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Electronic ground state of inversion layers in many-valley semiconductors
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We present a self-consistent many-body calculation of the possible ground states in the inversion layers of
many-valley semiconductors (as typified by Si) in the metal-oxide-semiconductor configuration. A complex

phase diagram results when the various electronic interactions are regarded as free parameters; for

experimentally reasonable values, a charge-density wave is the ground state at the Si(111)-Si02 interface with

the experimentally observed valley degeneracy and cyclotron mass. At the Si(100)-Si02 interface, the

paramagnetic state remains stable over the experimentally accessible region of the phase diagram. Applications

to other systems are briefly mentioned and experimental tests of the theory are suggested.

I. INTRODUCTION

When a gate voltage is applied across a metal-
oxide-semiconductor device, the complicated re-
arrangement of electrons that takes place in the
semiconductor is obtained from a self-consistent
solution of Poisson's equation and the Schrodinger
equation. The induced charge at the metal-oxide
interface gives rise to a potential gradient in the
oxide and band bending in the semiconductor. The
self-consistent solution includes an inversion layer
of electrons trapped in the bent bands very near
the oxide-semiconductor interface. The potential
of a test charge as a function of position is shown
in Fig. 1 together with the typical dimensions of
the system. From the latter it is clear that quan-
tum effects will be prominent. ' Using an adapta-
tion of an effective-mass theory of isolated impuri-
ties in semiconductors due to Luttinger and Kohn, '
Stern and Howard' treated the self-consistent in-
version-layer potential as a similar perturbation,
and have described the quantized two-dimensional
n-type inversion layers of silicon as a function of
the surface crystallography. 4 We describe aspects
of this theory in more detail below as certain fea-
tures are incorporated into our own approach.

Until recently, most experiments on n-type Si
inversion layers were performed at the Si(100)-
SiO, interface, to exploit a high electron mobility
there. At this interface, two of the six anisotropic
conduction-band valleys, along the (100) axes in
the bulk Brillouin zone, present a high effective
mass normal to the surface. The theory' predicts
that these two valleys will be occupied in the in-
version layer, and that the other four should re-
main empty until a large gate voltage is applied.
Shubnikov-de Haas studies of this system do in-
deed reveal an occupied valley degeneracy of two. '
Occupation of the four valleys with lighter effective
mass has not been seen, although excited levels
of heavier mass valleys have been identified. '
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FIG. 1. Metal-oxide-semiconductor system with
typical dimensions, including those of the inversion-
layer charge-density profile. The electrostatic poten-
tial energy of a test charge is also included schemati-
cally.

At the Si(111)surface all six (100) valleys present
the same normal effective mass. Instead of all
six being occupied, experiments' "reveal an oc-
cupied valley degeneracy of 2 +0.2. In both these
latter systems, the cyclotron masses are 20%
higher than those of the isolated valleys that the
Stern and Howard theory would predict. Less well
characterized data are also available for tellurium
accumulation layers" with higher cyclotron mas. es
and lower occupation degeneracies being obtained.

We present a many-body calculation of the pos-
sible ground states that arise when electrons in the
different valleys become correlated. The inver-
sion-layer geometry shares a number of features
in common with the layered compounds, where
charge-density-wave g'-ound states have been iden-
tified. " A particular type of charge-density wave
can explain all the experimental facts observed
above for the Si(111)-S10,system. For the Si(100)-
SiO, system, the ground state is paramagnetic for
reasonable values of the electronic interactions,
and thus reduces to the Stern and Howard' theory
in this case.
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The plan of the paper is as follows: in Sec. II,
we describe the variational calculation of the para-
magnetic ground state that incorporates elements
of the existing theories. We further indicate what
small differences occur in the theory, at the pres-
ent level of sophistication, if a nonparamagnetic
ground state exists. We conclude this section with

a brief mention of the failure of two possible ex-
tensions of the simple theory to account for the
lower occupation degeneracy of the valleys. In
Sec. III, we describe a self-consistent unrestricted
Hartree-Pock calculation of ground state of a
Si-SiO, inversion layer as exemplified by the
Si(111)-SiO, system. This calculation leads to a
phase diagram as a function of the electronic in-
teractions viewed as free parameters, so in Sec.
IV we discuss the regions of the phase diagram that
are experimentally accessible, and compare the
results with the data. In Sec. V we discuss appli-
cations of the theory to the Si(100)-SiO, and Si(110)-
SiO, systems. In Sec. VI we comment on the limi-
tations of the present theory and suggest a range of
experiments that will test it, shedding light, in

particular, on the intervalley exchange interaction
in silicon.

