—10

U2p
FIG. 3. Contours of constant threshold energy in the

case where n =4 x 10 cm 2 as a function of the inter-
action parameters. Role of U2„ is solely in determining
the phase diagram (Refs. 4, 5) for the CD%P stability.
The contours move almost linearly from the origin as
functions of n and {U& —2U2&).

face. In that case,

I =0'~C00Q0
q

where h~0 is the energy difference between the
bottoms of the two subbands and Q, is once again a
dimensionless quantity. For typical values (I~,
=10 meV, n=3.6X10" cm ' and A =6&&10 ' A ')

Q0 =0.08,

i.e., a factor of 4 larger than the CDW case.
(vii) An important feature of our results is their

polarization characteristics. The optical transition
in the paramagnetic case is entirely in the 2 direc-
tion, i.e., for electric fields perpendicular to the
plane of the layer. As given in Eq. (12) above, the
optical conductivity has both in-plane and out-of-
plane contributions. Observation of the in-plane
absorption would be a clear confirmation of the
CDWP ground state.

(viii) Examination of the o tensor clearly shows
that its strength depends on the off-diagonal ele-
ments of the effective mass tensors 0;~ and e;,.
Charge-density waves arising from parallel ellip-
soids (8;& =0) would give no contribution, while
charge-density waves arising from ellipsoids with
a principal axis parallel to z (8„=0)will give no
absorption for an electric field in the z direction,
i.e., it will have only in-plane contributions.

(ix) The determinant of the v tensor vanishes.
This means that absorption can take place only
with electric fields in a well-defined plane, The
principal axes of the o tensor are parallel to x and
to a direction in the pz plane tilted away from the
g direction. The direction of tilt depends on the
longitudinal transverse mixing 0]3.

(x) The combined optical absorption of the metal,
oxide, and bulk semiconductor would swamp the
inversion-layer absorption in what would be the
ideal geometry (light shone normal to the inversion
layer). The use of polarized light in the geometry
of Kamgar et al."could detect the absorption we
have calculated. In a nonstressed multidomain
sample, the absorption we have calculated would
be isotropic, but under uniaxial stress the ani-
sotropy of a single domain should dominate. With
the restricted probe energies available, the asym-
metric line shape will show up as the gate voltage
causes the absorption peak to sweep through the
fixed probe energy. It should be remembered that
experimentally determined optical thresholds may
be shifted in frequency by a variety of effects,
including a shift to higher frequencies due to polar-
ization effects."

Our calculation could also be carried through in
a parallel manner for a spin-density-wave ground
state." Similar results are achieved; elsewhere
we have discussed the reasons" why we believe
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the CD' solution to be the ground state.
In conclusion, we have made specific predictions

about the line shape —its anisotropy, asymmetry,
and linewidth —of the optical transitions between
bonding and antibonding bands set up by a charge-
density-wave ground state of the inversion layer
at the Si(111)-SiO, interface. The detection of this

optical absorption would confirm our model of the
many-valley semiconductor inversion layer elec-
tronic structure.
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