II. PARAMAGNETIC THEORY OF THE INVERSION LAYER

In the presence of a weakly perturbing potential
U(r), such as in the neighborhood of a phosphorous
impurity atom in a silicon lattice, Luttinger and
Kohn' showed that the impurity electron wave func-
tion could be written

i|(r)= Q o„F„(r)y„(r),
valley v

where Q„(r)is the full Bloch function at the vth

conduction-band minimum along the I"~ axis of
the bulk Brillouin zone —v sums over the six val-
leys. F„(r)is a relatively smooth envelope function
which satisfied the effective-mass Schrodinger
equation

[e„(-iV)+U(r)]F„(r)=EF„(r), (2)

where &„(k)is the second-order expansion of the
conduction band around the vth minimum. In Eq.
(1) the n„determine the linear combination of val-
leys that go into the full wave function. A crucial
assumption in obtaining Eqs. (1) and (2) is that

U(r) is smooth on the scale of a unit cell dimen-
sion in silicon.

Stern and Howard' discussed the solution of Eq.
(2} in the inversion layer geometry where U(r) is
now the self-consistent potential solution of Pois-
son's equation on the Si side of the Si-SiO, inter-
face. We outline an equivalent variational calcula-
tion as the fully self-consistent solutions of Eq.

(2} can only be obtained numerically. 4

We assume that the n„contain the normalization
of $(r), and that F(r) has the form, for the silicon
half space z & 0,

F(r, &, k~~) = (I/v8)(2X' ') (3)

Here ~ is the variational parameter that gives the
over-all envelope width; k~~ refers to the (small)
value of the crystal momentum parallel to the sur-
face for the inversion-layer subbands; 8 is the
cross-section area of the oxide-semiconductor
interface. In fact, F(r) has a further z-dependent
phase factor which produces a correction to the
effective-mass parameters in the equations below
[see Eqs. (8)-(13)of Ref. 3 for details].

With a total number density of n electrons per
unit area in the inversion layer (and also at the
metal-oxide interface), the electrostatic potential
set up by a charge profile described in Eq. (3) is,
for z &0,

(4)

where &, is the static dielectric constant for the
semiconductor. We ignore the fine structure on
the scale of a unit cell introduced by the Bloch
function in Eq. (1). We match this potential and its
normal derivative across the oxide interface. The
oxide layer has a thickness & and static dielectric
constant &,. We set the potentia. l at the metal-
oxide interface to the gate voltage V, as we have
assumed that the potential vanishes at z -+~.
We thus obtain a relation. between the gate voltage,
the number density and the profile constant ~:

Vg

4me(&/e, +3/2Xe, )
'

This result is trivially the capacitance relation
obtained if all the inversion-layer electrons were
at a distance 1.5~ ' from the oxide interface.

We proceed to calculate the Hartree total energy
of the inversion-layer electrons. The one-electron
term, relative to the conduction-band minimum
at z~~, ls

E, = Q (4(r)le(-i&)+lel4'(~)10(r)&. (6)
occupied
~ll states

Provided F(r) is smooth on the unit-cell scale, we
can exploit the Bloch function orthogonality at the
different valleys and obtain

E, = P I ~„l&F„(r)le„(iv)+lelC'(,}IF„(r)&. (q)
valleys u

All occupied

If 6l,"z is the tgth element of the inverse effective-
mass tensor at the vth valley, then
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7t
~~

occupied

157Tn2e2

In the last term we have summed over the n occu-
pied states per unit area. We note here that the
longitudinal-transverse mass mixing introduced
by a z-dependent phase factor in Eq. (2) requires
us to replace the bulk 8„„with(8„„—8„',/8„), 8„
with (8„—8'„/8„)and 8„,with (8„,—8„,8„/8„).
(Again, see Ref. 3.) We can now write

E 7t h2n2 5 nA2 157tn2e2

Q 2l rpl~ 2w3 8~s~
+ +

where we have assumed 8,",= 8„=1/m„validwhen

all occupied valleys are equivalent, and where
m~ = (8„„8„—8„',) '~' is the density-of-states mass
of each of the v occupied valleys. We obtain the
electron-electron contribution to the total energy
by an indirect means. The Hartree total energy
can be written as the sum of kinetic energies, the
external potential and one-half of the total elec-
tron-electron interaction. It is also written as the
sum over the kinetic energies and the self-con-
sistent potential contribution minus half the elec-
tron-electron terms. Since the external potential
is merely the gate voltage V~ we arrive at the total
Hartree energy per unit area as

change integrals for the interaction of two electrons
with wave functions described by Eq. (1). We then
performed a variational calculation on the n„
coefficients. The intervalley exchange terms con-
tribute to energy-level splittings if no symmetries
are broken, and these exchange terms are an
order of magnitude too small to al.ter the valley
occupancy, even though the degeneracy is lifted.
A further generalization of the Kohn-Luttinger'
theory along the lines proposed by Gubanov and
Davydov" was also examined. At the (111)surface
the six valleys project onto different parts of the
surface Brillouin zone Isee Fig. 2(a)I, so equiva-
lent valleys with different occupations can only be
obtained from symmetry-breaking distortions of the
type introduced by density waves.

III. MANY-BODY THEORY OF THE INVERSION-LAYER
GROUND STATE

If electron correlations can alter the ground
state in the layered compounds, we might expect
similar effects in our almost two-dimensional
system. We present here a two-dimensional
many-body calculation of the possible ground
states as a function of the following four electronic
interaction energies: (i) V„the intravalley direct
interaction which is dominated by the Coulomb re-

$a

77@2n2 g 2n/2 15 7tn2e2

2vs„2m, 16',A.
+ --,'neV, + (10)

We minimize F~ with respect to ~, subject to the
constraint in Eq. (5). For typical metal-oxide-
semiconductor devices" & -1400 A, and with

&, =11.7 and &, =4.55, ~ ' is of the order of 15-30
A and the smoothness assumption for F(r) is barely
satisfied. For such values of &, Eq. (5) provides
an almost linear variation of n with V„and in the
linear limit & varies as (n)'~' for the minimized
value of E~. The dependence of ~ and n on 7n„and
v is very weak with the consequence that, in the
cases of more complex ground states where & and
m„both change from their paramagnetic values,
the effect on ~ and the corresponding electron-
electron terms calculated in Sec. IV is negligible.
In Sec. III, it is precisely v and m„that are deter-
mined. By contrast, the dependence of ~ and the
one-electron energy levels derived from Eq. (10)
on the value of m, is very sensitive. For this
reason, valleys with different 7n, are split well
apart and the v and m„need be obtained only for
those valleys with the largest ~,.

We calculated the intervalley Coulomb and ex-

r
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b

FIG. 2. Surface Brillouin zones for Si at (a) the (111)
surface showing the six equivalent valleys, and (b) the
(110) surface where the four valleys on the vertical
axis are equivalent. The density-wave valley coupling
for DWe, DWP, and DWy are also marked.
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pulsion between two electrons in the same valley;
(ii) U„the intervalley direct interaction, again
dominated by the Coulomb repulsion, and equal to
V„to a very good approximation (see Sec. IV);
(iii) U,„,the exchange interaction between elec-
trons in two valleys along the same XIX axis of
the bulk Brillouin zone; and (iv) U, tt, the exchange
interaction between electrons in valleys at "right
angles" to each other, e.g. , [1001 and [010]. These
latter two intervalley interactions are dominated
by a phonon-mediated term'4 as discussed in Sec.
IV.

We now construct a model Hamiltonian involving
the valleys with the same normal effective mass

To be specific, we set up the equations for

the Si(111)-SiO, interface where all six valleys are
equivalent [see Fig. 2(a)], and are labeled by
creation operators a, bt, ct, d, e, and f t and
destruction operators a, b, . . . ,f. We include the
two-dimensional kinetic-energy terms e„$),and
all the electron-electron interaction terms. As
noted in Sec. II, the normal-to-the-surface kinet-
ic-energy term 5'&'/2m, in a fuller Hamiltonian
is common to all valleys, and the values of ~ and
n as a function of V, are assumed given by the re-
sults of Sec. II.

Our model Hamiltonian includes only terms in
which one or two valleys are involved. Terms with
three and most terms with four valleys are ruled
out by k-vector conservation":

+=+[~ (&)abaaba+' ' '1+ Z [Ug(abaab-a. abb'a'bb'+a, a'+' ' ')
ka qkk'o 0'

+(U„,a„,b. .. ,b„,a. .. + )+bV, (a„ab„,a, , a„,„,+' ' ')1, (11)

where all cyclic permutationsofa, b, c, d, e, andf areincluded in the sums. The U's and V's are functions
of & and therefore of n (see Sec. IV), but here we solve for the unrestricted Hartree-Fock ground state re-
garding the interactions as free parameters. We adopt a procedure similar to that of Penn, "although our
present problem is rather more complex. Thus we define the following occupation numbers and correla-
tion functions cyclically:

A. , —= ~(a„a„),Att-=Z (a, ta, t), &ab, =—~(a„b„),&a»t—= ~(a»b„t),
k k

The unrestricted Hartree-Pock total energy is given by

«)„„=Q&~E.—U, [(At+At)(Bt+Bt) —I&.»i'-l™.btl' 2I&.b-»l'+" ]

(12)

+[U,.b[At»+AtBt+2A»Btt-l&. btl'-l&abtl' —2Re(&.bt&b. t)]+ ]-~,(AtAt-lAttl'+ ).

Here Ik is the occupation of the state of energy E, obtained from the 12&12 secular equation set up from
the equations of motion of the real quasiparticle creation and destruction operators. If we define the fol-
lowing quantities cyclically:

n t =e a (b ) + U, (Bt + B t + C t + C t +D t +D t +E t +E t +Ei + Fi) —Ub „Dt —Ua 8 (Bt + C t +E t +E)) +V A t,

Xab t ~abt + Ubab( abt +baht) g tab t+abt + aab(~abt + abt) t

UaoPt t Uas( t t+Ct t+Ett+Ft t) VqAt t ~ob = Ut+obt t

then the secular equation is

&c

-=0.

0)- Ek.

-Ek



M. J. KELLY AN 0 L. M. FALICOV 15

The self-consistent solutions of Eci. (15) are much
too many for an exhaustive study. Even the much
smaller secular equation considered by Penn" had
a wealth of structure in the resulting phase dia-
grams. We have confined ourselves to the exami-
nation of a number of less exotic self-consistent
solutions of E(I. (15) which minimize the total
energy [Eq. (13)]. These solutions are charac-
terized by nonvanishing values of the correlations
and occupations defined in E(I. (12). To begin with,
we have not examined any possible mixed spin-
charge-density wave solutions which have non-
vanishing values of p„or7„,in the secular equa-
tion. Partially ferromagnetic solutions are gen-
erally unstable in simpler two-dimensional prob-
lems, and we have assumed this to be the case
here.

We now summarize the salient features of some
solutions.

(i) At small values of U and V, the paramagnetic
solution is stable as it minimizes the kinetic-
energy contribution to the total energy. The six
pockets are equally occupied with spin-up and
-down electrons, and all correlations vanish. The
total energy per unit area takes the form

Er/8 =n'[(v8 '/12m, ) + (—,', U, + —,', V, ——,', U,

(ii) At very large values of U and V, the stable
solution is the ferromagnetic occupation of one
valley which, although it maximizes the kinetic-
energy contribution to the total energy, allows the
electron-electron contribution to vanish. The total
energy per unit area is now

Ez, /8 = v g 2n2/m~ .

In both these solutions the effective mass m* is
the density of states mass of an isolated pocket,
i.e., m* =m~ =0.358m, .

(iii) At intermediate values of U„ordinary
charge-density waves (CDW) are stable for U, &0,
while spin-density waves (SDW) are stable for
U, &0. There are two types of either density wave,
DWe and DWP, driven, respectively, by U, ~ and

U, g. The DWn solution couples two opposite val-
leys pushing one below the Fermi level; the other
four valleys remain uncoupled and unoccupied.
The DWP state couples four valleys into two pairs,
pushing two below the Fermi level while the re-
maining two valleys are uncoupled and unoccupied
[see Fig. 2(a)].

(iv) The DWo.'states have an occupational mul-
tiplicity v =1 and are defined by

with all other occupations and correlations van-

ishing. The total energy per unit area for the
CDWo. solution (r,~& =6„&)is

Er/8 =n [(n'5'/2m~)+( —,'U, +—,'V, + —,U, „)8],
and for the SDWn solution (&„&=-n, ,«) is

E /8 =n'[(lrh '/2m, ) + (,' U, -+-,'-V, ——'U, )8],

(19)

(20)

with m* =m„=0.358m, .
(v) The DWP states have an occupation multi-

plicity & =2, and are defined by

leLbf f 6 ) k6bf $ kA ) nQ

8 =C =E =I" = 8nQa o o o (21)

and for SDWP as

E /8 =n'[(vk'/4m*) +(~U, + —,', V, ——,', U
„

-8 U 8)8] (23)

with the important fact that m* here is now a func-
tion of U and V as described in subsection (viii)
below.

(vi) In Fig. 3.we present the phase diagram for
the Si(ill)-SiO, system as a. function of U, and U, ((

in the case where U, = V, (Sec. IV), and for three
fixed ratios of U,„/U,B. We recall that U and V
are functions of A. a,nd n, but if viewed as indepen-
dent parameters the total energy scales as (n').

(vii) We have tested a number of other types of
solutions with the following conclusions:

(a) The DW solutions above, which can be char-
acterized by a single q-vector correlating elec-
trons, are stable with respect to the onset of a
second DW until U and V are very large, by which
time the ferromagnetic solution is stable.

(b) The triple DW's defined by

h~~ =6b&) =h„~=h@~ =b,„~=6»~40, A„,~ =ah,„,(,
(24)

are such that SDW cannot be stabilized at all, and
the CDW is always unstable with respect to the ex-
isting solutions above.

(c) At large values of U and V, a, complex mixed
spin-charge ferromagnetic solution with v = 1 can
be obtained. The state is defined by

where (i) W =0 and &,z(=-A,z~, etc. , for the SDWP
solution, i.e., U, 8&0, and (ii) W=-U, 8 and &,zi

+bf $y etc. , for the CDWp solution when U, 8 & 0.
Again, all other occupations and correlations van-
ish. We ean write the total energy per unit area
for CDWP as

Er/8 =n~[(vh /4m*) +( —,', U, + —,', V, ——,', U,„)8]
(22)
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b,„„t=na Q —O[(e (k)/U)'l] (25a)

where the second term is a correction of order
[e (k)iU]'

b,„~~=A„~~~=—0,
X) = 6na, X)=X)):-0 (25b)

but remains unstable with respect to the ferromag-
netic occupation of one isolated pocket [solution
(ii) above].

(viii) We have calculated cyclotron masses for
the different solutions by determining the areas of
the Fermi distribution and their derivatives with
respect to the Fermi energy. For the paramag-
netic and ferromagnetic solutions m~ =0.358, the

value for an isolated valley; this is also the value
for the DWo. solution where the off-diagonal ma-
trix elements in Eq. (15) split the e, (k) and e~(k)
bands rigidly apart. For the DWjt3 solutions, the
effective masses vary with (U, —2U&) for the
CDWP state and with U, for the SDWP state. In
Fig. 4, we plot the lines of constant effective mass
on the assumption that DWP is stable over the en-
tire phase diagram. Of course, this figure must
be used with the appropriate graph in Fig. 3 in
order to obtain the actual range of variation of the
effective masses for the CDWP and SDWP ground
state.

IV. PHYSICALLY ACCESSIBLE REGION OF THE PHASE
DIAGRAM

Ferrom

U)

--2x]Q
In Sec. II, we obtained the values of the number

density per unit area n, and the profile constant
A. , as functions of the gate voltage 'V~. We now

proceed with these values to determine the behav-
ior of the U's and V's of Sec. III as a function of

We note that the intravalley direct interaction
is dominated by the Coulomb interaction between
two electrons in the same valley, with an equiva-
lent result holding for the direct intervalley inter-
action. We thus calculate

U)
--2x]Q

~(r-)&"'"l0.(r,) I' lt, (r2) I'&r, dr. ,

(26)

where@ and y now refer to two valleys, the g have
the form of a Bloch function multiplied by the

0.375

2x10

0.40

]0 2

0.425

—tQ Q

U2p

1Q

FIC . 3. Phase diagram for the Si(111)-Si02 inversion-
layer ground state. In all cases U&= V& and the three
diagrams correspond to the ratios x = U2~/U2~ of (a) ~
=0, (b) r=0.5, (c) r=l. Axes in eV for normalizing
area. 8=10 &2 cm-'

I

]0—210-2 0

U2p

FIG. 4, Lines of constant cyclotron mass for the
DWp solution. When used with Fig. 3, the ground-state
cyclotron mass variation can be obtained.
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smooth envelope function E lEq. (3)j, and with r»
=r, —r„v(r») is the appropriately screened Cou-
lomb interaction

v(r, g=e'e-'" j~,g., r„=lr»l .
The parameters of Sec. III a,re just

U, =W„„(q=0)and V, =W,„(q=0) . (28)

Because of the relative smoothness of E(r), we
can perform the r„and r, integrations independent-
ly over each unit cell using average values for
v (r»), and E(r,) and E(r,) The. Bloch functions
integrate to the corresponding vormalization con-
stant, so that in this scheme we obtain

eS 128K' 1, (1 58' —20s'X'+120K'))
Se s(4A.' —s')' (s' —4X')'

(29)

In our quasi-two-dimensional, low-electron-
density problem, the conventional approaches" to
screening are of limited validity. In (29), s is the
inverse screening length in the inversion layer but
due to the whole MOS system For. s - 0.06 A ' (a
phenomenological choice of the order of the in-
verse interelectronic spacing), U„increases from
4&&10 ' to 8&10 ' eV as the gate voltage increases
from 4 to 40 V. In (29) we have chosen 8 =10 "
em .

The intervalley electron-electron exchange con-
tribution to U, is positive, but is small for two
reasons. First the integral is now of the form

W„„(q)= fv (r,ge'~' g„*(r,)

x 0, (r,)4,*(r.)tt. (r.) &r, dr. ,

and the trick of integrating the periodic parts of
the Bloch functions over unit cells contributes
overlap terms as factors. Secondly, we need
evaluate this integral for lql equal to the interval-
ley k vector, and W falls off as (Ajq)' for large
q —here X/q -,—', .

The intervalley exchange media. ted by the elec-
tron-phonon interaction is known to be large and
negative, and may even be greater in absolute val-
ue than the direct Coulomb interaction. " Qf more
importance to us is the ratio U,~/U, & which deter-
mines the amount of phase space available to the
DWP states. A relatively crude estimate of U»
will suffice to determine the ground state if U, /
U,~ is somewhat less than unity.

From the form of the electron-phonon-electron
intervalley exchange (Eqs. II.15 and 11.22 of Ref.
14), we see thatfj, variesas (re~&) ', where u&~, is
the appropriate phonon frequency of wave vector

equal to the intervalley 0 vector. By us ing both the
selection rules of I,ax and Hopf ield' and the phonon
spectrum of Martin, "' we do indeed estimate U,„/
U» to be somewhat less than unity. We cannot be
more precise as assumptions concerning the
equality of deformation potentials" and the opera-
tion of bulk selection rules near the interface con-
stitute gross approximations.

It is clear that for values of U, and -U,B between
4&&10 ' and 8&&10 ' eV, and for U,~/U, Bs0.5, we
are in the CD%/ regime for the experimental
range of gate voltages. In this regime the valley
degeneracy is two and the effective mass decreas-
es slowly from 0.4 as the gate voltage is increased.
All these facts agree with experiment. If the
screening parameter s were to increase signifi-
cantly with n, then U, could decrease and m* in-
crease with gate voltage, contrary to experiment.
Further experimental tests of our theory are dis-
cussed in Sec. VI.

U,

——2x1O

—10 10

FIG. 5. Phase diagram for the Si(110)-Si02 inversion
layer ground state, for U, = V& and the ratio U2 /U&&= 0.5.
Again axes are in eV for normalizing area 8=10 ~2 cm 2.

V. OTHER SYSTEMS

A four-valley Hamiltonian can be set up for the
Si(110)-SiO, system —see Fig. 2(b) for the position
of the valleys in the Brillouin zone. Here the two-
dimensional effective-mass tensors for the four
heavy-normal-mass valleys are identical, and the
possible density-wave solutions, while they alter
the occupied valley degeneracy, do not affect the
effective masses. The off-diagonal matrix ele-
ments in the secular equation merely split the
bands rigidly apart. In Fig. 5 we present the phase
diagram of the Si(110)-SiO, system with the ratio
U, /U, 8=0.5. The DWy solutions couple the four
valleys in all combinations allowed by the nonzero
q-vector labeled y in Fig. 2(b). The resulting val-
ley oceupaney is unity. There is also a regime in
which the paramagnetic occupation of two valleys
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(with a U,„exchange between them) is stable. The
effective mass remains at 0.342m, . The range of
U's and V's is similar to that for the Si(ill)-SiO,
system, so that again, provided that

~ U, 8~ & U„we
are in the regime of the two-valley paramagnetic
solution.

It is important to realize that this state of asym-
metrical occupation of the valleys, which remain
paramagnetic in character, is very similar in
structure to the ferromagnetic state. The inter-
action terms are strong enough to unbalance valley
occupation (as opposed to spin occupation) and
break the symmetry accordingly. Although the re-
sulting state is not magnetic, many of the proper-
ties of this state can be considered a ferromag-
neticlike extension of symmetry breaking in a
many-valley system.

For the Si(100)-Si02 system, the cubic symmetry
of Si, combined with the anisotropy in the effec-
tive-mass expansions of the valley, make the pa-
ramagnetic occupation of the two high- normal-
mass valleys the stable solution up to high gate
voltages, where the ferromagnetic solution ulti-
mately becomes stable. For this system, the ex-
isting theories" apply as do the normal many-
body effects. '0

VI. DISCUSSION

We have presented a symmetry-breaking many-
electron theory that accounts for all the occupied-
valley-degeneracies for the Si-SiO, n-type inver-
sion layers. The cyclotron effective masses have
been explained for the Si(ill)-SiO, system, but
not the Si(110)-SiQ, or the Si(100)-SiO, systems.
In the latter cases, where the solutions are pa-
ramagnetic in our model, a conventional many-
body approach' must be adopted to account for the
(10-20)/p increase in cyclotron effective mass.
Our explanation for the Si(ill)-SiQ, system does

not require us to make very large random stress-
es' to account for the reduced valley occupation.
Our CDWP solution reduces the t,„symmetry of
this surface to mirror symmetry. Domains of
CDWP solutions, each with just one of the possible
q vectors, should appear and, for random distri-
bution of such domains, the transport properties
will be isotropic. " The observation of anisotropic
conductivity effects under uniaxial stress" is com-
pletely in accord with a CDWP solution as just one
density-wave domain is preferentially driven. We
are at present calculating the optical absorption
as electrons are excited from the bonding to anti-
bonding CDWP bands. Fuller details of the aniso-
tropy of the absorption, its line shape and its de-
pendence on gate voltage will be published else-
where. Such transitions would not occur in a ran-
dom stress model of the Si(ill)-SiO, system.

The weakest point of our theory is the evaluation
of the intervalley exchange terms. Should any
evidence for phase transitions in the inversion
layers be seen experimentally we would be able to
estimate both U,„andU» by comparison with our
phase diagrams.

Finally, reduced "valley" occupation and the
higher effective masses observed in inversion
layers of tellurium" probably owe their origin to
density-wave ground states, but the electronic
structure of Te is not so well characterized, ei-
ther theoretically or experimentally, as toattempt
a further analysis at this stage. The recent obser-
vation" of Shubnikov-de Haas oscillations and
cyclotron resonance at a germanium-insulator in-
terface offers further possibilities of testing our
theory. The anisotropy of the valleys is much
greater than in silicon, there are fewer valleys
and at different parts of the surface Brillouin
zone. ' Quite different phase diagrams are to be
expected.
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